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1. Introduction

In [17, § 2 Theorem 2], Peternell–Szurek–Wísniewski classified nef vector bundles on a
smooth hyperquadric Qn of dimension n ≥ 3 with first Chern class ≤ 1 over an alge-
braically closed field K of characteristic zero. In [12, Theorem 9.3], we provided a different
proof of this classification, which was based on an analysis with a full strong exceptional
collection of vector bundles on Qn.
In this paper, we classify nef vector bundles on a smooth quadric threefold Q3 with first

Chern class two. (In the subsequent paper [14], we classify those on a smooth hyperquadric
Qn of dimension n ≥ 4.) The precise statement is as follows.

Theorem 1.1. Let E be a nef vector bundle of rank r on a smooth hyperquadric Q3

of dimension 3 over an algebraically closed field K of characteristic zero, and let S be
the spinor bundle on Q3. Suppose that det E ∼= O(2). Then E is isomorphic to one of the
following vector bundles or fits in one of the following exact sequences:
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(1) O(2)⊕O⊕r−1;
(2) O(1)⊕2 ⊕O⊕r−2;
(3) O(1)⊕ S ⊕O⊕r−3;
(4) 0 → O(−1) → O(1)⊕O⊕r → E → 0;
(5) 0 → O⊕a → S⊕2 ⊕O⊕r−4+a → E → 0, where a=0 or 1, and the composite of the

injection O⊕a → S⊕2 ⊕ O⊕r−4+a and the projection S⊕2 ⊕ O⊕r−4+a → O⊕r−4+a

is zero;
(6) 0 → S(−1)⊕O(−1) → O⊕r+3 → E → 0;
(7) 0 → O(−1)⊕2 → O⊕r+2 → E → 0;
(8) 0 → O(−2) → O⊕r+1 → E → 0;
(9) 0 → O(−2) → O(−1)⊕4 → O⊕r+3 → E → 0.

Note that this list is effective: in each case exists an example. For example, if we denote
by N a null correlation bundle on P3, then π∗

p(N (1)) belongs to Case (9) of Theorem 1.1,

where πp : Q3 → P3 is the projection from a point p ∈ P4 \ Q3. (Similarly, π∗
p(ΩP3(2))

belongs to Case (9) of Theorem 1.1.) Under the stronger assumption that E is globally
generated, Ballico–Huh–Malaspina provided a classification of E on Q3 with c1 = 2 in [3]
and [2].
Note also that the projectivization P(E) of the bundle E in Theorem 1.1 is a Fano

manifold of dimension r +2, i.e. the bundle E in Theorem 1.1 is a Fano bundle on Q3

of rank r. As a related result, Langer classified smooth Fano 4-folds with adjunction
theoretic scroll structure over Q3 in [10, Theorem 7.2].
Our basic strategy and framework for describing E in Theorem 1.1 is to give a minimal

locally free resolution of E in terms of some twists of the full strong exceptional collection

(O,S,O(1),O(2))

of vector bundles (see [12] for more details).
The content of this paper is as follows. In § 2, we briefly recall Bondal’s theorem [1,

Theorem 6.2] and its related notions and results required in the proof of Theorem 1.1.
In particular, we recall some finite-dimensional algebra A and fix some symbols, e.g. G,
Pi and Si, related to A and to finitely generated right A-modules. We also recall the
classification [13, Theorem 1.1] of nef vector bundles on a smooth quadric surface Q2

with Chern class (2, 2) in Theorem 2.3. In § 3, we recall some basic properties of the
spinor bundle S on Q3. In § 4, we state Hirzebruch–Riemann–Roch formulas for vector
bundles E on Q3 with c1 = 2 and for S∨ ⊗ E . In § 5, we show some key lemmas required
later in the proof of Theorem 1.1. In § 6, we provide a lower bound for the third Chern
class of a nef vector bundle E , if h0(E(−D)) 6= 0 for some effective divisor D. In § 7, we
provide the set-up for the proof of Theorem 1.1. The proof of Theorem 1.1 is carried out
in § 8–19, according to which case of Theorem 2.3 E|Q2 belongs to.

1.1. Notation and conventions

Throughout this paper, we work over an algebraically closed field K of characteristic
zero. Basically, we follow the standard notation and terminology in algebraic geometry.
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We denote by Q3 a smooth quadric threefold over K, by Q2 a smooth quadric surface
over K and by

• S the spinor bundle on Q3.

Note that we follow Kapranov’s convention [9, p. 499]; our spinor bundle S is globally
generated, and it is the dual of that of Ottaviani’s [16]. For a coherent sheaf F , we denote
by ci(F) the ith Chern class of F and by F∨ the dual of F . In particular,

• ci stands for ci(E) of the nef vector bundle E we are dealing with.

For a vector bundle E , P(E) denotes ProjS(E), where S(E) denotes the symmetric
algebra of E . The tautological line bundle

• OP(E)(1) is also denoted by H(E).

Let A∗Q3 be the Chow ring of Q3. We denote

• by H a hyperplane section of Q3 and by h its class in A1Q3: A1Q3 = Zh;
• by L a line in Q3 and by l its class in A2Q3: A2Q3 = Zl.

Note that h2 = 2l. Via the map deg : A3Q3 ∼= Z, we identify elements A3Q3 with its
corresponding integer; thus, we have h3 = 2 and hl =1. For any closed subscheme Z in
Q3, IZ denotes the ideal sheaf of Z in Q3; for a point p ∈ Q3, Ip denotes the ideal sheaf
of p ∈ Q3 and k(p) denotes the residue field of p ∈ Q3. For coherent sheaves F and G,
we set

• extq(F ,G) = dimExtq(F ,G);
• hom(F ,G) = dimHom(F ,G).

Finally we refer to [11] for the definition and basic properties of nef vector bundles.

2. Preliminaries

Throughout this paper, G0, G1, G2, G3 denote respectively O, S, O(1), O(2) on Q3. An
important and well-known fact [9, Theorem 4.10] of the collection (G0, G1, G2, G3) is that
it is a full strong exceptional collection in Db(Q3), where Db(Q3) denotes the bounded
derived category of (the abelian category of) coherent sheaves on Q3. Here we use the
term ‘collection’ to mean ‘family’, not ‘set’. Thus, an exceptional collection is also called
an exceptional sequence. We refer to [7] for the definition of a full strong exceptional
sequence.
Denote by G the direct sum

⊕3
i=0Gi of G0, G1, G2 and G3, and by A the endomor-

phism ring End(G) of G. The ring A is a finite-dimensional K -algebra, and G is a left
A-module. Note that Extq(G,F) is a finitely generated right A-module for a coherent
sheaf F on Q3. We denote by modA the category of finitely generated right A-modules
and by Db(modA) the bounded derived category of modA. Let pi : G → Gi be the
projection, and ιi : Gi ↪→ G the inclusion. Set ei = ιi ◦ pi. Then ei ∈ A. Set
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Pi = eiA.

Then A ∼= ⊕iPi as right A-modules, and Pi’s are projective right A-modules. We see that
Pi ⊗A G ∼= Gi. Any finitely generated right A-module V has an ascending filtration

0 = V ≤−1 ⊂ V ≤0 ⊂ V ≤1 ⊂ V ≤2 ⊂ V ≤3 = V

by right A-submodules, where V ≤i is defined to be
⊕

j≤i V ej . Set Gri V = V ≤i/V ≤i−1

and

Si = Gri Pi.

Then Gri Si ∼= K as K -vector spaces, Grj Si = 0 for any j 6= i, and Si is a simple right
A-module. If we set mi = dimK Gri V , then Gri V ∼= S

⊕mi
i as right A-modules.

It follows from Bondal’s theorem [1, Theorem 6.2] that

RHom(G, •) : Db(Q3) → Db(modA)

is an exact equivalence, and its quasi-inverse is

•⊗L
AG : Db(modA) → Db(Q3).

For a coherent sheaf F on Q3, this fact can be rephrased in terms of a spectral sequence
[15, Theorem 1]:

Ep,q2 = TorA−p(Ext
q(G,F), G) ⇒ Ep+q =

F if p+ q = 0

0 if p+ q 6= 0,
(2.1)

which is called the Bondal spectral sequence. Note that Ep,q2 is the pth cohomology
sheaf Hp(Extq(G,F)⊗L

AG) of the complex Extq(G,F)⊗L
AG. When we compute the

spectral sequence, we consider the ascending filtration on the right A-module Extq(G,F)
and apply the following

Lemma 2.1. We have

S3 ⊗L
AG ∼= O(−1)[3]; (2.2)

S2 ⊗L
AG ∼= TP4(−2)|Q3 [2]; (2.3)

S1 ⊗L
AG ∼= S∨[1] ∼= S(−1)[1]; (2.4)

S0 ⊗L
AG ∼= O, (2.5)

where TP4 denotes the tangent bundle of P4.
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Proof. Since RHom(G,O(−1)[3]) ∼= S3, we obtain (2.2). Note that we have an iso-
morphism RHom(G,S∨[1]) ∼= S1 by [12, Lemma 8.2 (1)]. Hence we have (2.4). It is easy
to see that the last isomorphism (2.5) holds. To see (2.3), first note that we have the
following exact sequence:

0 → O(−2) → O(−1)⊗H0(O(1))∨ → TP4(−2)|Q3 → 0.

Serre duality shows that

H3(O(−4)) → H3(O(−3))⊗H0(O(1))∨

is dual of the canonical isomorphism

H0(O)⊗H0(O(1)) → H0(O(1)).

Hence Hq(TP4(−4)|Q3) = 0 for all q. Moreover, hq(S∨(−i)) = 0 for i = 0, 1, 2 and all q.
Therefore, we conclude that RHom(G,TP4(−2)|Q3)) is isomorphic to S2[−2]. �

Remark 2.2. As the referee pointed out, Lemma 2.1 shows that

(O(−1), TP4(−2)|Q3 ,S∨,O) (2.6)

is the left dual exceptional collection of (G0, G1, G2, G3) (see [1] and [5] for the defini-
tion and the characterization of the left dual exceptional collection). Moreover, the full
exceptional collection above is strong by [4, Proposition 3.3] (or by showing directly that
Extq(TP4(−2)|Q3 ,S∨) = 0 for any q > 0 through the Euler exact sequence).

Our proof of Theorem 1.1 relies on the following theorem [13, Theorem 1.1]:

Theorem 2.3. Let E be a nef vector bundle of rank r on a smooth quadric surface Q2

over an algebraically closed field K of characteristic zero. Suppose that det E ∼= O(2, 2).
Then E is isomorphic to one of the following vector bundles or fits in one of the following
exact sequences:

(1) O(2, 2)⊕O⊕r−1;
(2) O(2, 1)⊕O(0, 1)⊕O⊕r−2;

O(1, 2)⊕O(1, 0)⊕O⊕r−2;
(We do not exhibit the cases obtained by replacing (a, b) with (b, a) in the

following:)
(3) O(1, 1)⊕2 ⊕O⊕r−2;

(4) 0 → O ι−→ O(1, 1)⊕O(1, 0)⊕O(0, 1)⊕O⊕r−2 → E → 0;
(5) 0 → O(−1,−1) → O(1, 1)⊕O⊕r → E → 0;
(6) 0 → O⊕2 → O(1, 0)⊕2 ⊕O(0, 1)⊕2 ⊕O⊕r−2 → E → 0;
(7) 0 → O(−1,−1)⊕O(−1, 0)⊕O(0,−1) → O⊕r+3 → E → 0;
(8) 0 → O(−1,−2) → O(1, 0)⊕O⊕r → E → 0;
(9) 0 → O(−1,−1)⊕2 → O⊕r+2 → E → 0;

(10) 0 → O(−2,−2) → O⊕r+1 → E → 0;
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(11) 0 → O(−2,−2) → O⊕r+1 → E → k(p) → 0;
(12) 0 → O(−2,−2) → O⊕r → E → O → 0;
(13) 0 → O(−1,−1)⊕4 → O⊕r ⊕O(−1, 0)⊕2 ⊕O(0,−1)⊕2 → E → 0.

