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Abstract. Existence theorems for the equation FðxÞ ¼ ’ðxÞ are proved when F
is a function with ‘‘good’’ surjective properties and ’ satisfies certain compactness
conditions on countable subsets of the space. Also results for certain homotopic
perturbations of the equation are obtained. The results lead to various fixed point
theorems of Darbo type for F ¼ id, but they are also applicable if F acts between
different spaces. Also the inclusions FðxÞ 2 ’ðxÞ (resp. FðxÞ � ’ðxÞ) for multivalued
functions ’ (resp. F and ’) are studied. There are some connections with the theory
of 0-epi maps.
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1. Some coincidence theorems. Let X be a metric space, � � X, and Y be a
metrizable locally convex space. Let F:�! Y be a ‘‘good’’ map in the sense that
FðxÞ ¼ ’ðxÞ has a solution x in � for all continuous maps ’:�! Y that vanish on
the boundary B of � and with compact conv ’ð�Þ. (We shall see later that in the
case X ¼ Y, the map F ¼ id� x0 with x0 2 � has this property; more generally, this
is true for maps F with nonzero degree degðF;�; 0Þ.)

The following coincidence theorem states that then the equation FðxÞ ¼ ’ðxÞ
also has a solution x in � if ’ is not necessarily compact but if certain compactness
assumptions on countable sets are satisfied. Moreover, ’ need not vanish on the
boundary. It suffices that ’ is homotopic to a map vanishing on the boundary via an
homotopy H which is admissible in the sense that H has no coincidence points with
F on the boundary (and that H satisfies certain compactness assumptions).

Thus, in a sense the following result may be interpreted as the homotopy
invariance of a coincidence index. Note, however, that under the assumptions of the
theorem no coincidence index needs to be defined: except for the compactness
assumptions, we do not suppose any topological properties of the considered maps.
F need not even be continuous. In this sense, the result is a homotopic analogue to
the homologic results in [23].

The importance of this result becomes clear in connection with 0-epi maps [11,
14]: this is the class of maps with a zero which is stable under ‘‘admissible’’ compact
homotopic perturbations, but in general not under noncompact perturbations. To
attack this ‘‘flaw’’, in [22] the notion of ð0; kÞ-epi maps was introduced. This has
stronger stability properties. However, the problem was essentially left open in [22]
as to how to verify that a given map is ð0; kÞ-epi. Our result implies that any 0-epi
map F which is k-proper in the sense of [22] is also ð0; k0Þ-epi for each k0 < k, even
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ð0; k�Þ-epi. We discuss this more fully in Section 2. The following Theorem 1.1 is
even more powerful, since it contains simultaneously the stability of such maps
under certain homotopies: the combination of these two results leads to slightly
weaker assumptions.

The author is aware that the result is rather technical, and so it is necessary to
demonstrate its usefulness by some examples. However, we can give only some very
simple applications in Section 2. More ‘‘natural’’ applications are rather complex
and are given in the forthcoming papers [12,21,26]. In particular, the result in its
general technical form is used in [12,26] as the main tool for a generalization of the
two Hopf theorems (see e.g. [28]) on the connection between degree theory and
homotopy theory for (countable) condensing maps.

For F ¼ id, our result becomes of course a fixed point theorem. In fact, our
coincidence result covers most known fixed point theorems involving compactness
conditions like Darbo’s fixed point theorem, as we shall see. But we may consider a
much larger class of functions F. An important feature of the result is that we do not
even need X ¼ Y. (Important examples are monotone maps F:X! X� and differ-
ential operators F:C1 ! C [11].)

For general functions F, one may consider Theorem 1.1 as a fixed point theorem
for the multivalued map F�1 	Hð1; 
Þ.

The result may also be considered as an extension of the coincidence theorem
[10, Theorem 4.2.1]. (See Corollary 1.1 below.) However, our proof is rather different.
An important advantage of the following Theorem 1.1 compared to [10, Theorem
4.2.1] is that we do not require that F is onto, not even Fð�Þ � ’ð�Þ; this is an
unnatural requirement for 0-epi maps. In a sense, Theorem 1.1 has a similar mean-
ing for 0-epi maps as [10, Theorem 4.2.1] has for so-called stably solvable maps.
(For the latter, see [2,10].)

We think that our result reveals the deeper reason for all known fixed point and
coincidence theorems dealing with maps which are noncompact but still have good
compactness properties. This result is also the main technical tool needed for a natural
definition of a spectrum for nonlinear operators [21,24].

We use the notation F�1ðMÞ ¼ fx 2 D : FðxÞ 2Mg for any M � Y, even if M is
not necessarily contained in the range of F. This convention implies in particular
that the inclusion (2) below is always satisfied for the choice U ¼ D (which will be
the ‘‘typical’’ choice for applications).

Theorem 1. Let D be a metric space, Y a metrizable locally convex space, and
B;O � D with B closed (B ¼ ; is not excluded). Let H : ½0,1� �D! Y be con-
tinuous, and F : D! Y be arbitrary. Assume that there is some V � Y (possibly
empty) with compact convV, some �0 2 ½0,1� and some U � D such that the following
properties hold.

1. For any continuous ’ : D! convðHð½0; 1� � ðO \UÞÞ [ VÞ that satisfies
’ðxÞ ¼ Hð�0; xÞ for each x 2 B and with compact conv’ðDÞ, the equation FðxÞ ¼ ’ðxÞ
has a solution x in O.

2. The union S of all coincidence sets fx 2 O \U : FðxÞ ¼ Hð�; xÞg with
�0 � � < 1 satisfies S \ B ¼ ;.

This is satisfied if either �0 ¼ 1, or if for each x 2 B \ ðO \UÞ the function F is
continuous at x and satisfies FðxÞ 6¼ Hð�; xÞ for all � 2 ½�0; 1�.