3. Some basic properties of the spinor bundle S on Q3

We recall some basic facts and properties of the spinor bundle S on Q3 in our notation
(see Ottaviani’s result [16] and [12, Theorem 8.1]). First we have an exact sequence

0 → S∨ → O⊕4 → S → 0 (3.1)

by [16, Theorem 2.8 (1)]. The restriction S|Q2 of S to a smooth hyperplane section Q2

of Q3 is isomorphic to O(1, 0)⊕O(0, 1), and h0(S) = 4. We have detS = O(1), and thus
the canonical isomorphism

S∨(1) ∼= S. (3.2)

The zero locus (s)0 of every non-zero element s of H0(S) is a line l in Q3. Thus c1(S) ∩
[Q3] = h and c2(S) ∩ [Q3] = l. We have hq(S) = 0 for any q > 0 and hq(S(−i)) = 0 for
all q if i = 1, 2 or 3.

Lemma 3.1. The natural map

H0(S)⊗H0(S) → H0(O(1))

sending s⊗ t to s ∧ t is surjective.

Proof. Without loss of generality, we may assume that Q3 is defined by an equation
X2

01 − X02X13 + X03X12 = 0, where [X01 : X02 : X03 : X12 : X13] is the homogeneous
coordinates of P4. We may also regard Q3 as a smooth hyperplane section H ∩ Q4 of a
smooth hyperquadric Q4 defined by an equation X01X23−X02X13+X03X12 = 0, where
Xij (0 ≤ i < j ≤ 3) are homogeneous coordinates of P5, and H is the hyperplane defined
by X01 = X23. Note that Q4 is the image of the Grassmannian G(1, 3) parametrizing
lines in P3 by the Plücker embedding ι. If we represent a point in G(1, 3) by a matrix[
x10 x11 x12 x13
x20 x21 x22 x23

]
, then ι∗Xij =

∣∣∣∣∣x1i x1j
x2i x2j

∣∣∣∣∣. We will identify Q4 with G(1, 3) via

ι. Let H0(P3,O(1)) ⊗ OG(1,3) → Q be the universal quotient bundle on G(1, 3), which

sends homogeneous coordinates xj of P3 to global sections sj of Q represented by

[
x1j
x2j

]
.

Recall that S is the restriction of U to the hyperplane section H ∩ Q4 = Q3. By abuse
of notation, we will denote by sj the restriction of sj to Q3. Since h0(S) = 4, H0(S)
is spanned by s0, s1, s2, s3. Moreover, H0(O(1)) is spanned by Xi,j = si ∧ sj , where
(i, j) = (0, 1), (0, 2), (0, 3), (1, 2) and (1, 3). This completes the proof. �
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4. Hirzebruch–Riemann–Roch formulas

Let E be a vector bundle of rank r on Q3. Since the tangent bundle T of Q3 fits in an
exact sequence

0 → T → TP4 |Q3 → OQ3(2) → 0,

the Chern polynomial ct(T ) of T is

(1 + ht)5

1 + 2ht
= 1 + 3ht+ 4h2t2 + 2h3t3,

where h denotes c1(OQ3(1)). Then the Hirzebruch–Riemann–Roch formula implies that

χ(E) = r +
13

12
c1h

2 +
3

4
(c21 − 2c2)h+

1

6
(c31 − 3c1c2 + 3c3),

where we set ci = ci(E). To compute χ(E(t)), note that

c1(E(t)) = c1 + rth;

c2(E(t)) = c2 + (r − 1)tc1h+

(
r

2

)
t2h2;

c3(E(t)) = c3 + (r − 2)tc2h+

(
r − 1

2

)
t2c1h

2 +

(
r

3

)
t3h3.

Since h3 = 2, we infer that

χ(E(t)) =r
3
t3 +

1

2
(c1h

2 + 3r)t2 +
1

2
{3c1h2 + (c21 − 2c2)h+

13

3
r}t

+ r +
13

12
c1h

2 +
3

4
(c21 − 2c2)h+

1

6
(c31 − 3c1c2 + 3c3).

(4.1)

Since c1(E) = dh for some integer d, the formula above can be written as

χ(E(t)) =r
6
(2t+ 3)(t+ 2)(t+ 1) + dt2 + (d2 + 3d)t− c2ht

+
d

6
(2d2 + 9d+ 13) +

1

2
{c3 − (d+ 3)c2h}.

(4.2)

In this paper, we are dealing with the case d =2:

χ(E(t)) = r

6
(2t+ 3)(t+ 2)(t+ 1) + 2t2 + 10t+ 13− c2ht+

1

2
{c3 − 5c2h}. (4.3)

In particular,

χ(E(−1)) = 5− 3

2
c2h+

1

2
c3; (4.4)
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χ(E(−2)) = 1− 1

2
c2h+

1

2
c3. (4.5)

Next we will compute χ(S∨⊗E(t)). Recall that c1(S) = h and that c1(S)c2(S) = 1. Note
also that

rankS∨ ⊗ E = 2r;

c1(S∨ ⊗ E) = 2c1 − rh;

c2(S∨ ⊗ E) = 2c2 − (2r − 1)c1h+ c21 +
(
r
2

)
h2 + rc2(S);

c3(S∨ ⊗ E) = 2c3 − 2(r − 1)c2h+ (r − 1)2c1h
2 + 2(r − 1)c1c2(S)

+2c1c2 − (r − 1)c21h− 1

3
r(r2 − 1).

The formula (4.1) together with the formulas above implies the following formula:

χ(S∨ ⊗ E(t)) =
2

3
rt3 + (c1h

2 + 2r)t2 + {2c1h2 + (c21 − 2c2)h+
4

3
r}t

+
7

6
c1h

2 + c21h− 2c2h+
1

3
c31 + c3 − c1c2 − c1c2(S).

Since c1 = dh, the formula above becomes the following formula:

χ(S∨ ⊗ E(t)) =
2

3
rt(t+ 1)(t+ 2) + 2dt2 + 2d(d+ 2)t

+
2

3
d(d+ 1)(d+ 2)− (2t+ d+ 2)c2h+ c3.

(4.6)

For the case d =2, we have

χ(S∨ ⊗ E(t)) = 2

3
rt(t+ 1)(t+ 2) + 4(t+ 2)2 − 2(t+ 2)c2h+ c3. (4.7)

In particular,

χ(S∨ ⊗ E(−1)) = 4− 2c2h+ c3. (4.8)

5. Key lemmas

Lemma 5.1. We have the following exact sequence on Q3:

0 → TP4(−2)|Q3 → S∨ ⊗Hom(TP4(−2)|Q3 ,S∨)∨ → ΩP4(1)|Q3 → 0, (5.1)

where the injection TP4(−2)|Q3 → S∨ ⊗ Hom(TP4(−2)|Q3 ,S∨)∨ is the coevaluation
morphism. Moreover, dimHom(TP4(−2)|Q3 ,S∨)∨ = 4.
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Proof. The following simplified proof is due to the referee. As we have seen in
Remark 2.2,

(O(−1), TP4(−2)|Q3 ,S∨,O) (5.2)

is a full strong exceptional collection of Db(Q3). Since this is strong, the right mutation
RS∨(TP4(−2)|Q3) of TP4(−2)|Q3 over S∨ fits in the following distinguished triangle:

TP4(−2)|Q3 → S∨ ⊗Hom(TP4(−2)|Q3 ,S∨)∨ → RS∨(TP4(−2)|Q3) → .

Now consider the mutated full exceptional collection

(O(−1),S∨,RS∨(TP4(−2)|Q3),O). (5.3)

Note here that

Extq(S∨,RS∨(TP4(−2)|Q3)) = 0 for q 6= 0. (5.4)

Indeed, by taking RHom(S∨, •) with the triangle above, we see that
Hom(TP4(−2)|Q3 ,S∨)∨ is isomorphic to RHom(S∨,RS∨(TP4(−2)|Q3)). On the other
hand, by dualizing the collection (5.2) (and reversing the order) and then twisting it by
O(−1) gives the following full strong exceptional collection:

(O(−1),S∨,ΩP4(1)|Q3 ,O). (5.5)

Comparing two full exceptional collections (5.3) and (5.5), we infer that

〈RS∨(TP4(−2)|Q3)〉 = ⊥〈O(−1),S∨〉 ∩ 〈O〉⊥ = 〈ΩP4(1)|Q3〉.

Thus, we have RS∨(TP4(−2)|Q3) ∼= ΩP4(1)|Q3 [d] for some integer d, but the vanish-
ing (5.4) implies that d =0, namely

RS∨(TP4(−2)|Q3) ∼= ΩP4(1)|Q3 .

Hence we obtain the desired exact sequence (5.1). If follows immediately from the exact
sequence (5.1) that dimHom(TP4(−2)|Q3 ,S∨)∨ = 4. �

Lemma 5.2. Let ϕ : S∨ → ΩP4(1)|Q3 be a morphism of OQ3-modules. If ϕ 6= 0, then

ϕ is injective, and there exists a line L on Q3 such that the restriction Coker(ϕ)|L to L
of the cokernel Coker(ϕ) of ϕ admits a negative degree quotient.
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Proof. We have an exact sequence

0 → ΩP4(1)|Q3
i−→ H0(O(1))⊗O → O(1) → 0,

and the composite i ◦ ϕ can be written as

i ◦ ϕ =
r∑
i=1

li ⊗ s∨i

for some li ∈ H0(O(1)) and si ∈ H0(S), where s∨i denotes the dual of the morphism
O → S determined by si. We may assume that li 6= 0 for all i. By replacing li if necessary,
we may further assume that s1, . . . , sr are linearly independent. Since h0(S) = 4, we have
r ≤ 4. Note that

∑r
i=1 lis

∨
i = 0 in Hom(S∨,O(1)). Hence r ≥ 2. Moreover, we have a

surjective morphism

ψ : Coker(i ◦ ϕ) → O(1).

Note that the morphism O⊕r → S determined by (s1, . . . , sr) is generically surjective.
Hence we see that i ◦ ϕ is injective. Therefore, ϕ is injective and

Coker(ϕ) ∼= Ker(ψ).

If r =2, then Coker(i ◦ ϕ) ∼= T ⊕ O⊕3 for some torsion sheaf T on Q3. Since O(1) is
torsion-free, ψ maps T to zero, and we have a surjective morphism ψ̄ : O⊕3 → O(1). On
the other hand, ψ̄ : O⊕3 → O(1) cannot be surjecitve since three hyperplane sections of
Q3 always meet at a point. This is a contradiction. Hence r =3 or 4. Suppose that r =4.
Then it follows from the exact sequence (3.1) that Coker(i ◦ ϕ) ∼= S ⊕ O. Note that ψ
induces a morphism S → O(1), which factors through IL(1) for some line L in Q3. Since
L and a hyperplane in Q3 meet at a point, ψ cannot be surjective. Hence the case r =4
does not arise, and we have r =3.
Now it follows from the exact sequence (3.1) that the cokernel of the morphism deter-

mined by t(s∨1 , s
∨
2 , s

∨
3 ) : S∨ → O⊕3 is isomorphic to the cokernel of some non-zero

morphism O → S, and hence it is isomorphic to IM (1) for some line M on Q3. Therefore,
Coker(i ◦ ϕ) ∼= IM (1)⊕O⊕2, and we have the following exact sequence:

0 → Coker(ϕ) → IM (1)⊕O⊕2 ψ−→ O(1) → 0. (5.6)

Let Q2 be a general hyperplane section of Q3 containing M. We may assume that M is
a divisor of type (1, 0) of Q2. Then IM (1) fits in the following exact sequence:

0 → OQ3 → IM (1) → OQ2(0, 1) → 0.

By pulling back the sequence above to a line L of type (0, 1) in Q2, we obtain the following
exact sequence:

OL → IM (1)⊗OL → OL → 0.
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The image of OL → IM (1) ⊗ OL is the torsion part of IM (1) ⊗ OL. Therefore, ψ ⊗ 1L
factors through O⊕3

L and induces a surjection O⊕3
L → OL(1). Hence Coker(ϕ)⊗OL has

OL(−1)⊕OL as a quotient. �

Lemma 5.3 will be applied to ψa in (12.4) and (12.7) and plays a crucial role in our
proof of Theorem 1.1.