3. There is some A � U with A \O 6¼ ; and
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FðAÞ [Hðf�0g � BÞ � convðHð½0; 1� � ðA \OÞÞ [ VÞ: ð1Þ

4. The set U satisfies

F�1ðconvðHð½0; 1� � ðU \OÞÞ [ VÞÞ � U: ð2Þ

5. For any subset U0 � U with

F�1ðconvðHð½0; 1� � ðU0 \OÞÞ [ VÞÞ ¼ U0 ð3Þ

and any countable C � O \U0 the relation

convðHð½0; 1� � CÞ [ VÞ \ FðOÞ � FðCÞ � convðHð½0; 1� � CÞ [ VÞ \ FðOÞ ð4Þ

implies that convHð½0; 1� � CÞ is compact.
Then the equation FðxÞ ¼ Hð1; xÞ has a solution x in O \U.
Although the conditions appear very technical, they have a rather natural

meaning, at least if O ¼ �, B ¼ @�, D ¼ �, F is continuous, and Hð�0; 
ÞjB ¼ 0: then
the condition 1 is a weakening of the assumption that F be 0-epi [11,14] (see also
Section 2), and condition 2 means that the homotopy H is admissible in the sense
that it has no coincidence points with F on the boundary @�. The conditions 3 and 4
are then satisfied with the choice U ¼ D and V ¼ f0g (choose A ¼ F�1ðf0gÞ), so that
the compactness condition 5 is the only essential assumption in this situation. Note
that this condition is satisfied if, roughly speaking, H is ‘‘more compact than F is
proper’’. In this connection, it is interesting that it suffices to consider countable sets
C, since for example in spaces of vector functions usually better ‘‘compactness esti-
mates’’ are available on such sets. (See the remarks in Section 2.) Note that if certain
a priori estimates are known, the conditions 3 and 4 may be satisfied also for smaller
setsU and V, and then the compactness requirement 5 becomes weaker. For example,
if 0 2 Hð½0; 1� � F�1ðf0gÞÞ, one might even choose V ¼ ;.

Before we attack the proof of Theorem 1.1, let us mention that if condition 1 of
Theorem 1.1 is satisfied, one usually has that the set FðOÞ is open in Y or at least
open in some subset K � Y with K � convðHð½0; 1� � ðO \UÞÞ [ VÞ [ FðOÞ. (Typi-
cally, K is a cone inducing some order in Y.) In this case, we may replace the strange
relation (4) by a more natural equality.

Proposition 1.1. Assume in the situation of Theorem 1.1 that the set
convðHð½0; 1� � ðO \UÞÞ [ VÞ n FðOÞ is closed. Then for any C � O \U the relation
(4) is equivalent to the equality

FðCÞ ¼ convðHð½0; 1� � CÞ [ VÞ \ FðOÞ: ð5Þ

Proof. Putting K ¼ convðHð½0; 1� � ðO \UÞÞ [ VÞ, we have

A \ FðOÞ ¼ A \ FðOÞ ðA � KÞ: ð6Þ

Indeed, since A � ðA \ FðOÞÞ [ ðK n FðOÞÞ and K n FðOÞ is closed, we have
A � ðA \ FðOÞÞ [ ðK n FðOÞÞwhich implies thatA \ FðOÞ � A \ FðOÞ, and (6) follows.
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We get the statement for the particular choice A ¼ convðHð½0; 1� � CÞ [ VÞ. &

Unless explicitly stated, we shall not make use of the axiom of choice. Instead,
we require a weaker form, the so-called axiom of dependent choices throughout
which allows countable (recursive or nonrecursive) choices (see e.g. [15]). This is the
natural setting for applications and has the advantage that we are forced to give
‘‘countable constructive’’ proofs.

For this reason, we may not apply Dugundji’s extension theorem [7]. (See also
[8, Chap. IX, Theorem 6.1].) Nevertheless, we can use the following result.

Lemma 1.1. Let Y be a metrizable locally convex space. If K � Y is nonempty,
compact, and convex, then there exists a retraction � from Y onto K, that is � : Y! K
is continuous with �ðxÞ ¼ x for x 2 K.

Proof. Using [19, Theorem 1.24], we may assume that Y is equipped with a
translation invariant metric. Then the completion Y of Y is a locally convex Fŕechet
space. We may consider K as a compact and convex subset of Y. Since K is separ-
able, the constructive extension theorem from [25] implies that we may extend the
identity of K to a continuous map R : Y! K. Now, let � ¼ RjY. &

Lemma 1.2. If A;B � Y are convex and compact, then convðA [ BÞ ¼
convðA [ BÞ and convðAþ BÞ ¼ Aþ B are compact.

In particular, if convV and convHð½0; 1� � CÞ are compact, it follows that
convðHð½0; 1�� CÞ [ VÞ is compact.

Proof. To see that C ¼ ðA [ BÞ is compact, observe that the convexity of A and B
imply that C ¼ gðA� B� ½0; 1�Þ where gða; b; �Þ ¼ �aþ ð1� �Þb is continuous. The
proof of the convexity of Aþ B is straightforward, and the compactness follows from
Aþ B ¼ hðA� BÞ where hða; bÞ ¼ aþ b. The last statement follows from the first for
A ¼ convV and B ¼ convHð½0; 1� � CÞ, since convðHð½0; 1� � CÞ [ VÞ � convðA [ BÞ.

We emphasize that Lemma 1.2 is not a consequence of Mazur’s Theorem
[9, V.2, Theorem 6], because we do not require that Y be complete.

Proof of Theorem 1.1. The statement in 2 will be proved in a more general set-
ting in the proof of Theorem 1.4. Note that the continuity of Hð�; 
Þ implies that
Hðf�g � EÞ � Hðf�g � EÞ for any E � D. Taking the union over all � 2 ½0; 1�, we find
that Hð½0; 1� � EÞ � Hð½0; 1� � EÞ. Hence

convðHð½0; 1� � EÞ [ VÞ ¼ convðHð½0; 1� � EÞ [ VÞ ¼ convðHð½0; 1� � EÞ [ VÞ

¼ convðHð½0; 1� � EÞ [ VÞ ðE � DÞ: ð7Þ

In particular, (2) is equivalent to

F�1ðconvðHð½0; 1� � ðU \OÞÞ [ VÞÞ � U: ð8Þ

Let U denote the system of all sets U � D that contain A and satisfy (8). By
assumption, U 6¼ ;, and so U0 ¼

T
U is defined. Observe that U0 2 U since for each

U 2 U we have, in view of U0 � U, that
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F�1ðconvðHð½0; 1� � ðU0 \OÞÞ [ VÞÞ � F�1ðconvðHð½0; 1� � ðU \OÞÞ [ VÞÞ � U: ð9Þ