Lemma 5.3. For any positive integer a and for any morphism ψa : TP4(−2)|Q3 →
S∨⊕a, there exists a line L in Q3 such that the cokernel Coker(ψa) of ψa has OL(−1) as
a quotient. In case a=1, there is a one-to-one correspondence between lines L in Q3 and
non-zero morphisms ψ1 : TP4(−2)|Q3 → S∨ up to scalar, and the correspondence is given
by the following exact sequence:

0 → O(−1)⊕2 → TP4(−2)|Q3
ψ1−−→ S∨ → OL(−1) → 0. (5.7)

Proof. The following brilliant proof is due to the referee. This proof is much shorter
than the original and enlightens the meaning of the exact sequence (5.7) more clearly.
Denote by Quot(S∨) the Quot-scheme parametrizing quotient sheaves of S∨. Then we

have a morphism

Ψ : P(Hom(TP4(−2)|Q3 ,S∨)∨) → Quot(S∨)

sending [ψ1] to Coker(ψ1). Note that for any line L ⊂ Q3 we have S∨|L ∼= OL(−1)⊕OL so
that S∨ admits OL(−1) as a quotient. Note also that the Hilbert polynomial χ(OL(t−1))
of OL(−1) is t. Let Z be the Hilbert scheme parametrizing lines in Q3. Then we have an
inclusion

Z ↪→ Quott(S∨)

sending [L] to OL(−1), where Quott(S∨) is the Quot-scheme parametrizing quotients of
S∨ with Hilbert polynomial t. It is well-known that Z ∼= P3. Note also that

P(Hom(TP4(−2)|Q3 ,S∨)∨) ∼= P3

by Lemma 5.1. We will show that Ψ is an isomorphism onto Z.
We first claim that the image ImΨ of Ψ is Z. To see this, we first apply to OL(−1) for

any line L ⊂ Q3 the Bondal spectral sequence (2.1). We have the following:

extq(O,OL(−1)) = 0 for any q;

extq(S,OL(−1)) = hq(OL(−2)⊕OL(−1)) =

1 if q = 1

0 if q 6= 1
; (5.8)

extq(O(1),OL(−1)) = hq(OL(−2)) =

1 if q = 1

0 if q 6= 1
;
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extq(O(2),OL(−1)) = hq(OL(−3)) =

2 if q = 1

0 if q 6= 1
.

Thus, Ext3(G, E) = 0, Ext2(G, E) = 0, Hom(G, E) = 0, and Ext1(G, E) has a filtration
S1 ⊂ F ⊂ Ext1(G, E) of right A-modules such that the following sequences are exact:

0 → F → Ext1(G, E) → S⊕2
3 → 0;

0 → S1 → F → S2 → 0.

These exact sequences induce the following distinguished triangles by Lemma 2.1:

F ⊗L
AG→ Ext1(G, E)⊗L

AG→ O(−1)⊕2[3] →;

S∨[1] → F ⊗L
AG→ TP4(−2)|Q3 [2] → .

By taking cohomologies, we obtain the following exact sequences:

0 → E−3,1
2 → O(−1) → H−2(F ⊗L

AG) → E−2,1
2 → 0;

0 → H−2(F ⊗L
AG) → TP4(−2)|Q3

ψL−−→ S∨ → E−1,1
2 → 0.

Moreover, we see that Ep,q2 = 0 unless q =1 and that Ep,12 = 0 unless p = −3,−2 or −1.

Hence we infer that E−3,1
2 = 0, that E−2,1

2 = 0 and that E−1,1
2

∼= OL(−1). Therefore,
OL(−1) is resolved as

0 → O(−1)⊕2 → TP4(−2)|Q3
ψL−−→ S∨ → OL(−1) → 0 (5.9)

in terms of the full strong exceptional collection (2.6). This implies that the image ImΨ
of Ψ contains Z. Since the source of Ψ has the same dimension as Z, we conclude that
ImΨ = Z.
Next we show that Ψ is injective. Note that the exact sequence (5.9) splits into the

following two exact sequences:

0 → K → S∨ → OL(−1) → 0; (5.10)

0 → O(−1)⊕2 → TP4(−2)|Q3 → K → 0. (5.11)

Since we have (5.8), the exact sequence (5.10) shows that K is the left mutation of OL(−1)
over S∨. Moreover it follows from (5.11) that O(−1)⊕2 is the left mutation of K over
TP4(−2)|Q3 , since
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K ∼= RHom(TP4(−2)|Q3 , TP4(−2)|Q3) ∼= RHom(TP4(−2)|Q3 ,K).

Therefore, ψL in (5.9) is uniquely determined by L up to scalar. Hence Ψ is injective.
Finally, if the composite of the morphism ψa and some projection S∨⊕a → S∨ is zero,

then Coker(ψa) admits S∨ as a quotient, and the assertion follows. Hence we may assume
that the composite cannot be zero for any projection S∨⊕a → S∨. Then the cokernel of
the composite has OL(−1) as a quotient, and so does Coker(ψa). �

Since the analyses of Coker(ψa) in case a ≥ 2 in the original proof of Lemma 5.3 are
indispensable for the proof of Lemma 5.4, we also provide that part of the proof as it
is. Recall here that, for a coherent sheaf F of codimension ≥ p + 1 on a non-singular
projective variety X, we have ci(F) = 0 for all 1 ≤ i ≤ p (see, e.g., [6, Example 15.3.6]).

Proof. The original proof of Lemma 5.3 in case a ≥ 2 If the composite of the
morphism ψa and some projection S∨⊕a → S∨ is zero, then Coker(ψa) admits S∨ as a
quotient, and the assertion follows. Hence we may assume that the composite cannot be
zero for any projection S∨⊕a → S∨, and this implies that a ≤ 4 by Lemma 5.1.
If a =4, then Lemma 5.1 shows that Coker(ψ4) ∼= ΩP4(1)|Q3 , and the assertion follows.
If a =3, then ψ3 can be regarded as the composite of the coevaluation morphism

ψ4 : TP4(−2)|Q3 → S∨ ⊗Hom(TP4(−2)|Q3 ,S∨)∨

and some projection S∨ ⊗ Hom(TP4(−2)|Q3 ,S∨)∨ → S∨⊕3. Let S∨ → S∨⊕4 be the

kernel of this projection, and let ϕ be the composite of the inclusion S∨ → S∨⊕4 and the
surjection S∨⊕4 → ΩP4(1)|Q3 in (5.1). Then

Coker(ψ3) ∼= Coker(ϕ) (5.12)

and Ker(ψ3) ∼= Ker(ϕ) by the snake lemma. Since Hom(S∨, TP4(−2)|Q3) = 0, ϕ cannot
be zero by (5.1). Lemma 5.2 then shows that ϕ is injective and that the restriction
Coker(ϕ)|L to some line L on Q3 admits a negative degree quotient. Hence the assertion
holds, and ψ3 is injective.
Suppose that a =2. Then we can regard ψ2 as the composite of some ψ3 : TP4(−2)|Q3 →

S∨⊕3 and some projection S∨⊕3 → S∨⊕2. Let S∨ → S∨⊕3 be the kernel of this projection.
Note here that we have an exact sequence

0 → TP4(−2)|Q3
ψ3−−→ S∨⊕3 → Coker(ϕ) → 0.

Denote by ϕ1 : S∨ → Coker(ϕ) the composite of the inclusion S∨ → S∨⊕3 and the
surjection S∨⊕3 → Coker(ϕ). Then ϕ1 cannot be zero, since Hom(S∨, TP4(−2)|Q3) = 0.
Moreover, the snake lemma implies that

Coker(ψ2) ∼= Coker(ϕ1) and that Ker(ψ2) ∼= Ker(ϕ1).
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Recall the inclusion i : Coker(ϕ) ↪→ IM (1)⊕O⊕2 in (5.6) and consider the composite
i ◦ ϕ1. We have the following exact sequence:

0 → Coker(ϕ1) → Coker(i ◦ ϕ1) → O(1) → 0. (5.13)

Let i ◦ ϕ1 be equal to (t∨, s∨1 , s
∨
2 ), where t∨ ∈ Hom(S∨, IM (1)), t ∈ H0(S(1)), s∨1 ,

s∨2 ∈ Hom(S∨,O) and s1, s2 ∈ H0(S). Since we have an exact sequence (5.6), we have
t∨ + h1s

∨
1 + h2s

∨
2 = 0 for some h1, h2 ∈ H0(O(1)). Now we have two cases:

(1) s1 and s2 are linearly independent;
(2) s1 and s2 are linearly dependent.

(1) If s1 and s2 are linearly independent, then ϕ1 is injective, and Coker(i◦ϕ1) has rank
one. Thus we see that Coker(ϕ1) is a torsion sheaf. Moreover, we claim that Coker(ϕ1)
is pure by [8, Prop. 1.1.6]: first note that ExtqQ3(Coker(ϕ), ωQ3) = 0 for all q ≥ 2; thus

ExtqQ3(Coker(ϕ1), ωQ3) = 0 for all q ≥ 2, and hence Coker(ϕ1) satisfies the generalized

Serre’s condition S1,1 in [8, Section 1.1]. Now we compute the Chern polynomial of
Coker(ϕ1). First note that ct(Coker(ϕ)) = ct(ΩP4(1)|Q3)/ct(S∨) = 1 + lt2 − t3. Hence

ct(Coker(ϕ1)) = ct(Coker(ϕ))/ct(S∨) = 1 + ht+ 2lt2.

Since Coker(ϕ1) is a torsion sheaf, this implies that Coker(ϕ1) is supported on a hyper-
plane section H of Q3, and the length of Coker(ϕ1) at the generic point of H is one.
Since Coker(ϕ1) is pure, this implies that Coker(ϕ1) is of the form IZ,H(D), where D
is a divisor on H and IZ,H denotes the ideal sheaf of some zero-dimensional closed
subscheme Z in H. Note here that ct(OH) = 1 + ht + 2lt2 + 2t3, that ct(OL) =
(ct(S∨)/ct(O(−1)))−1 = 1 − lt2 − t3 and that ct(k(p)) = 1 + 2t3, where k(p) is the
residue field at a point p (see also [6, Example 15.3.1] for the formula ct(k(p)) = 1+2t3).
Hence we see that [D] = 0 · l in A2Q3. Moreover, if D is of type (d,−d), then
ct(IZ,H(D)) = 1 + ht + 2lt2 + (2 − 2d2 − 2 lengthZ)t3. Hence (d, lengthZ) = (0, 1) or
(±1, 0). Therefore, Coker(ϕ1) is isomorphic to either Ip,H or OH(d,−d) where d = ±1.
Thus the assertion holds.
(2) If s1 and s2 are linearly dependent, by replacing si and hi if necessary, we may

assume that s2 = 0, and we have t∨ + h1s
∨
1 = 0. Set ϕ′

1 := (t∨, s∨1 ) : S∨ → IM (1)⊕OQ3 .
Then Coker(i ◦ ϕ1) ∼= Coker(ϕ′

1) ⊕ OQ3 and Ker(ϕ1) ∼= Ker(ϕ′
1). Note that ϕ′

1 6= 0
since ϕ1 6= 0. Hence s1 6= 0. Let L be the zero locus (s1)0 of s1. Then the composite
of ϕ′

1 and the inclusion IM (1) ⊕ OQ3 → O(1) ⊕ OQ3 factors through the morphism
(−h1, 1) : O → O(1)⊕OQ3 , and we have the following commutative diagram with exact
rows:

(5.14)

S∨

ϕ1

s∨
1 O 3

(−h1,1)

OL

−h̄1

0

0 IM(1) ⊕ O 3 O(1) ⊕ O 3 OM(1) 0
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We see that Im(ϕ′
1)

∼= IL and that Ker(ϕ′
1)

∼= O(−1). We claim here that h̄1 6= 0.
Assume, to the contrary, that h̄1 = 0. Then the snake lemma implies that Coker(ϕ′

1) fits
in the following exact sequence:

0 → OL → Coker(ϕ′
1) → O(1) → OM (1) → 0.

Since OL is a torsion sheaf, the surjection Coker(ϕ′
1)⊕OQ3 → O(1) induces a surjection

IM (1) ⊕ OQ3 → O(1). On the other hand, the morphism IM (1) ⊕ OQ3 → O(1) cannot
be surjective since a line M and a hyperplane meets at least at one point. This is a
contradiction. Hence h̄1 6= 0, and thus L=M. Moreover, the commutative diagram (5.14)
induces the following exact sequence by the snake lemma:

0 → Coker(ϕ′
1) → O(1) → k(p) → 0,

where p = (h̄1)0. Therefore, Coker(ϕ′
1) = Ip(1). The exact sequence (5.13), i.e. the

sequence

0 → Coker(ϕ1) → Ip(1)⊕OQ3 → O(1) → 0

then shows that Coker(ϕ1) = Ip. Thus the assertion also holds if s1 and s2 are linearly
dependent. �

Lemma 5.4 will be applied to π in (12.8) and plays a crucial role in the proof of
Theorem 1.1.

Lemma 5.4. Let ψa : TP4(−2)|Q3 → S∨⊕a be a morphism of OQ3-modules where a is
a positive integer, and let π : OQ3(−1) → Coker(ψa) be a morphism of OQ3-modules. If
Coker(π) does not admit a negative degree quotient, then a= 1, Coker(π) = 0 and Ker(π)
is isomorphic to IL(−1) for some line L in Q3.

Proof. We may assume that π 6=0.
Suppose that Coker(ψa) admits S∨ as a quotient; let p : Coker(ψa) → S∨ be the

surjection. Note that Coker(π) admits Coker(p ◦ π) as a quotient. If p ◦ π = 0, then
Coker(p ◦ π) ∼= S∨, and if p ◦ π 6= 0, then Coker(p ◦ π) ∼= IL for some line L in Q3.
Therefore, the restriction of Coker(π) to a line admits a negative degree quotient.
In the following, we assume that Coker(ψa) does not admit S∨ as a quotient. Hence

a ≤ 4 by Lemma 5.1.
Suppose that a =4. Then Coker(ψ4) ∼= ΩP4(1)|Q3 by Lemma 5.1. Since ΩP4(1)|L ∼=

OL(−1) ⊕ O⊕3
L for any line L in Q3, if Coker(π)|L does not admit a negative degree

quotient for any line L in Q3, we see that Coker(π)|L ∼= O⊕3
L for any line L in Q3. This

implies that Coker(π) ∼= O⊕3

Q3 by [18, (3.6.1) Lemma]. Thus ΩP4(1)|Q3
∼= O(−1) ⊕ O⊕3,

which contradicts H0(ΩP4(1)|Q3) = 0. Therefore, Coker(π)|L admits a negative degree

quotient for some line L in Q3.
Suppose that a =3. Recall that Coker(ψ3) ∼= Coker(ϕ) in (5.12). Recall also the inclu-

sion i : Coker(ϕ) ↪→ IM (1)⊕O⊕2 in (5.6) and consider the composite i ◦ π. We have the
following exact sequence:
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0 → Coker(π) → Coker(i ◦ π) ρ−→ O(1) → 0. (5.15)

Let i ◦ π be equal to (t, g1, g2), where t ∈ Hom(O(−1), IM (1)) ∼= H0(IM (2)), g1, g2 ∈
Hom(O(−1),O) ∼= H0(O(1)). Since we have an exact sequence (5.6), we have t+ h1g1 +
h2g2 = 0 for some h1, h2 ∈ H0(O(1)). Now we have two cases:

(1) g1 and g2 are linearly independent;
(2) g1 and g2 are linearly dependent.

(1) If g1 and g2 are linearly independent, then the cokernel of the morphism (g1, g2) :
O(−1) → O⊕2 is of the form IC(1), where C is the conic defined by g1 and g2. Hence
Coker(i ◦ π) fits in the following exact sequence:

0 → IM (1) → Coker(i ◦ π) → IC(1) → 0.

Now consider the composite of the injection IM → Coker(i ◦ π)(−1) and the surjection
ρ(−1) : Coker(i ◦ π)(−1) → O. The composite is nothing but the inclusion IM ↪→ O and
its cokernel is OM . Thus the surjection ρ(−1) induces a surjection ρ̄(−1) : IC → OM .
This implies that C ∩M = ∅. Moreover Coker(π)(−1) ∼= Ker(ρ̄(−1)) ∼= ICtM . Hence
Coker(π) ∼= ICtM (1). Note that the conic C and the line M can be joined by a line L in
Q3. Indeed, any hyperplane section H containing M intersects C at some point p, and
the point p and M can be joined by a line L in H. Now we see that Coker(π)|L admits a
negative degree quotient.
(2) If g1 and g2 are linearly dependent, by replacing gi and hi if necessary, we may

assume that g2 = 0, and we have t+h1g1 = 0. Set π′
1 := (t, g1) : O(−1) → IM (1)⊕OQ3 .

Then Coker(i ◦ π) ∼= Coker(π′)⊕OQ3 . Note that π′ 6= 0 since π 6=0. Hence g1 6= 0. Let H
be the hyperplane defined by g1. Then we have the following commutative diagram with
exact rows:

(5.16)

0 O(−1)

π

g1 O 3

(−h1,1)

OH

−h̄1

0

0 IM(1) ⊕ O 3 O(1) ⊕ O 3 OM(1) 0

We claim here that h̄1 6= 0. Assume, to the contrary, that h̄1 = 0. Then the snake lemma
shows that we have the following exact sequence:

0 → OH → Coker(π′) → O(1) → OM (1) → 0.

Since OH is a torsion sheaf, the surjection ρ : Coker(π′)⊕OQ3 → O(1) sends OH to zero,
and thus ρ induces a surjection IM (1)⊕OQ3 → O(1). On the other hand, the morphism
IM (1)⊕OQ3 → O(1) cannot be surjective since a line M and a hyperplane meets at least

at one point. This is a contradiction. Hence h̄1 6= 0. Then the kernel of the morphism
−h̄1 : OH → OM (1) is OH(−M) and the cokernel of −h̄1 is k(p) for some point p ∈M .
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Hence the commutative diagram (5.16) induces the following exact sequence by the snake
lemma:

0 → OH(−M) → Coker(π′) → O(1) → k(p) → 0.

Since OH(−M) is a torsion sheaf, the surjection ρ : Coker(π′) ⊕ OQ3 → O(1) sends
OH(−M) to zero, and thus the inclusion OH(−M) ↪→ Coker(π′) ⊕ OQ3 induces an
inclusion OH(−M) ↪→ Coker(π). The exact sequence (5.15) induces the following exact
sequence:

0 → Coker(π)/OH(−M) → Ip(1)⊕OQ3 → O(1) → 0.

This shows that Coker(π)/OH(−M) = Ip.
Suppose that a =2. As we have seen in the original proof of Lemma 5.3, Coker(ψ2) is

isomorphic to Coker(ϕ1), and Coker(ϕ1) is one of the following: Ip,H ; OH(d,−d) where
d = ±1; Ip. If Coker(ϕ1) = Ip,H , then Coker(π) admits OC(−p) as a quotient, where C
is a conic on H. If Coker(ϕ1) = OH(d,−d) with d = ±1, then Coker(π) admits OL(−1)
as a quotient, where L is a line on H. If Coker(ϕ1) = Ip, then Coker(π) admits Ip,H as
a quotient. Hence the assertion follows if a =2.
Suppose that a =1. Then Coker(ψ1) ∼= OL(−1) by Lemma 5.3. Since π 6=0, the mor-

phism π : O(−1) → OL(−1) is surjective, and Ker(π) ∼= IL(−1). This completes the
proof. �

6. A lower bound for the third Chern class

Note that

c3 ≥ 2c1c2 − c31 (6.1)

for a nef vector bundle E on a complete threefold X, since H(E)r+2 = c3− 2c1c2+ c
3
1 ≥ 0

for a nef line bundle H(E). If there exists an injection L → E from a line bundle L, then
we have a lower bound, which is better if L ∼= O(D) for some effective divisor D, as the
following lemma shows:

Lemma 6.1. Let E be a nef vector bundle of rank r on a complete variety X of dimen-
sion three. Let L be a line bundle on X such that H0(E ⊗ L−1) 6= 0. Then we have the
following inequality:

c3 ≥ 2c1c2 − c31 + (c21 − c2)c1(L).

Proof. The following short proof is due to the referee. Let p : P(E) → X be the projec-
tion. Then H0(H(E)⊗p∗L−1) ∼= H0(E ⊗L−1) 6= 0. Hence H(E)r+1(H(E)−p∗c1(L)) ≥ 0.
This yields the desired inequality. �

Lemma 6.1 will be applied to E in § 12.1.
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7. Set-up for the proof of Theorem 1.1

Let E be a nef vector bundle of rank r on Q3 with c1 = 2h. It follows from [12, Lemma 4.1
(1)] that

hq(E(t)) = 0 for q > 0 and t ≥ 0. (7.1)

Moreover, if H(E)r+2 = c3 − 2c1c2 + c31 = c3 − 4c2h+ 16 > 0, then

hq(E(−1)) = 0 for q > 0 (7.2)

by [12, Lemma 4.1 (2)]. Note here that

c3 ≥ 0 (7.3)

by [11, Theorem 8.2.1], since E is nef. Hence we see that

hq(E(−1)) = 0 for q > 0 if c2h ≤ 3. (7.4)

It follows from [12, Lemma 4.3] that

Extq(S, E(2)) = 0 for q > 0. (7.5)

The exact sequence (3.1) together with the isomorphism (3.2) implies that S∨⊗E(2) fits
in an exact sequence

0 → S∨ ⊗ E(1) → E(1)⊕4 → S∨ ⊗ E(2) → 0.

It then follows from (7.1) and (7.5) that

Extq(S, E(1)) = 0 for q ≥ 2. (7.6)

If h0(E(−2)) 6= 0, then E ∼= O(2) ⊕ O⊕r−1 by [12, Proposition 5.1 and Remark 5.3].
Thus, we will always assume that

h0(E(−2)) = 0 (7.7)

in the following. It follows from Theorem 2.3 that

hq(E|Q2) = 0 for q ≥ 2. (7.8)

Moreover

h1(E|Q2) =

1 if E|Q2 belongs to Case (11) of Theorem 2.3;

0 otherwise.
(7.9)
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The vanishing (7.1) then shows that

h3(E(−1)) = 0. (7.10)

Moreover

h2(E(−1)) = 0 unless E|Q2 belongs to Case (11) of Theorem 2.3. (7.11)

It follows from Theorem 2.3 that

hq(E(−1)|Q2) = 0 for q ≥ 2. (7.12)

The vanishing (7.10) then shows that

h3(E(−2)) = 0. (7.13)

The exact sequence (3.1) together with (3.2) also induces the following exact sequence

0 → S∨ ⊗ E(−1) → E(−1)⊕4 → S∨ ⊗ E → 0. (7.14)

This exact sequence (7.14) and an exact sequence

0 → S∨ ⊗ E(−1) → S∨ ⊗ E → S∨ ⊗ E|Q2 → 0 (7.15)

will be used to compute Extq(S, E).

8. The case where E|Q2 belongs to Case (1) of Theorem 2.3

The assumption (7.7) implies that this case does not arise. Indeed, if E|Q2
∼= O(2, 2) ⊕

O⊕r−1, then hq(E(−1)|Q2) = 0 for q > 0. Moreover c2h = 0. Hence hq(E(−1)) = 0 for
q > 0 by (7.4). This implies that hq(E(−2)) = 0 for q ≥ 2. The assumption (7.7) then
shows that

0 ≥ −h1(E(−2)) = χ(E(−2)) = 1 +
1

2
c3

by (4.5). This contradicts (7.3). Hence this case does not arise.

9. The case where E|Q2 belongs to Case (2) of Theorem 2.3

Suppose that

E|Q2
∼= O(2, 1)⊕O(0, 1)⊕O⊕r−2.

Then h0(E(−1)|Q2) = 2 and hq(E(−1)|Q2) = 0 for q > 0. Moreover c2h = 2. Hence

hq(E(−1)) = 0 for q > 0
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by (7.4). It then follows from (4.4) and (7.3) that h0(E(−1)) = χ(E(−1)) = 2+
1

2
c3 ≥ 2.