Also the set U1 ¼ F�1ðconvðHð½0; 1� � ðU0 \OÞÞ [ VÞÞ belongs to U. Indeed, by (9)
we have U1 � U0, and so F�1ðconvðHð½0; 1� � ðU1 \OÞÞ [ VÞÞ � F�1ðconv ðHð½0; 1��
ðU0 \OÞÞ [ VÞÞ ¼ U1. Moreover (1) implies, in view of U0 � A, that FðAÞ �
convðHð½0; 1� � ðU0 \OÞÞ [ VÞ ¼ U1, and so A � U1. Since U1 2 U and U1 � U0,
the definition of U0 thus implies U0 ¼ U1; that is,

F�1ðconvðHð½0; 1� � ðU0 \OÞÞ [ VÞÞ ¼ U0 ð10Þ

holds. By (7), this is equivalent to (3).
We claim that the set convðHð½0; 1� � ðU0 \OÞÞ [ VÞ is compact. Otherwise it

contains a sequence fyng without a convergent subsequence. Since each yn is the limit
of a sequence of (finite) convex combinations from Z ¼ Hð½0; 1� � ðU0 \OÞÞ, we find
a countable subset Z0 � Z with yn 2 convZ0. In particular, we find a countable set
T � U0 \O with y1; y2; . . . 2 convðHð½0; 1� � TÞ [ VÞ. We find some countable
C1 � U0 \O with C1 � T, and then have y1; y2; . . . 2 convðHð½0; 1� � C1Þ [ VÞ.
Then we may define recursively a sequence of countable sets Cn � U0 \O satisfying
the inclusions

Cn � Cnþ1; ð11Þ

FðCnÞ � convðHð½0; 1� � Cnþ1Þ [ VÞ; ð12Þ

and

convðHð½0; 1� � CnÞ [ VÞ \ FðOÞ � FðCnþ1Þ ð13Þ:

Indeed, if Cn is already defined, we have Cn � U0 � F�1ðconvðHð½0; 1��
ðU0 \OÞÞ [ VÞÞ by (10), and so FðCnÞ � convðHð½0; 1� � ðU0 \OÞÞ [ VÞ. Hence, any
of the countably many elements from FðCnÞ may be approximated by a sequence of
(finite) convex combinations of elements from Hð½0; 1� � ðU0 \OÞÞ [ V. Hence we
can find some countable En � U0 \O with FðCnÞ � convðHð½0; 1� � EnÞ [ VÞ.
Choose some countable An � U0 \O with An � En. Then any Cnþ1 � An satisfies
(12). Concerning (13), observe that Hn ¼ convðHð½0; 1� � CnÞ [ VÞ satisfies F�1

ðHnÞ � F�1ðconvðHð½0; 1� � ðU0 \OÞÞ [ VÞÞ � U0 by (10), and so Hn \ FðOÞ �
FðU0 \OÞ. Since Hn is separable, we thus find a countable set Bn � U0 \O such that
FðBnÞ is dense in Hn \ FðOÞ. Hence, we may choose Cnþ1 ¼ An [ Bn [ Cn.

Put C ¼
S

Cn. Any x 2 ðHð½0; 1� � CÞ [ VÞ is the convex combination of finitely
many elements of Hð½0; 1� � CÞ [ V. By (11), this means that we can find some n
such that x is the convex combination of finitely many elements of
Hð½0; 1� � CnÞ [ V. Hence x 2 ðHð½0; 1� � CnÞ [ VÞ. If additionally x 2 FðOÞ, then we
have by (13) that x 2 FðCnþ1Þ � FðCÞ. Hence,

convðHð½0; 1� � CÞ [ VÞ \ FðOÞ � FðCÞ;

which means that C satisfies the first inclusion of (4). For any x 2 FðCÞ, we have
by (12) that x 2 convðHð½0; 1� � CnÞ [ VÞ for some n, and so we have
FðCÞ � convðHð½0; 1�� CÞ [ VÞ which implies that
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FðCÞ ¼ FðCÞ \ FðOÞ � convðHð½0; 1� � CÞ [ VÞ \ FðOÞ:

This is also the second inclusion of (4) holds in view of (7). Since C � U0 \O, the
condition 5 of the theorem now implies by (7) and Lemma 1.2 that the set
convðHð½0; 1� � CÞ [ VÞ is compact. This contradicts the fact that this set contains
the sequence fyng which has no convergent subsequence. This shows that
convðHð½0; 1� � ðU0 \OÞÞ [ VÞ is indeed compact, as claimed.

Replacing the set U from the assumption by the subset U0 2 U if necessary, we
may thus assume without loss of generality that U 2 U has the property that
W ¼ convðHð½0; 1� � ðU \OÞÞ [ VÞ is compact. (Actually, the condition 5 means
that we may pass to such a set U 2 U; note that in general the originally given set U
does not have this property: consider for example U ¼ D.)

By condition 2, the set S does not intersect B ¼ B, and so Urysohn’s lemma
provides a continuous function � : D! ½�0; 1� with �jB � �0 and �jS � 1. Then the
function  ðxÞ ¼ Hð�ðxÞ; xÞ is continuous and satisfies  ðxÞ ¼ Hð�0; xÞ for x 2 B.

Put M ¼ O \U. Since U � A and O \ A 6¼ ;, the sets M and W are not empty.
In particular, Lemma 1.1 implies the existence of a retraction � from Y onto W.
Now we define continuous functions ’0; f : D!W by putting ’0ðxÞ ¼ �ð ðxÞÞ and
fðxÞ ¼ �ðHð�0; xÞÞ. Note that for x 2M we have  ðxÞ 2W, and so ’0ðxÞ ¼  ðxÞ.
Moreover, for x 2 B, we have in view of (1) and A � U that Hð�0; xÞ 2 conv
ðHð½0; 1� � ðA \OÞÞ [ VÞ �W, and so fðxÞ ¼ Hð�0; xÞ. Now we define ’ : D!W in
the following way: if B ¼ ;, put ’ ¼ ’0, and otherwise

’ðxÞ ¼
distðx;BÞ

distðx;MÞ þ distðx;BÞ
’0ðxÞ þ

distðx;MÞ

distðx;MÞ þ distðx;BÞ
fðxÞ if x 2 DnðM \ BÞ;

fðxÞ if x 2M \ B:

8<
:

Then ’ is continuous, and its range is contained in convð’0ðDÞ [ fðDÞÞ � conv
ðW [WÞ ¼W. Since W is compact and ’ðxÞ ¼ fðxÞ ¼ Hð�0; xÞ for x 2 B, the
assumption implies that the equation FðxÞ ¼ ’ðxÞ has a solution x 2 O. Since
FðxÞ ¼ ’ðxÞ 2W, we have x 2 F�1ðWÞ ¼ F�1ðconvðHð½0; 1� � ðU \OÞÞ [ VÞÞ � U,
because U 2 U. Hence, x 2 U \O �M which implies FðxÞ ¼ ’ðxÞ ¼ ’0ðxÞ ¼ H
ð�ðxÞ; xÞ. Since �ðxÞ 2 ½�0; 1�, we thus must have either x 2 S or �ðxÞ ¼ 1. In view of
�jS � 1, we have �ðxÞ ¼ 1 in both cases. Hence, x 2 U \O is a desired solution. &

The set U0 in the previous proof plays a similar role to the V-ultimate funda-
mental set in [23].