On the other hand, we have h0(E(−1)) ≤ h0(E(−1)|Q2) = 2 by (7.7). Therefore, the

restriction map H0(E(−1)) → H0(E(−1)|Q2) is an isomorphism,

h0(E(−1)) = 2 and c3 = 0.

Hence we see that

hq(E(−2)) = 0 for all q.

Since E(−2)|Q2
∼= O(0,−1)⊕O(−2,−1)⊕O(−2,−2)⊕r−2, we have hq(E(−2)|Q2) = 0 for

q < 2 and h2(E(−2)|Q2) = r − 2. Therefore

hq(E(−3)) = 0 for q < 3 and h3(E(−3)) = r − 2.

Next we will compute Extq(S, E(−1)). Since

S∨ ⊗ E(t)|Q2
∼= (O(−1, 0)⊕O(0,−1))⊗ (O(2 + t, 1 + t)⊕O(t, 1 + t)⊕O(t, t)⊕r−2),

we see that hq(S∨ ⊗ E(t)|Q2) = 0 for q > 0 and t ≥ 0. Hence it follows from (7.6) that

Extq(S, E(−1)) = 0 for q ≥ 2.

Since c2h = 2 and c3 = 0, the formula (4.8) shows that

h0(S∨ ⊗ E(−1)) = h1(S∨ ⊗ E(−1)).

Set a = h0(S∨ ⊗ E(−1)). Note that S∨ ⊗ E(−1) fits in an exact sequence

0 → S∨ ⊗ E(−2) → E(−2)⊕4 → S∨ ⊗ E(−1) → 0

by (3.1) and (3.2). Since hq(E(−2)) = 0 for all q, this exact sequence shows that

hq(S∨ ⊗ E(−2)) =

0 if q = 0, 3

a otherwise.

On the other hand, we have an exact sequence

0 → S∨ ⊗ E(−2) → S∨ ⊗ E(−1) → (S∨ ⊗ E(−1))|Q2 → 0. (9.1)

Since

S∨ ⊗ E(−1)|Q2
∼= (O(−1, 0)⊕O(0,−1))⊗ (O(1, 0)⊕O(−1, 0)⊕O(−1,−1)⊕r−2),
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we see that

hq(S∨ ⊗ E(−1)|Q2) =

1 if q = 0, 1

0 if q = 2, 3.

Hence the exact sequence (9.1) implies that a =1.
We apply to E(−1) the Bondal spectral sequence (2.1). We have Ext3(G, E(−1)) ∼=

S⊕r−2
3 , Ext2(G, E(−1)) = 0 and Ext1(G, E(−1)) ∼= S1. Moreover, Hom(G, E(−1)) fits in

an exact sequence

0 → S⊕2
0 → Hom(G, E(−1)) → S1 → 0.

Now Lemma 2.1 shows that Ep,32 = 0 unless p = −3, that E−3,3
2

∼= O(−1)⊕r−2, that

Ep,22 = 0 for all p, that Ep,12 = 0 unless p = −1, that E−1,1
2

∼= S(−1) and that a
distinguished triangle

O⊕2 → Hom(G, E(−1))⊗L
AG→ S(−1)[1] →

exists. Hence we have the following exact sequence:

0 → E−1,0
2 → S(−1) → O⊕2 → E0,0

2 → 0. (9.2)

Note here that E−1,0
2

∼= E−1,0
∞ = 0. Hence we see that E0,0

2 is a non-zero torsion sheaf.

On the other hand, E(−1) has E0,0
2 as a subsheaf, so that E0,0

2 must be torsion-free. This
is a contradiction. Therefore, this case does not arise.

10. The case where E|Q2 belongs to Case (3) of Theorem 2.3

Suppose that E|Q2
∼= O(1, 1)⊕2 ⊕O⊕r−2. Then c2 · h = 2. Hence hq(E(−1)) = 0 for q > 0

by (7.4). Since hq(E(−1)|Q2) = 0 for q > 0, this implies that hq(E(−2)) = 0 for q ≥ 2.
The assumption (7.7) together with (4.5) and (7.3) shows that

0 ≥ −h1(E(−2)) = χ(E(−2)) =
1

2
c3 ≥ 0.

Hence h1(E(−2)) = 0 and c3 = 0. Thus h0(E(−1)) = h0(E(−1)|Q2) = 2. Since

hq(E(−2)) = 0 for any q, we see that hq(E(−3)) = hq−1(E(−2)|Q2) for all q. Hence

hq(E(−3)) = 0 unless q =3 and h3(E(−3)) = r − 2. Since

S∨ ⊗ E(t)|Q2
∼= (O(−1, 0)⊕O(0,−1))⊗ (O(1 + t, 1 + t)⊕2 ⊕O(t, t)⊕r−2),

we see that hq(S∨ ⊗ E(t)|Q2) = 0 for q > 0 and t ≥ −1. Hence it follows from (7.6) that
Extq(S, E(−t)) = 0 for q ≥ 2 and t = 0, 1, 2. Since the exact sequence (3.1) together with
(3.2) induces an exact sequence
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0 → S∨ ⊗ E(−2) → E(−2)⊕4 → S∨ ⊗ E(−1) → 0,

the vanishing h1(E(−2)) = 0 implies that h1(S∨⊗E(−1)) = 0. Since h0(S∨⊗E(−1)|Q2) =

0, this implies that h1(S∨⊗E(−2)) = 0. Hence h0(S∨⊗E(−1)) = h0(S∨⊗E(−1)|Q2) = 0.
We apply to E(−1) the Bondal spectral sequence (2.1). We see that Hom(G, E(−1)) ∼=
S⊕2
0 , that Extq(G, E(−1)) = 0 for q = 1, 2 and that Ext3(G, E(−1)) ∼= S⊕r−2

3 . Hence

Ep,q2 = 0 unless q =0 or q =3, Ep,02 = 0 unless p=0, E0,0
2 = O⊕2, Ep,32 = 0 unless

p = −3 and E−3,3
2 = O(−1)⊕r−2 by Lemma 2.1. Therefore, E(−1) fits in an exact

sequence

0 → O⊕2 → E(−1) → O(−1)⊕r−2 → 0.

Hence E ∼= O(1)⊕2 ⊕O⊕r−2. This is Case (2) of Theorem 1.1.

11. The case where E|Q2 belongs to Case (4) of Theorem 2.3

Suppose that E|Q2 fits in an exact sequence

0 → O → O(1, 1)⊕O(1, 0)⊕O(0, 1)⊕O⊕r−2 → E|Q2 → 0.

Then c2h = 3. Hence hq(E(−1)) = 0 for q > 0 by (7.4). Note that hq(E(−1)|Q2) = 0 for

q > 0 and that h0(E(−1)|Q2) = 1. Hence hq(E(−2)) = 0 for q ≥ 2. The assumption (7.7)
together with (4.5) and (7.3) shows that

0 ≥ −h1(E(−2)) = χ(E(−2)) = −1

2
+

1

2
c3 ≥ −1

2
.

Hence h1(E(−2)) = 0 and c3 = 1. Now that hq(E(−2)) = 0 for any q, we have
hq(E(−3)) = hq−1(E(−2)|Q2) for any q. Set a = h1(E(−2)|Q2). Then a =0 or 1,

and h2(E(−2)|Q2) = r − 3 + a. Hence we see that hq(E(−3)) = 0 for q ≤ 1, that

h2(E(−3)) = a and that h3(E(−3)) = r − 3 + a. Moreover, the assumption (7.7) implies
that h0(E(−1)) = h0(E(−1)|Q2) = 1. Since E|Q2(−2,−1) fits in an exact sequence

0 → O(−2,−1) → O(−1, 0)⊕O(−1,−1)⊕O(−2, 0)⊕ O(−2,−1)⊕r−2

→ E|Q2(−2,−1) → 0,

we see that hq(E|Q2(−2,−1)) = 0 unless q =1. Hence hq(S∨ ⊗ E(−1)|Q2) = 0 unless
q =1. Note that hq(S∨ ⊗ E(t)|Q2) = 0 for t ≥ 0 and q ≥ 1. Hence it follows from (7.6)
that Extq(S, E(−t)) = 0 for q ≥ 2 and t = 0, 1. Note that S∨ ⊗ E(−2) is a subbundle of
E(−2)⊕4 by (3.1). Since h0(E(−2)) = 0, this implies that h0(S∨ ⊗ E(−2)) = 0. Since we
have an exact sequence
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0 → S∨ ⊗ E(−2) → S∨ ⊗ E(−1) → S∨ ⊗ E(−1)|Q2 → 0

and h0(S∨⊗E(−1)|Q2) = 0, we infer that h0(S∨⊗E(−1)) = 0. Now, from (4.8), it follows
that

−h1(S∨ ⊗ E(−1)) = χ(S∨ ⊗ E(−1)) = 4− 2 · 3 + 1 = −1.

We apply to E(−1) the Bondal spectral sequence (2.1). We have the following isomor-
phisms: Ext3(G, E(−1)) ∼= S⊕r−3+a

3 ; Ext2(G, E(−1)) ∼= S⊕a
3 ; Ext1(G, E(−1)) ∼= S1;

Hom(G, E(−1)) ∼= S0. Lemma 2.1 then shows that Ep,q2 = 0 unless (p, q) = (−3, 3),

(−3, 2), (−1, 1) or (0, 0), that E−3,3
2 = O(−1)⊕r−3+a, that E−3,2

2 = O(−1)⊕a, that

E−1,1
2 = S(−1) and that E0,0

2 = O. Hence E−3,2
3 = 0 and E−1,1

3 fits in the following
exact sequence:

0 → O(−1)⊕a → S(−1) → E−1,1
3 → 0.

Moreover E(−1) has a filtration O ⊂ F (E(−1)) ⊂ E(−1) such that F (E(−1)) fits in the
following exact sequences:

0 → F (E(−1)) → E(−1) → O(−1)⊕r−3 → 0;

0 → O → F (E(−1)) → E−1,1
3 → 0.

In particular, we see that F (E(−1)) is a vector bundle, since so is E(−1). On the other
hand, since Ext1(S(−1),O) = 0, F (E(−1)) fits in the following exact sequence:

0 → O(−1)⊕a → O⊕ S(−1) → F (E(−1)) → 0.

This implies that a =0. Indeed, if a =1, then F (E(−1)) cannot be a vector bundle,
since the intersection of a line and a hyperplane section cannot be empty. Therefore
F (E(−1)) ∼= O⊕S(−1), and thus E ∼= O(1)⊕S⊕O⊕r−3. This is Case (3) of Theorem 1.1.

12. The case where E|Q2 belongs to Case (5) of Theorem 2.3

Suppose that E|Q2 fits in an exact sequence

0 → O(−1,−1) → O(1, 1)⊕O⊕r → E|Q2 → 0.

Then c2h = 4. Note that

hq(S∨ ⊗ E|Q2) =

4 if q = 0

0 if q 6= 0,
(12.1)
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and that

hq(E(−1)|Q2) =

1 if q = 0, 1

0 if q 6= 0, 1.
(12.2)

Hence we have

h0(E(−1)) ≤ 1

by (7.7).

12.1. Suppose that h0(E(−1)) = 1.

Lemma 6.1 then shows that c3 ≥ 4. Hence Hq(E(−1)) vanishes for q > 0 by (7.2). The
formula (4.4) then shows that

h0(E(−1)) = −1 +
1

2
c3.

Thus we have c3 = 4. We also see that hq(E(−2)) = 0 unless q =2 and that h2(E(−2)) = 1
by (12.2) and (7.7). We have h0(E) = r + 5. Since we have an exact sequence

0 → S∨ ⊗ E(−2) → E(−2)⊕4 → S∨ ⊗ E(−1) → 0,

we see that h0(S∨ ⊗ E(−2)) = 0 and that h3(S∨ ⊗ E(−1)) = 0. Note that h0(S∨ ⊗
E(−1)|Q2) = 0. Since we have an exact sequence

0 → S∨ ⊗ E(−2) → S∨ ⊗ E(−1) → S∨ ⊗ E(−1)|Q2 → 0,

we infer that h0(S∨ ⊗ E(−1)) = 0. Since we have an exact sequence (7.14), we see that
hq(S∨ ⊗ E) = 0 for q ≥ 2. The exact sequence (7.15) together with (12.1) shows that
h2(S∨ ⊗ E(−1)) = 0. Now the formula (4.8) shows that

−h1(S∨ ⊗ E(−1)) = χ(S∨ ⊗ E(−1)) = 0,

since c3 = 4 and c2h = 4. The exact sequence (7.14) then implies that hq(S∨ ⊗ E) = 0
unless q =0 and that h0(S∨⊗E) = 4. Since h0(E(−1)) = 1, we have an injection O(1) →
E . Let F be its cokernel: we have the following exact sequence:

0 → O(1) → E → F → 0.

We apply to F the Bondal spectral sequence (2.1). We see that hq(F) = 0 unless q =0
and that h0(F) = r. Moreover hq(F(−1)) = 0 for any q, hq(F(−2)) = 0 unless q =2 and
h2(F(−2)) = 1. Finally, we have hq(S∨ ⊗F) = 0 for all q. Therefore Extq(G,F) = 0 for
q =3 and 1, Ext2(G,F) ∼= S3 and Hom(G,F) ∼= S⊕r

0 . Hence Ep,q2 = 0 unless (p · q) =
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(−3, 2) or (0, 0), E−3,2
2 = O(−1) and E0,0

2 = O⊕r by Lemma 2.1. Thus, we have an exact
sequence

0 → O(−1) → O⊕r → F → 0.

Therefore E belongs to Case (4) of Theorem 1.1.

12.2. Suppose that h0(E(−1)) = 0.

Then h0(S∨ ⊗ E(−1)) = 0 by (7.14). Note that Hq(E|Q2) vanishes for all q > 0. Since
hq(E) = 0 for all q > 0 by (7.1), we have hq(E(−1)) = 0 for all q ≥ 2. Hence (4.4) and
(7.3) imply that

0 ≥ −h1(E(−1)) = χ(E(−1)) = −1 +
1

2
c3 ≥ −1.

Therefore, (h1(E(−1)), c3) is either (0, 2) or (1, 0). Since h3(E(−1)) = 0, we first have
h3(S∨ ⊗ E) = 0 by (7.14). Secondly, we have h3(S∨ ⊗ E(−1)) = 0 by (12.1) and (7.15).
Thirdly, we have h2(S∨⊗E) = 0 by (7.14) since h2(E(−1)) = 0. Finally, we have h2(S∨⊗
E(−1)) = 0 by (12.1) and (7.15). Hence

−h1(S∨ ⊗ E(−1)) = χ(S∨ ⊗ E(−1)) = −4 + c3 (12.3)

by (4.8). We apply to E the Bondal spectral sequence (2.1).

12.2.1. Suppose that (h1(E(−1)), c3) = (0, 2).

Then h1(S∨ ⊗ E) = 0 by (7.14). Moreover h1(S∨ ⊗ E(−1)) = 2 by (12.3). Hence we
have h0(S∨⊗E) = 2 by (7.14). Since hq(E(−1)|Q2) = 1 for q =0, 1 and hq(E(−1)|Q2) = 0
for q =2, 3, we infer that hq(E(−2)) = 1 for q =1, 2, and that hq(E(−2)) = 0 unless
q =1 or 2. Since h0(E|Q2) = r+4, we see that h0(E) = r+4. Therefore, we have an exact
sequence

0 → S⊕r+4
0 → Hom(G, E) → S⊕2

1 → 0

and the following: Ext1(G, E) ∼= S3; Ext
2(G, E) ∼= S3 and Ext3(G, E) = 0. Therefore,

Lemma 2.1 implies that Ep,q2 = 0 unless (p, q) = (−3, 1), (−3, 2), (−1, 0) or (0, 0), that

E−3,1
2

∼= O(−1), that E−3,2
2

∼= O(−1) and that there is an exact sequence

0 → E−1,0
2 → S(−1)⊕2 → O⊕r+4 → E0,0

2 → 0.

It follows from the Bondal spectral sequence (2.1) that E−3,1
2

∼= E−1,0
2 , that E−3,2

2
∼=

E−3,2
3 , that E0,0

2
∼= E0,0

3 and that there is an exact sequence

0 → E−3,2
3 → E0,0

3 → E → 0.
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Hence we obtain the following exact sequences:

0 → O(−1) → S(−1)⊕2 → O⊕r+4 → E0,0
3 → 0;

0 → O(−1) → E0,0
3 → E → 0.

The latter exact sequence shows that E0,0
3 is a vector bundle since so is E . The former

exact sequence then splits into the following two exact sequences with G a vector bundle
of rank three:

0 → O(−1) → S(−1)⊕2 → G → 0;

0 → G → O⊕r+4 → E0,0
3 → 0.

The latter exact sequence shows that the dual G∨ of G is globally generated. The injection
O(−1) → S(−1)⊕2 in the former exact sequence gives rise to two global sections s0, s1
of S, and we infer that (s0)0 ∩ (s1)0 = ∅ since G is a vector bundle. Hence s0 and s1 are
linearly independent. We also see that G∨ fits in the following exact sequence:

0 → G∨ → S⊕2 → O(1) → 0.

Note that the induced map H0(S)⊕2 → H0(O(1)) sends (t0, t1) to s0 ∧ t0 + s1 ∧ t1, and
Lemma 3.1 implies that it is surjective. Therefore h0(G∨) = 3. Since G∨ is a globally
generated vector bundle of rank three, this implies that G∨ ∼= O⊕3. On the other hand,
the exact sequence above shows that c1(G∨) = 1. This is a contradiction. Hence the case
(h1(E(−1)), c3) = (0, 2) does not arise.

12.2.2. Suppose that (h1(E(−1)), c3) = (1, 0).

Then h1(S∨ ⊗ E(−1)) = 4 by (12.3). Set a := h0(S∨ ⊗ E). Then h1(S∨ ⊗ E) =
a by (7.14). From (12.2), it follows that hq(E(−2)) = 0 unless q =1 or 2 and that
(h1(E(−2)), h2(E(−2))) = (1, 0) or (2, 1). Note also that h0(E) = r + 3.
12.2.2.1. Suppose that (h1(E(−2)), h2(E(−2))) = (1, 0). Then we see that Ext3(G, E) =

0, that Ext2(G, E) = 0, that Ext1(G, E) has a filtration S⊕a
1 ⊂ F ⊂ Ext1(G, E) of right

A-modules such that the following sequences are exact:

0 → F → Ext1(G, E) → S3 → 0;

0 → S⊕a
1 → F → S2 → 0,

and that Hom(G, E) fits in the following exact sequence of right A-modules:

0 → S⊕r+3
0 → Hom(G, E) → S⊕a

1 → 0.
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These exact sequences induce the following distinguished triangles by Lemma 2.1:

F ⊗L
AG→ Ext1(G, E)⊗L

AG→ O(−1)[3] →;

S(−1)[1]⊕a → F ⊗L
AG→ TP4(−2)|Q3 [2] →;

O⊕r+3 → Hom(G, E)⊗L
AG→ S(−1)[1]⊕a → .

By taking cohomologies, we obtain the following exact sequences by (3.2):

0 → E−3,1
2 → O(−1) → H−2(F ⊗L

AG) → E−2,1
2 → 0;

0 → H−2(F ⊗L
AG) → TP4(−2)|Q3

ψa−−→ S∨⊕a → E−1,1
2 → 0; (12.4)

0 → E−1,0
2 → S∨⊕a → O⊕r+3 → E0,0

2 → 0.

Moreover, we have the following exact sequences:

0 → E−2,1
2 → E0,0

2 → E0,0
3 → 0;

0 → E−3,1
2 → E−1,0

2 → 0;

0 → E0,0
3 → E → E−1,1

2 → 0.

Since E is nef, E−1,1
2 cannot admit negative degree quotients. Hence it follows from

Lemma 5.3 that a =0. Then E−1,1
2 = 0, E−3,1

2 = E−1,0
2 = 0, E0,0

2 = O⊕r+3, and we have
the following exact sequence:

0 → O(−1) → TP4(−2)|Q3 → E−2,1
2 → 0.

Hence E fits in the following exact sequence:

0 → O(−1) → TP4(−2)|Q3 → O⊕r+3 → E → 0. (12.5)

Since TP4(−2)|Q3 fits in an exact sequence

0 → O(−2) → O(−1)⊕5 → TP4(−2)|Q3 → 0,

the exact sequence (12.5) induces the following exact sequence:

0 → O(−2) → O(−1)⊕4 → O⊕r+3 → E → 0.
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This is Case (9) of Theorem 1.1.
12.2.2.2. Suppose that (h1(E(−2)), h2(E(−2))) = (2, 1). Then we see that Ext3(G, E) =

0, that Ext2(G, E) ∼= S3, that Ext
1(G, E) has a filtration S⊕a

1 ⊂ F ⊂ Ext1(G, E) of right
A-modules such that the following sequences are exact:

0 → F → Ext1(G, E) → S⊕2
3 → 0;

0 → S⊕a
1 → F → S2 → 0,

and that Hom(G, E) fits in the following exact sequence of right A-modules:

0 → S⊕r+3
0 → Hom(G, E) → S⊕a

1 → 0.

Lemma 2.1 implies that Ext2(G, E)⊗L
AG ∼= O(−1)[3] and that the three exact sequences

above induce the following distinguished triangles:

F ⊗L
AG→ Ext1(G, E)⊗L

AG→ O(−1)⊕2[3] →;

S(−1)[1]⊕a → F ⊗L
AG→ TP4(−2)|Q3 [2] →;

O⊕r+3 → Hom(G, E)⊗L
AG→ S(−1)[1]⊕a → .

By taking cohomologies, we see that Ep,22 = 0 unless p = −3, that E−3,2
2

∼= O(−1), and
that we have the following exact sequences by (3.2):

0 → E−3,1
2 → O(−1)⊕2 → H−2(F ⊗L

AG) → E−2,1
2 → 0; (12.6)

0 → H−2(F ⊗L
AG) → TP4(−2)|Q3

ψa−−→ S∨⊕a → E−1,1
2 → 0; (12.7)

0 → E−1,0
2 → S∨⊕a → O⊕r+3 → E0,0

2 → 0.

Moreover, we have the following exact sequences:

0 → E−3,2
3 → E−3,2

2
π−→ E−1,1

2 → E−1,1
3 → 0; (12.8)

0 → E−2,1
2 → E0,0

2 → E0,0
3 → 0;

0 → E−3,1
2 → E−1,0

2 → 0;
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0 → E−3,2
3 → E0,0

3 → E0,0
4 → 0;

0 → E0,0
4 → E → E−1,1

3 → 0.

Since E is nef, E−1,1
3 cannot admit negative degree quotients. If a > 0, it follows from

Lemmas 5.4 and 5.3 that a =1, that E−1,1
3 = 0, that E−3,2

3
∼= IL(−1) for some line

L ⊂ Q3, that E−1,1
2

∼= OL(−1) and that H−2(F ⊗L
AG) ∼= O(−1)⊕2. Therefore, E ∼= E0,0

4

and the exact sequence (12.6) becomes the following exact sequence:

0 → E−3,1
2 → O(−1)⊕2 → O(−1)⊕2 → E−2,1

2 → 0.

Set O(−1)⊕b ∼= E−3,1
2 for some non-negative integer b ≤ 2. Then E−2,1

2
∼= O(−1)⊕b and

we have the following exact sequences:

0 → O(−1)⊕b → S∨ → O⊕r+3 → E0,0
2 → 0;

0 → O(−1)⊕b → E0,0
2 → E0,0

3 → 0;

0 → IL(−1) → E0,0
3 → E → 0.

Since O⊕r+3 is torsion-free and S∨ is not isomorphic to O⊕2, we see that b ≤ 1. Note
here that E0,0

3 is torsion-free, and so is E0,0
2 . If b=1, we get an exact sequence

0 → IM → O⊕r+3 → E0,0
2 → 0

for some line M in Q3. Since we can extend IM → O⊕r+3 to an injection O → O⊕r+3

by taking double duals, we infer that E0,0
2 contains a torsion sheaf OM . This is a

contradiction. Hence b=0, and E0,0
2 fits in the following exact sequences:

0 → S∨ → O⊕r+3 → E0,0
2 → 0;

0 → IL(−1) → E0,0
2 → E → 0.