We point out that for the special case �0 ¼ 1, we could have replaced the
homotopy H by a single function G ¼ Hð1; 
Þ throughout (but the proof is not
easier, except for the construction of the function �). We shall see that this special
case already contains the fixed point theorem of Darbo and many of its general-
izations. This special case also contains the earlier mentioned coincidence result [10,
Theorem 4.2.1].

We prove now a theorem which is ‘‘dual’’ to Theorem 1.1 where, roughly
speaking, the compactness assumptions are not imposed on the ‘‘map F�1 	H’’ but
instead on the ‘‘map H 	 F�1’’. Note that U is now a subset of Y (not of D).

Theorem 1.2. Let D be a metric space, Y a metrizable locally convex space, and
B;O � D with B closed (B ¼ ; is not excluded). Let H : ½0; 1� �D! Y be continuous
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and F : D! Y be arbitrary. Assume that there is some V � Y (possibly empty), some
�0 2 ½0; 1� and some U � Y such that the properties hold.

1. For any continuous function ’ : D! convðHð½0; 1� � ðF�1ðUÞ \OÞÞ [ VÞ
that satisfies ’ðxÞ ¼ Hð�0; xÞ for each x 2 B and for which convð’ðDÞÞ is compact, the
equation FðxÞ ¼ ’ðxÞ has a solution x in O.

2. The union S of all coincidence sets fx 2 O : FðxÞ ¼ Hð�; xÞ 2 Ug with
�0 � � < 1 satisfies S \ B ¼ ;.

This is satisfied if either �0 ¼ 1, or if for each x 2 B \ ðO \ F�1ðUÞÞ the function F
is continuous at x and satisfies FðxÞ 6¼ Hð�; xÞ for all � 2 ½�0; 1�.

3. There is some A � U with F�1ðAÞ \O 6¼ ; and

A [Hðf�0g � BÞ � convðHð½0; 1� � ðF�1ðAÞ \OÞÞ [ VÞ: ð14Þ

4. The set U satisfies

convðHð½0; 1� � ðF�1ðUÞ \OÞÞ [ VÞ � U: ð15Þ

5. Any subset U0 � U satisfying

U0 ¼ convðHð½0; 1� � ðF�1ðU0Þ \OÞÞ [ VÞ ð16Þ

is compact.
Then there is some x 2 O \ F�1ðUÞ with FðxÞ ¼ Hð1; xÞ.

We remark that, using a result from [23], it is possible also in Theorem 1.2 to
formulate the compactness condition 5 in terms of countable sets. However, the latter
is more technical than in Theorem 1.1 and appears not so useful for applications.

Proof. The proof is analogous to that of Theorem 1.1, and so we confine our-
selves to sketching the main steps. In view of (7), the inclusion (15) is equivalent to

convðHð½0; 1� � ðF�1ðUÞ \OÞÞ [ VÞ � U: ð17Þ

Let U0 be the intersection of all sets U � Y that contain A and satisfy (17). As in the
proof of Theorem 1.1, we find that

convðHð½0; 1� � ðF�1ðU0Þ \OÞÞ [ VÞ ¼ U0:

Hence, (7) implies that (16) holds. Replacing U by U0, we may thus assume that
U ¼ U0 is compact and convex. Choose a continuous map � : D! ½�0; 1� with
�jB � �0 and �jS � 1, and put  ðxÞ ¼ Hð�ðxÞ; xÞ. Note that ðxÞ ¼ Hð�0; xÞ for x 2 B.

Since U � A, the sets M ¼ F�1ðUÞ \O and U are not empty. Let � be a retrac-
tion of Y onto U, and define continuous functions ’0; f : D! U by ’0ðxÞ ¼ �ð ðxÞÞ
and fðxÞ ¼ �ðHð�0; xÞÞ. For x 2M, we have  ðxÞ 2 Hð½0; 1� � ðF�1ðUÞ \OÞÞ � U,
and so ’0ðxÞ ¼  ðxÞ. Moreover, for x 2 B, we have in view of (14) and A � U that
Hð�0; xÞ 2 convðHð½0; 1� � ðF�1ðAÞ \OÞÞ [ VÞ � U, and so fðxÞ ¼ Hð�0; xÞ. Now
define ’ : D! U by the same formula as in the proof of Theorem 1.1. Then ’ is
continuous, and its range is contained in convð’0ðDÞ [ fðDÞÞ � convðU [UÞ ¼ U ¼
U0 ¼ convðHð½0; 1� � ðF�1ðU0Þ \OÞÞ [ VÞ. Since U is compact and ’ðxÞ ¼ fðxÞ ¼
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Hð�0; xÞ for x 2 B, the assumption 1 implies that the equation FðxÞ ¼ ’ðxÞ has a
solution x 2 O. Since FðxÞ ¼ ’ðxÞ 2 U, we have x 2 F�1ðUÞ; so x 2 F�1ðUÞ \O �M
which implies that FðxÞ ¼ ’ðxÞ ¼ ’0ðxÞ ¼ Hð�ðxÞ; xÞ. Since �ðxÞ 2 ½�0; 1�, we thus
must have either x 2 S or �ðxÞ ¼ 1. In view of �jS � 1, we have �ðxÞ ¼ 1 in both
cases. Hence, x 2 F�1ðUÞ \O is a desired solution. &

We can also prove multivalued variants of the previous results. To this end, we
need an extension theorem for upper semicontinuous maps. Such a result is Ma’s
generalization of Dugundji’s extension theorem. See [16, (2.1)]. We give a constructive
proof for the situation that we need.

By KðYÞ, we denote the set of all nonempty convex and compact subsets of Y.
For multivalued maps F : D! 2Y, we put as usual FðAÞ ¼

S
fFðxÞ : x 2 Ag.

If we speak of completeness in a metrizable locally convex space Y, we have to
take care how the metric is chosen. In the following Proposition 1.2, we assume to
this end that the metric in Y generates the same uniform structure as the countable
family of seminorms generating the topology. (See, for example, [19].) These con-
siderations will not be important later, since in our applications of Proposition 1.2,
the set M is compact and thus complete with respect to any metric generating the
topology of Y.

Proposition 1.2. Let X be a metric space, and Y be a locally convex metric
space. Let A � X be closed and separable, and f : A! KðYÞ be upper semicontinuous.
If M ¼ conv f ðAÞ is complete (in the sense described above), then f has an upper
semicontinuous extension to a function F : X! KðYÞ with FðXÞ �M.

Proof. Let the metric in Y be generated by the countable family jj 
 jjk of semi-
norms. By our assumption, a sequence is a Cauchy sequence (resp. converges or is
bounded) in Y if and only if it is a Cauchy sequence (resp. converges or is bounded)
with respect to each seminorm jj 
 jjk.

Since A is separable, there exists a dense subset fa1; a2; . . .g � A. Choose a
sequence of numbers cn > 0 such that

P
cn and

P
cnsn converge, where sn denotes

the supremum of all numbers jjyjjk with y 2 fðakÞ, where k ¼ 1; . . . ; n. For x 2 A,
put FðxÞ ¼ fðxÞ, and for x=2A, put �nðxÞ ¼ maxf2� dðx; anÞ=ðx;AÞ; 0g and

FðxÞ ¼

P1

n¼1 cn�nðxÞynP1

n¼1 cn�nðxÞ
j yn 2 fðanÞ

� �
: ð18Þ

This defines a subset of M. Indeed, let yn 2 fðanÞ. Since fa1; a2; . . .g is dense in A,
the expression

hN ¼

PN
n¼1 cn�nðxÞynPN
n¼1 cn�nðxÞ

is defined for sufficiently large N, and hN 2M. Moreover, hN forms a Cauchy
sequence with respect to each seminorm jj 
 jjk, since �n is bounded by 2 andP

2cn�njjynkjj and
P

2cn converge. Hence, hN is a Cauchy sequence in M and thus
convergent. FðxÞ consists precisely of all limits obtained in this way.

The set FðxÞ is compact: if zj ¼
P

n cn�nðxÞyn;j with yn;j 2 fðanÞ, then we may by a
diagonal argument pass to a subsequence of j such that yn;j ! yn 2 fðanÞ ðj!1Þ for
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each n. Using the majorant
P

cn�nðxÞsn, we thus find that zj !
P

n cn�nðxÞyn ¼: z
with respect to each seminorm jj 
 jjk, and so zj ! z in the space Y.

Let us prove now that F is upper semicontinuous at each x0 2 X. We have to
prove that for each " and each k we can find some � > 0 such that dðx; x0Þ � � and
y 2 FðxÞ implies that there is some y0 2 Fðx0Þ with jjy� y0jjk � ".

In case x0 =2A, this is easily seen. The denominator in (18) depends continuously
upon x, since �n is continuous, and we have the majorant

P
2cn. An analogous

argument for the numerator, using the majorant
P

2cnsn, thus implies that F is
upper semicontinuous: we just associate to each y 2 FðxÞ with x =2A the value
y0 2 Fðx0Þ that is generated corresponding to (18) with the same coefficients yn (since
A is closed, it suffices to consider points x =2A).

It remains to consider the case x0 2 A and (since FjA is upper semicontinuous by
assumption) we only have to consider points x =2A. Thus, let " > 0 and some k be
given. Since f is upper semicontinuous, we can find some � > 0 such that a0 2 A and
dðx0; a0Þ � 3� implies that for each ~zz 2 fða0Þ there is some ~yy 2 fðx0Þ with jj ~zz� ~yyjjk � ".

If x 2 X n A and n are such that �nðxÞ 6¼ 0, then dðx; anÞ � 2ðx;AÞ � 2dðx; x0Þ,
and so dðx0; anÞ � dðx0; xÞ þ dðx; anÞ � 3dðx; x0Þ. Hence, if x 2 X n A satisfies dðx; x0Þ
� � and y 2 FðxÞ, say y ¼

P1

n¼1 cn�nðxÞzn=
P1

n¼1 cn�nðxÞ with zn 2 fðanÞ, we find for
each n some yn 2 fðx0Þ with �nðxÞjjzn � ynjjk � �nðxÞ". Putting y0 ¼

P1

n¼1 cn�nðxÞyn=P1

n¼1 cn�nðxÞ, we thus have

y� y0
		 		

k
¼

P1

n¼1 cn�nðxÞðzn � ynÞP1

n¼1 cn�nðxÞ

				
				
k

� ":

Hence, F is upper semicontinuous at x0. &

The construction of F in Proposition 1.2 is a variation of a construction which is
well known for single-valued maps with bounded images in finite-dimensional spaces
(see [6, Proposition 1.1]).

We call a subset M of a (not necessarily complete) metric space precompact, if its
completion is compact; i.e. if each sequence in M has a Cauchy subsequence.

Let CðYÞ denote the system of all nonempty closed and convex subsets of Y.

Theorem 1.3. Theorem 1.1 holds if one considers in place of continuous functions
H and ’ upper semicontinuous multivalued functions H : ½0; 1� �D! CðYÞ and
’ : D! KðYÞ, respectively (replace ‘‘FðxÞ ¼’’ by ‘‘FðxÞ 2’’), under the following
modifications. The conditions 4 and 5 have to be replaced by 40 and 50, respectively.

40. The set U satisfies (8).
50. For any subset U0 � U given by (10) we have that each value Hð�; xÞ is

separable for 0 � � � 1 and x 2 O \U0, and that for any countable C � O \U0 the
relation

convðHð½0; 1� � CÞ [ VÞ \ FðOÞ � FðCÞ � convðHð½0; 1� � CÞ [ VÞ \ FðOÞ ð19Þ

implies that convHð½0; 1� � CÞ is compact.
Moreover, assume either the axiom of choice, or that the following two conditions

hold.
6. O \U0 is separable for any subset U0 � U satisfying (10), or the relation

(19) for some countable C � O \U0 implies that C is precompact.
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7. B is separable, or the restriction f ¼ Hð�0; 
ÞjB has an extension to an upper
semicontinuous function f : D! CðYÞ with fðDÞ � convðHð½0; 1� � ðA \OÞÞ [ VÞ.