Since IL(−1) is torsion-free but not locally free, so is E0,0
2 . Hence the former exact

sequence together with (3.1) implies that E0,0
2

∼= IM (1) ⊕ O⊕r for some line M in Q3.
This can be shown by the similar argument as in the proof of Lemma 5.2. Indeed, by
taking a free basis of O⊕r+3 suitably, we may assume that the injection S∨ → O⊕r+3

is written as t(s∨1 , . . . , s
∨
m, 0, . . . , 0) for some linearly independent elements s1, . . . , sm

of H0(S), where s∨i denotes the dual of the morphism O → S defined by si. We have
2 = rankS∨ ≤ m ≤ h0(S) = 4. Since E0,0

2 is torsion-free, we have 3 ≤ m. Since E0,0
2 is not
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locally free, it follows from the exact sequence (3.1) that m 6=4. Hence m =3. Moreover,
the exact sequence (3.1) shows that if we extend (s1, s2, s3) to a basis (s1, s2, s3, s4) of

H0(S) then there exists a basis (t1, t2, t3, t4) of H
0(S) such that

∑4
i=1 tis

∨
i = 0 and that

the cokernel of the morphism t(s∨1 , s
∨
2 , s

∨
3 ) is isomorphic to the cokernel of the morphism

t4 : O → S. Hence the cokernel of t(s∨1 , s
∨
2 , s

∨
3 ) is isomorphic to IM (1) for some line

M on Q3. Therefore E0,0
2

∼= IM (1) ⊕ O⊕r. By taking the double dual of the injection

IL(−1) → E0,0
2 in the latter exact sequence, we obtain a commutative diagram with

exact rows

0 IL(−1) E0,0
2 E 0

0 O(−1) O(1) ⊕ O⊕r F 0

for some coherent sheaf F . Note that Tor
Op
q (Fp, k(p)) = 0 for q ≥ 2 and any point p.

Since E is torsion-free, the snake lemma implies that L=M and that we have an exact
sequence

0 → OL(−1) → OM (1) → OZ → 0

for some closed subscheme Z of length two. Moreover, E fits in the following exact
sequence:

0 → E → F → OZ → 0.

For an associated point p of Z, the exact sequence above induces a coherent sheaf G and
the following exact sequence:

0 → E → G → k(p) → 0.

Since Tor
Op
3 (Fp, k(p)) = 0, we have Tor

Op
3 (Gp, k(p)) = 0. Note that Tor

Op
q (Ep, k(p)) =

0 for q ≥ 1. Hence Tor
Op
3 (k(p), k(p)) = 0, which contradicts the fact that

Tor
Op
3 (k(p), k(p)) = 1. Therefore, a cannot be positive: a =0. Thus 0 = E−1,1

2 = E−1,1
3 ,

0 = E−1,0
2 = E−3,1

2 , O⊕r+3 ∼= E0,0
2 , E−3,2

3
∼= E−3,2

2
∼= O(−1), E0,0

4
∼= E , and we have the

following exact sequences:

0 → O(−1)⊕2 → TP4(−2)|Q3 → E−2,1
2 → 0;

0 → E−2,1
2 → O⊕r+3 → E0,0

3 → 0;

0 → O(−1) → E0,0
3 → E → 0.
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Since TP4(−2)|Q3 fits in an exact sequence

0 → O(−2) → O(−1)⊕5 → TP4(−2)|Q3 → 0,

E−2,1
2 has a resolution of the following form:

0 → O(−2) → O(−1)⊕3 → E−2,1
2 → 0.

Therefore, we see that E belongs to Case (9) of Theorem 1.1.

13. The case where E|Q2 belongs to Case (6) of Theorem 2.3

Suppose that E|Q2 fits in the following exact sequence:

0 → O⊕2 → O(1, 0)⊕2 ⊕O(0, 1)⊕2 ⊕O⊕r−2 → E|Q2 → 0.

Then hq(E(−1)|Q2) = 0 for any q, and c2h = 4. Since hq(E|Q2) = 0 for any q > 0, the
vanishing (7.1) shows that hq(E(−t)) = 0 for q ≥ 2 and t = 1, 2. The assumption (7.7)
together with (4.5) and (7.3) shows that

0 ≥ −h1(E(−2)) = χ(E(−2)) = −1 +
1

2
c3 ≥ −1.

Therefore we have two cases: (h1(E(−2)), c3) = (0, 2) or (1, 0). Note here that
hq(E(−1)) = hq(E(−2)) for any q. In particular, h0(E(−1)) = h0(E(−2)) = 0 by (7.7).
We claim here that hq(S∨ ⊗ E(t)|Q2) = 0 for q > 0 and t ≥ 0. Indeed, we see that

hq((O(−1, 0)⊕O(0,−1))⊗ (O(1 + t, t)⊕2 ⊕O(t, 1 + t)⊕2 ⊕O(t, t)⊕r−3)) = 0

for q > 0 and t ≥ 0. Hence we obtain the claim. Then it follows from (7.6) that

hq(S∨ ⊗ E(t)) = 0 for q ≥ 2 and t = 0,−1. (13.1)

Since h0(E(−1)) = 0, the exact sequence (7.14) together with (13.1) shows that hq(S∨ ⊗
E(−1)) = 0 unless q =1. Hence

−h1(S∨ ⊗ E(−1)) = χ(S∨ ⊗ E(−1)) = −4 + c3 (13.2)

by (4.8).

13.1. Suppose that (h1(E(−2)), c3) = (0, 2).

Then hq(E(−2)) = 0 for any q. Hence hq(E(−1)) = 0 for any q. Set a = h1(E(−2)|Q2).

Then a ≤ 2 and h2(E(−2)|Q2) = r − 4 + a. Thus h2(E(−3)) = a, h3(E(−3)) = r − 4 + a

and hq(E(−3)) = 0 unless q =2 or 3. It follows from (13.2) that h1(S∨⊗E(−1)) = 2. We
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apply to E(−1) the Bondal spectral sequence (2.1). We have Ext3(G, E(−1)) ∼= S⊕r−4+a
3 ,

Ext2(G, E(−1)) ∼= S⊕a
3 , Ext1(G, E(−1)) ∼= S⊕2

1 and Hom(G, E(−1)) = 0. Lemma 2.1 then

shows that E−3,3
2

∼= O(−1)⊕r−4+a, that E−3,2
2

∼= O(−1)⊕a, that E−1,1
2

∼= S(−1)⊕2 and
that Ep,q2 = 0 unless (p, q) = (−3, 3), (−3, 2) or (−1, 1). Then E(−1) fits in the (−1)-twist
of the following exact sequence:

0 → O⊕a → S⊕2 → E → O⊕r−4+a → 0. (13.3)

This sequence splits into the following two exact sequences:

0 → O⊕a → S⊕2 → F → 0;

0 → F → E → O⊕r−4+a → 0,

where F is a globally generated vector bundle of rank 4− a. We claim here that a ≤ 1.
Indeed, if a =2, then we have the following exact sequences:

0 → O → S⊕2 → G → 0;

0 → O → G → F → 0,

where G is a globally generated vector bundle of rank 3. Since F is a vector bundle, G
must have a nowhere vanishing global section, and thus c3(G) = 0. On the other hand,
c3(G) = c3(S⊕2) = 2c2(S)h = 2. This is a contradiction. Hence the case a =2 does not
arise. Now note that E is isomorphic to F ⊕O⊕r−4+a since h1(F) = 0. Therefore, E fits
in an exact sequence

0 → O⊕a → S⊕2 ⊕O⊕r−4+a → E → 0,

where the composite of the inclusion O⊕a → S⊕2 ⊕O⊕r−4+a and the projection S⊕2 ⊕
O⊕r−4+a → O⊕r−4+a is zero. This is Case (5) of Theorem 1.1.

13.2. Suppose that (h1(E(−2)), c3) = (1, 0).

Then h1(E(−1)) = 1. Hence h0(E) = h0(E|Q2)− 1 = r + 3. It follows from (13.2) that

h1(S∨ ⊗ E(−1)) = 4. Set a = h0(S∨ ⊗ E). Then the exact sequence (7.14) shows that
a ≤ 4, that hq(S∨ ⊗ E) = 0 unless q =0 or 1 and that h1(S∨ ⊗ E) = a. Hence we have
Extq(G, E) = 0 for q =2 and 3, and Hom(G, E) fits in an exact sequence

0 → S⊕r+3
0 → Hom(G, E) → S⊕a

1 → 0.

Moreover, Ext1(G, E) has a filtration S⊕a
1 ⊂ F ⊂ Ext1(G, E) of right A-modules such

that the following sequences are exact:

0 → F → Ext1(G, E) → S3 → 0;
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0 → S⊕a
1 → F → S2 → 0.

Now the structures of right A-modules Extq(G, E)’s are the same as those of Extq(G, E)’s
in § 12.2.2.1, and we conclude that E belongs to Case (9) of Theorem 1.1.

14. The case where E|Q2 belongs to Case (7) of Theorem 2.3

Suppose that E|Q2 fits in the following exact sequence:

0 → O(−1,−1)⊕O(−1, 0)⊕O(0,−1) → O⊕r+3 → E|Q2 → 0.

Then c2h = 5. It then follows from (6.1) that c3 ≥ 4. Note that

hq(S∨ ⊗ E|Q2) =

2 if q = 0

0 if q 6= 0,
(14.1)

and that

hq(E(−1)|Q2) =

1 if q = 1

0 if q 6= 1.
(14.2)

Hence we have

h0(E(−1)) = 0

by (7.7). Note that Hq(E|Q2) vanishes for any q > 0. Since hq(E) = 0 for any q > 0 by
(7.1), we have hq(E(−1)) = 0 for any q ≥ 2. Hence it follows from (4.4) that

0 ≥ −h1(E(−1)) = χ(E(−1)) = −5

2
+

1

2
c3 ≥ −1

2
.

Therefore c3 = 5 and h1(E(−1)) = 0. Now it follows from (7.14) that hq(S∨ ⊗ E) =
hq+1(S∨ ⊗ E(−1)) for any q. In particular, h0(S∨ ⊗ E(−1)) = 0. Moreover hq+1(S∨ ⊗
E(−1)) = hq+1(S∨ ⊗ E) for q ≥ 1 by (14.1) and (7.15). Hence hq(S∨ ⊗ E) = 0 for q ≥ 1
and hq(S∨ ⊗ E(−1)) = 0 for q ≥ 2. Therefore

−h1(S∨ ⊗ E(−1)) = χ(S∨ ⊗ E(−1)) = −6 + c3 = −1

by (4.8). Thus h0(S∨ ⊗ E) = 1. We apply to E the Bondal spectral sequence (2.1).
From (14.2), it follows that hq(E(−2)) = 0 unless q =2 and that h2(E(−2)) = 1. Since
h0(E|Q2) = r + 3, we see that h0(E) = r + 3. Hence we have an exact sequence
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0 → S⊕r+3
0 → Hom(G, E) → S1 → 0,

and the following: Extq(G, E) = 0 for q = 1, 3; Ext2(G, E) ∼= S3. Therefore, Lemma 2.1
implies that Ep,q2 = 0 unless (p, q) = (−3, 2) or (0, 0), that E−3,2

2
∼= O(−1), and that

there is the following exact sequence:

0 → S(−1) → O⊕r+3 → E0,0
2 → 0.

Note that we have the following exact sequence:

0 → E−3,2
2 → E0,0

2 → E → 0.

Since Ext1(O(−1),S(−1)) = 0, this implies that E fits in the following exact sequence:

0 → S(−1)⊕O(−1) → O⊕r+3 → E → 0.

This is Case (6) of Theorem 1.1.

15. The case where E|Q2 belongs to Case (8) of Theorem 2.3

Suppose that E|Q2 fits in the following exact sequence:

0 → O(−1,−2) → O(1, 0)⊕O⊕r → E|Q2 → 0.