If convðHð½0; 1� �DÞ [ VÞ is compact and U \O ¼ D, then the assumptions 3–7
may be dropped.

Proof. The proof is similar to the proof of Theorem 1.1. Define U and U0 as in
the proof of Theorem 1.1. The same argument as in that proof shows that U0 satis-
fies (10) and that convðHð½0; 1� � ðU0 \OÞÞ [ VÞ is compact. (For the construction of
Cn recall that upper semicontinuous maps in metric spaces with separable values
map separable sets into separable sets [25, Lemma 1.1]). Moreover, if the last alter-
native of assumption 6 holds, an analogous argument shows that U0 \O is pre-
compact. Indeed, otherwise U0 \O contains a sequence xn without a Cauchy
subsequence. Put C1 ¼ fx1; x2; . . .g and proceed as in the proof of Theorem 1.1 to
define a countable set C � U0 \O � U \O that contains C1 such that (19) holds.
The assumption implies that C is precompact, contradicting the fact that xn 2 C.

Now replacing U by U0 if necessary, we may assume without loss of generality
that W ¼ convðHð½0; 1� � ðU \OÞÞ [ VÞ is compact (hence H : ½0; 1�� ðU \OÞ
! KðYÞ) and (if we do not want to assume the axiom of choice) that M ¼ O \U
is separable or even precompact or, alternatively, M ¼ D. Observe that A � U
implies convðHð½0; 1� � ðA \OÞÞ [ VÞ �W, and so (1) implies that f ¼ Hð�0; 
ÞjB
satisfies fðBÞ �W (hence f : B! KðYÞ). In view of our assumption 7, we may
assume that f has an upper semicontinuous extension to a function f : D! KðYÞ
with fðDÞ �W.

Indeed, for the case M ¼ D this is trivial, since we may just put f ¼ Hð�0; 
Þ. In
general, we have fðBÞ �W. If B is separable, we may apply Proposition 1.2 to extend
f, and if we assume the axiom of choice, we may apply Ma’s generalization of
Dugundji’s extension theorem [16, (2.1)].

As in the proof of Theorem 1.1, we define continuous functions � : D! ½�0; 1�
and  ðxÞ ¼ Hð�ðxÞ; xÞ such that  jB ¼ fjB and �jS � 1.

We define ’0 differently from the proof of Theorem 1.1: we first put
’0ðxÞ ¼  ðxÞ for x 2M. Observing that ’0ðMÞ �W, we may use either
Proposition 1.2 (if M is separable) or Ma’s theorem to extend ’0 to an upper semi-
continuous function ’0 : D! KðYÞ with ’0ðDÞ �W; in case M ¼ D, no extension
theorem is required, of course.

The rest of the proof is analogous to that of Theorem 1.1. &

Note that if we assume the axiom of choice, Theorem 1.3 contains Theorem 1.1
as a special case in view of the equality (7). However, the proof is somewhat differ-
ent: the retraction argument used in the proof of Theorem 1.1 fails in the multi-
valued case, since it is not clear whether the composition � 	 f of a multivalued
function f : �! KðYÞ and of a retraction � : Y!W must attain convex values.

If the restriction of Hð�; 
Þ to U \O is lower semicontinuous for each � 2 ½0; 1�,
we have the equality (7), and thus may replace (19) by (4). In this case an analogue
of Proposition 1.1 holds. However, without the lower semicontinuity of Hð�; 
Þ, we
cannot prove an analogue to that proposition, since we do not know whether it is
possible to replace (19) in Theorem 1.3 by the stronger relation

convðHð½0; 1� � CÞ [ VÞ \ FðOÞ � FðCÞ � convðHð½0; 1� � CÞ [ VÞ \ FðOÞ: ð17Þ
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The problem in the proof is that for x 2 ðHð½0; 1� � CÞ [ VÞ the relations Cn � Cnþ1

and C ¼
S

Cn do not imply that x 2 convðHð½0; 1� � CnÞ [ VÞ for some n.
For applications, the interesting part in the relations (4) resp. (19) is usually the

second inclusion. If we confine ourselves to this part, we can even prove a result
where also the map F is multivalued. Here, we use for multivalued maps F : D! 2Y

the notation F�1ðMÞ ¼ fx 2 D : FðxÞ �Mg which we define for any M � Y (even if
FðDÞ 6�M).

Theorem 1.4. Theorem 1.3 holds if we replace F : D! Y by an arbitrary func-
tion F : D! 2Y (and ‘‘FðxÞ 2’’ by ‘‘FðxÞ �’’) provided that we replace (19) by

FðCÞ � convðHð½0; 1� � CÞ [ VÞ: ð20Þ

The condition 2 is satisfied in this case if either �0 ¼ 1, or if for each x 2 B \ ðO \UÞ
one of the following two properties holds.

(a) F is upper semicontinuous at x, FðxÞ does not intersect Hð�; xÞ for each
� 2 ½�0; 1�, and F attains nonempty values in a neighbourhood of x.

(b) F is lower semicontinuous at x and satisfies FðxÞ 6� Hð�; xÞ for each � 2 ½�0; 1�.

Proof. For the statement concerning condition 2, assume there is some
x 2 S \ B. Then x 2 B \ ðO \UÞ, and we find sequences xn 2 O \U and �n 2 ½�0; 1�
with xn ! x and FðxnÞ � Hð�n; xnÞ. Passing to a subsequence, we may assume that
�n ! � 2 ½�0; 1�. If the property (a) holds at x, then FðxÞ is disjoint from the com-
pact set Hðx; �Þ, and so we find disjoint neighbourhoods U1 and U2 of FðxÞ and
Hðx; �Þ, respectively. The upper semicontinuity of F and H then implies that
FðxnÞ � U1 and Hð�n; xnÞ � U2 for sufficiently large n, so that FðxnÞ and Hð�n; xnÞ
are disjoint. This contradicts FðxnÞ � Hð�n; xnÞ, since FðxnÞ 6¼ ; for sufficiently large
n, by assumption. If the property (b) holds, we find some y 2 FðxÞ that is not con-
tained in the compact set Hð�; xÞ. Hence, we find disjoint neighbourhoods U1 and
U2 of y and Hð�; xÞ, respectively. For sufficiently large n, the lower semicontinuity of
F implies FðxnÞ \U1 6¼ ; while the upper semicontinuity of H gives Hð�n; xnÞ � U2.
This contradicts FðxnÞ � Hð�n; xnÞ.

The proof of the theorem is analogous to that of Theorem 1.3. The only
problems arise in the construction of the set C in that proof, if FðxÞ is separable for
each x 2 O \U0. It suffices to define inductively, starting from any countable set
C1 � O \U0, a sequence of countable sets Cn � O \U satisfying (11) and (12).

If Cn is already defined, we have Cn � U0 � F�1ðconvðHð½0; 1� � ðU0 \OÞÞ [ VÞÞ
by (10). Since FðCnÞ is the countable union of separable sets and thus separable, it
contains a countable dense subset Fn. Since Fn � FðCnÞ � convðHð½0; 1��
ðU0 \OÞÞ [ VÞ, each of the countably many elements from Fn may be approximated
by a sequence of (finite) convex combinations of elements from Hð½0; 1��
ðU0 \OÞÞ [ V, i.e. we can find some countable En � U0 \O with Fn � conv
ðHð½0; 1� � EnÞ [ VÞ. Choose some countable An � U0 \O with An � En. Then
FðCnÞ � Fn � convðHð½0; 1� � AnÞ [ VÞ. Hence, we may choose Cnþ1 ¼ An [ Cn.

Note that it is not clear whether we can construct the sequence Cn such that
additionally (13) holds. The argument from the proof of Theorem 1.1 fails, because
the relation F�1ðHnÞ � U0 does not imply Hn \ FðOÞ � FðU0 \OÞ. However, we do
not need (13), since we are not interested in the first inclusion of (19). &
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Also Theorem 1.4 has a ‘‘dual’’ version (for the proof one just has to repeat the
proof of Theorem 1.2 with the changes sketched in the proof of Theorems 1.3
and 1.4).

Theorem 1.5. Theorem 1.2 holds if one replaces F : D! Y by an arbitrary
function F : D! 2Y, and H, ’ by upper semicontinuous functions H : ½0; 1� �D
! CðYÞ respectively ’ : D! KðYÞ (replace ‘‘FðxÞ ¼’’ by ‘‘FðxÞ �’’) under the
following modifications.

The relations (15) and (16) have to be replaced by (17) and

U0 ¼ convðHð½0; 1� � ðF�1ðU0Þ \OÞÞ [ VÞ; ð21Þ

respectively.Moreover, assume either the axiom of choice, or the following two conditions.
6. F�1ðU0Þ \O is separable for any subset U0 � U that satisfies (21).
7. B is separable, or the restriction f ¼ Hð�0; 
ÞjB has an extension to an upper

semicontinuous function f : D! C(Y) with fðDÞ � convðHð½0; 1� � ðF�1ðAÞ \OÞÞ [ VÞ.
The condition 2 is satisfied if either �0 ¼ 1, or if for each x 2 B \ ðF�1ðUÞ \OÞ

one of the alternatives (a) or (b) from Theorem 1.4 holds.

Let us close this section by showing that the earlier mentioned result [10,
Theorem 4.2.1] is indeed a special case of our coincidence theorems. We have a
slightly more general result.

Corollary 1.1. Let X be a metric space, Y a locally convex Fréchet space,
K � Y closed and convex, and F : X! Y be such that the equation FðxÞ ¼ ’ðxÞ has a
solution x in X for any continuous ’ : X! K with precompact range. Let D � X be
closed, and G : D! K be continuous. Assume that

1. F�1ðconvGðDÞÞ � D,
2. there is some nonempty precompact V � GðDÞ such that for any countable

C � D the relation

FðCÞ ¼ convðGðCÞ [ VÞ ð22Þ

implies that C is compact.
Then the equation FðxÞ ¼ GðxÞ has a solution x in D.

Proof. We apply Theorem 1.1 with O ¼ U ¼ D, B ¼ ;, Hð�; 
Þ ¼ G, �0 ¼ 1, and
A ¼ F�1ðVÞ. Putting M ¼ convðHð½0; 1� � ðO \UÞÞ [ VÞ, we have M ¼ convGðDÞ �
K, and so F�1ðMÞ � U. Since the range of F must contain K, A is a nonempty subset
of O ¼ U, and we have FðUÞ �M. Then assumptions 2, 3, and 4 of Theorem 1.1 are
readily verified. Concerning 5, note that for any C � D the relation (4) is in our case
equivalent to (22), since FðOÞ ¼ FðUÞ �M. Moreover, if C is compact, then also
convðHð½0; 1� � CÞ [ VÞ ¼ convðGðCÞ [ VÞ is compact by Mazur’s lemma, since G
maps compact sets into compact sets.

We now attack assumption 1 of Theorem 1.1. If we assume the axiom of
choice or if D is separable, this assumption is satisfied. Indeed, if ’ : D!M is
continuous with compact W ¼ conv’ðDÞ, we may then extend ’ to a continuous
function ’ : X!W. Then FðxÞ ¼ ’ðxÞ has a solution x 2 X by assumption, and we
have x 2 F�1ðWÞ � F�1ðMÞ � U ¼ O.
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The general case can be reduced to the case of separable D (and so the axiom of
choice is not required for our proof): under the verified assumptions, we have seen in
the proof of Theorem 1.3 that we may pass to a subset U0 of U that still contains A
and satisfies (8) but which has the additional property that U0 ¼ U0 \O is pre-
compact. The assumptions of our corollary are then even satisfied if we replace D by
U0. Indeed, (8) (for U0) implies that F�1ðconvGðU0ÞÞ � U0, and in view of the sur-
jectivity of F and A � U0, we have V ¼ FðAÞ � FðU0Þ. Since D0 ¼ U0 is separable,
the statement now follows by what we already have proved. &

2. f-epi maps. Throughout this section, let X be a metric space, M � X, and
� �M. Topological notions are always understood with respect to the relative topology
onM. In particular,� and @� denote the closure and boundary of� with respect to the
metric space M. Let Y be a metrizable locally convex space, and K a closed convex
subset ofY. ByKðKÞ, we denote the system of all nonempty convex and compact subsets
of K. Depending on the context, let either f : @�! K be continuous, or f : @�! KðKÞ
be upper semicontinuous. In both cases, we assume that conv f ð@�Þ is compact.

Definition 2.1. We call a map F : �! Y
1. f-epi (on � with respect to M and K) if for any continuous function

’ : �! K with ’j@� ¼ f for which conv’ð�Þ is compact, the equation FðxÞ ¼ ’ðxÞ
has a solution x in �.