Then c2h = 6. It then follows from (6.1) that c3 ≥ 8. Note that

hq(E(−1)|Q2) =

2 if q = 1

0 if q 6= 1,
(15.1)

and that

hq(S∨ ⊗ E|Q2) =

1 if q = 0, 1

0 if q 6= 0, 1.
(15.2)

Hence we have

h0(E(−1)) = 0

by (7.7). Note that Hq(E|Q2) vanishes for all q > 0. Since hq(E) = 0 for all q > 0 by (7.1),
we have hq(E(−1)) = 0 for all q ≥ 2. It follows from (4.4) that

0 ≥ −h1(E(−1)) = χ(E(−1)) = −4 +
1

2
c3 ≥ 0.

Therefore c3 = 8 and h1(E(−1)) = 0. Now it follows from (7.14) that hq(S∨ ⊗ E) =
hq+1(S∨ ⊗ E(−1)) for any q. In particular, h0(S∨ ⊗ E(−1)) = 0. Moreover hq+1(S∨ ⊗
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E(−1)) = hq+1(S∨ ⊗ E) for q ≥ 2 by (7.15) and (15.2). Hence hq(S∨ ⊗ E) = 0 for q ≥ 2
and h3(S∨ ⊗ E(−1)) = 0. Hence

−h1(S∨ ⊗ E(−1)) + h2(S∨ ⊗ E(−1)) = χ(S∨ ⊗ E(−1)) = −8 + c3 = 0

by (4.8). Set a = h0(S∨⊗E). Then a = h1(S∨⊗E(−1)) = h2(S∨⊗E(−1)) = h1(S∨⊗E).
We see that a =1 by (7.15) and (15.2). We apply to E the Bondal spectral sequence (2.1).
It follows from (15.1) that hq(E(−2)) vanishes unless q =2 and that h2(E(−2)) = 2. Since
h0(E|Q2) = r+2, we see that h0(E) = r+2. Therefore, Ext3(G, E) = 0, Ext2(G, E) ∼= S⊕2

3 ,

Ext1(G, E) ∼= S1 and Hom(G, E) fits in the following exact sequence:

0 → S⊕r+2
0 → Hom(G, E) → S1 → 0.

Therefore, Lemma 2.1 implies that Ep,q2 = 0 unless (p, q) = (−3, 2), (−1, 1), (−1, 0) or

(0, 0), that E−3,2
2

∼= O(−1)⊕2, that E−1,1
2

∼= S(−1) and that there exists the following
exact sequence:

0 → E−1,0
2 → S(−1) → O⊕r+2 → E0,0

2 → 0.

The Bondal spectral sequence implies that E−1,0
2 = 0, that E0,0

2
∼= E0,0

3 and that we have
the following exact sequences:

0 → E−3,2
3 → O(−1)⊕2 ϕ−→ S(−1) → E−1,1

3 → 0;

0 → E−3,2
3 → E0,0

3 → E0,0
4 → 0;

0 → E0,0
4 → E → E−1,1

3 → 0.

Since E is nef, E−1,1
3 cannot admit a negative degree quotient. Hence ϕ 6=0. Thus, there

exists an inclusion ι : O(−1) → O(−1)⊕2 such that ϕ ◦ ι 6= 0. Now we have a morphism
ϕ̄ : O(−1) ∼= Coker(ι) → Coker(ϕ ◦ ι) ∼= IL for some line L in Q3 and ϕ̄ fits in the
following exact sequence:

0 → E−3,2
3 → O(−1)

ϕ̄−→ IL → E−1,1
3 → 0.

This shows that E−1,1
3 |M admits a negative degree quotient for some line M in Q3. This

is a contradiction. Therefore, E|Q2 cannot belong to Case (8) of Theorem 2.3.

16. The case where E|Q2 belongs to Case (9) of Theorem 2.3

Suppose that E|Q2 fits in the following exact sequence:

0 → O(−1,−1)⊕2 → O⊕r+2 → E|Q2 → 0.
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Then c2h = 6. It then follows from (6.1) that c3 ≥ 8. Note that

hq(E(−1)|Q2) =

2 if q = 1

0 if q 6= 1,
(16.1)

and that

hq(S∨ ⊗ E|Q2) = 0 for all q. (16.2)

Hence we have

h0(E(−1)) = 0

by (7.7). Note that Hq(E|Q2) vanishes for all q > 0. Since hq(E) = 0 for all q > 0 by (7.1),
we have hq(E(−1)) = 0 for all q ≥ 2. It follows from (4.4) that

0 ≥ −h1(E(−1)) = χ(E(−1)) = −4 +
1

2
c3 ≥ 0.

Therefore c3 = 8 and h1(E(−1)) = 0. Now it follows from (7.14) that hq(S∨ ⊗ E) =
hq+1(S∨ ⊗ E(−1)) for any q. Moreover hq+1(S∨ ⊗ E(−1)) = hq+1(S∨ ⊗ E) for any q
by (7.15) and (16.2). Hence hq(S∨ ⊗ E) = 0 for any q. We apply to E the Bondal
spectral sequence (2.1). It follows from (16.1) that hq(E(−2)) vanishes unless q =2 and
that h2(E(−2)) = 2. Since h0(E|Q2) = r + 2, we see that h0(E) = r + 2. Therefore,

Hom(G, E) ∼= S⊕r+2
0 , Ext1(G, E) = 0, Ext2(G, E) ∼= S⊕2

3 and Ext3(G, E) = 0. Therefore,

Lemma 2.1 implies that Ep,q2 = 0 unless (p, q) = (−3, 2) or (0, 0), that E−3,2
2

∼= O(−1)⊕2

and that E0,0
2

∼= O⊕r+2. It follows from the Bondal spectral sequence that E fits in the
following exact sequence:

0 → O(−1)⊕2 → O⊕r+2 → E → 0.

This is Case (7) of Theorem 1.1.

17. The case where E|Q2 belongs to Case (10) of Theorem 2.3

Suppose that E|Q2 fits in the following exact sequence:

0 → O(−2,−2) → O⊕r+1 → E|Q2 → 0.

Then c2h = 8. It then follows from (6.1) that c3 ≥ 16. Note that

hq(E|Q2) =


r + 1 if q = 0

1 if q = 1

0 if q = 2,

(17.1)
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that

hq(E(−1)|Q2) =

4 if q = 1

0 if q 6= 1,
(17.2)

that

hq(S∨ ⊗ E(1)|Q2) =

4r + 4 if q = 0

0 if q 6= 0,
(17.3)

and that

hq(S∨ ⊗ E|Q2) =

4 if q = 1

0 if q 6= 1.
(17.4)

Hence we have

h0(E(−1)) = 0

by (7.7). Then h0(S∨ ⊗ E(−1)) = 0 by (7.14). Since hq(E) = 0 for all q > 0 by (7.1), we
have h2(E(−1)) = 1 and h3(E(−1)) = 0 by (17.1). It then follows from (4.4) that

1 ≥ 1− h1(E(−1)) = χ(E(−1)) = −7 +
1

2
c3 ≥ 1.

Therefore c3 = 16 and h1(E(−1)) = 0. Hence h0(E) = r + 1 since h0(E|Q2) = r + 1 by

(17.1). Moreover h2(E(−2)) = 5 and hq(E(−2)) = 0 unless q =2 by (17.2). It follows
from (7.6) and (17.3) that

hq(S∨ ⊗ E) = 0 for q ≥ 2.

Moreover h0(S∨ ⊗ E) = 0 since h0(S∨ ⊗ E|Q2) = 0 by (17.4). Hence it follows from (4.7)

−h1(S∨ ⊗ E) = χ(S∨ ⊗ E) = 16− 4c2h+ c3 = 0.

We apply to E the Bondal spectral sequence (2.1). We see that Hom(G, E) ∼= S⊕r+1
0 , that

Extq(G, E) = 0 for q = 1, 3 and that Ext2(G, E) fits in the following exact sequence of
right A-modules:

0 → S2 → Ext2(G, E) → S⊕5
3 → 0.

Therefore, Lemma 2.1 implies that Ep,q2 = 0 unless (p, q) = (−3, 2) (−2, 2) or (0, 0), that

E0,0
2

∼= O⊕r+1 and that E−3,2
2 and E−2,2

2 fit in the following exact sequence:
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0 → E−3,2
2 → O(−1)⊕5 → TP4(−2)|Q3 → E−2,2

2 → 0. (17.5)

The Bondal spectral sequence induces the following isomorphisms and exact sequences:

E−3,2
2

∼= E−3,2
3 ;

E0,0
2

∼= E0,0
3 ;

0 → E−3,2
3 → E0,0

3 → E0,0
4 → 0;

0 → E0,0
4 → E → E−2,2

2 → 0.

Note here that E−2,2
2 |L cannot admit a negative degree quotient for any line L ⊂ Q3

since E is nef. We will show that E−2,2
2 = 0; first note that the exact sequence (17.5)

induces the following exact sequence:

0 → E−3,2
2 → O(−1)⊕5 ⊕O(−2)

p−→ O(−1)⊕5 → E−2,2
2 → 0.

Consider the composite of the inclusion O(−1)⊕5 → O(−1)⊕5⊕O(−2) and the morphism
p above, and let O(−1)⊕a be the cokernel of this composite. Then we have the following
exact sequence:

O(−2)
π−→ O(−1)⊕a → E−2,2

2 → 0.

We claim here that a =0. Suppose, to the contrary, that a > 0. Since E−2,2
2 cannot be

isomorphic to O(−1)⊕a, the morphism π above is not zero. Therefore, the composite of
π and some projection O(−1)⊕a → O(−1) is not zero, whose quotient is of the form
OH(−1) for some hyperplane H in Q3. Hence E−2,2

2 admits OH(−1) as a quotient. This

is a contradiction. Thus a =0 and E−2,2
2 = 0. Moreover, we see that E−3,2

2
∼= O(−2).

Therefore, E fits in the following exact sequence:

0 → O(−2) → O⊕r+1 → E → 0.

This is Case (8) of Theorem 1.1.

18. The case where E|Q2 belongs to Case (11) of Theorem 2.3

Suppose that E|Q2 fits in the following exact sequence:

0 → O(−2,−2) → O⊕r+1 → E|Q2 → k(p) → 0.

Then c2h = 7. It then follows from (6.1) that

c3 ≥ 12.
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We claim here that h0(E(−1)|Q2) = 0. Indeed, if h0(E(−1)|Q2) 6= 0, then

c2h ≤ c1(E|Q2)(c1(E|Q2)− c1(OQ2(1, 1))) = 4

by [12, Lemma 10.1]. This is a contradiction. Hence h0(E(−1)|Q2) = 0. Thus, we have

h0(E(−1)) = 0 by (7.7). It follows from (4.4) that

χ(E(−1)) = −11

2
+

1

2
c3.

In particular c3 is odd, and thus c3 > 12. Therefore hq(E(−1)) = 0 for all q > 0 by (7.2).
This implies that χ(E(−1)) = 0, which is a contradiction. Therefore, E|Q2 cannot belong
to Case (11) of Theorem 2.3.

19. The case where E|Q2 belongs to Case (12) or (13) of Theorem 2.3

Suppose that E|Q2 fits in either of the following exact sequences:

0 → O(−2,−2) → O⊕r → E|Q2 → O → 0;

0 → O(−1,−1)⊕4 → O⊕r ⊕O(−1, 0)⊕2 ⊕O(0,−1)⊕2 → E|Q2 → 0.

Then c2h = 8. It then follows from (6.1) that

c3 ≥ 16.

We claim here that h0(E(−1)|Q2) = 0. Indeed, if h0(E(−1)|Q2) 6= 0, then

c2h ≤ c1(E|Q2)(c1(E|Q2)− c1(OQ2(1, 1))) = 4

by [12, Lemma 10.1]. This is a contradiction. Hence h0(E(−1)|Q2) = 0. Thus, we have

h0(E(−1)) = 0 by (7.7). Note that hq(E|Q2) = 0 for all q > 0. Since hq(E) = 0 for all q > 0
by (7.1), this implies that hq(E(−1)) = 0 for all q ≥ 2. It follows from (4.4) that

0 ≥ −h1(E(−1)) = χ(E(−1)) = −7 +
1

2
c3 ≥ 1.

This is a contradiction. Therefore, E|Q2 cannot belong to Case (12) or (13) of Theorem 2.3.
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