2. f-multiepi (on � with respect to M and K) if for any upper semicontinuous
function ’ : �! KðKÞ with ’j@� ¼ f for which conv ’ ð�Þ is compact, the inclusion
FðxÞ 2 ’ðxÞ has a solution x in �.

3. f-admissible if FðxÞ 6¼ fðxÞ (resp. FðxÞ =2 fðxÞ) for x 2 @�.
If fðxÞ � p 2 K, we call F p-epi, p-multiepi, or p-admissible, respectively.

We point out that in contrast to the usual definition in the literature, we do not
require that 0-epi maps be 0-admissible.

The example mentioned in the beginning of the paper is the case p ¼ 0: a map F
is 0-epi if and only if the equation FðxÞ ¼ ’ðxÞ has a solution x in � for any con-
tinuous map ’ vanishing on the boundary @� with compact conv ’ ð�Þ.

In this connection, we emphasize that if ’ is as in Definition 2.1, then conv ’ ð�Þ
is compact (not only conv ’ ð�Þ). Indeed, this follows from Lemma 1.2 with
A ¼ conv ’ ð�Þ, B ¼ conv f ð@�Þ, since ’ ð�Þ � A [ B.

If K is a subspace of Y, the general case can be reduced to the case f � 0: a map
F is f-epi if and only if F� f is 0-epi. This follows easily by replacing ’ with ’þ f
respectively ’� f in Definition 2.1. Note, however, that if K� K 6� K the function
’� f need not take values in K.

The concept of 0-epi mappings has been introduced and developed by M. Furi,
M. Martelli, M. P. Pera, A. Vignoli, and others. See, for example, [11]. We refer to
the recent monograph [14] and its references. In the cited references, the definition of
0-epi maps is usually restricted to 0-admissible continuous maps with M ¼ X and
K ¼ Y being Banach spaces and bounded � � X. However, it turns out to be useful
to consider also the case that M and K are cones defining the order in Banach
spaces, since this leads to existence results for positive solutions; see [14]. All these
cases are of course contained in the above Definition 2.1.

The generalization to 0-multiepi maps may appear somewhat artificial, and it is
not clear whether the class of 0-epi maps and of 0-multiepi maps differ. (We prove in
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[3] that they do not differ for proper maps.) However, at least for multivalued
functions f the class of f-multiepi maps has no single-valued analogue, and this case
is of some interest in view of the (multivalued) fixed point theorems below.

The class of p-epi maps can be considered as a generalization of maps F with
nonzero degree degðF; @�; pÞ, and this class has similar properties like invariance
under admissible compact homotopies. However, there exist also 0-epi maps for
which the degree is not defined, if X 6¼ Y. In [12] we prove (using Theorem 1.1) that
for so-called strictly condensing perturbations of the identity the class of 0-epi maps
coincides with the class of maps which have nonzero degree on a component of
�. (The fact that the connectedness plays a role is seen by the simple example
K ¼M ¼ X ¼ Y ¼ R;� ¼ ð�2;�1Þ [ ð1; 2Þ and FðxÞ ¼ x2 � 2 which was given in
[11]).

Actually, the coincidence theorems of Section 1 may be considered as a gen-
eralization of the homotopy invariance of 0-epi maps. In fact, these theorems
immediately imply the following result.

We call the closed convex set K � Y a cone, if Kþ K � K and 0 2 K. Note that
we do not require that K \ ð�KÞ ¼ f0g so that in particular K may be a closed sub-
space of Y (or K ¼ Y).

Corollary 2.1 Let K be a cone, and F : �! Y be continuous and f-epi (resp.
f-multiepi). Let H : ½0; 1� ��! K be continuous with Hð0; 
Þ ¼ 0 such that each of
the functions F�ðxÞ ¼ FðxÞ �Hð�; xÞ is f-admissible. If convHð½0; 1� ��Þ is compact,
then all F� are f-epi (resp. f-multiepi).

Proof. Let ’ : �! K be continuous with ’j@� ¼ f and compact conv ’ ð�Þ
(Lemma 1.2). Now fix � 2 ½0; 1� and apply Theorem 1.1 with the homotopy
H0ðt; xÞ ¼ Hðt�; xÞ þ ’ðxÞ (and U ¼ D, V ¼ ;). Since Lemma 1.2 implies that
convH0ð½0; 1� ��Þ is compact, we find that there is some x 2 � satisfying FðxÞ ¼
H0ð�; xÞ which means F�ðxÞ ¼ ’ðxÞ. If F is f-multiepi, the statement follows ana-
logously, using Theorem 1.3. &

The standard fixed point theorems imply the following result.

Proposition 2.1 (Normalization property). Let X ¼ Y, M ¼ K, and � 6¼ ;. If
the set convfð@�Þ is a compact subset of �, then F ¼ id is f-epi and f-multiepi.

In particular, F ¼ id is p-epi (and p-multiepi) if and only if p 2 �.

Proof. Let ’ : �! K be continuous with ’j@� ¼ f and compact A ¼ conv’ð�Þ
(Lemma 1.2). Since the compact set A \ @� is separable, Proposition 1.2 implies that
we may extend the restriction of  ¼ ’jA\@� to a continuous function  :
A! conv f ð@�Þ. Observe that fð@�Þ ¼ ’ð@�Þ � A, and so  : A! A. Hence, we
may define a function G : A! A by putting GðxÞ ¼  ðxÞ for x 2 A n� and
GðxÞ ¼ ’ðxÞ for x 2 A \�. Note that the boundary of A \� in the metric space A is
contained in A \ @�, and so G is continuous. Thus, the fixed point theorem of
Tychonoff (respectively of Schauder if X ¼ Y is a Banach space) implies that G has
some fixed point x in A. We have either x 2 A \� or x ¼ GðxÞ ¼  ðxÞ 2
conv f ð@�Þ � �. Hence, we have in both cases x 2 A \� and thus FðxÞ ¼
x ¼ GðxÞ ¼ ’ðxÞ. An analogous argument shows that F ¼ id is even f-multiepi (apply
the fixed point theorem of Ky Fan). &
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Remark 2.1. If fð@�Þ � � but not necessarily conv f ð@�Þ � �, we still find that
F ¼ id is f-epi, provided that f has an extension to a continuous function
f : ðM n�Þ [ @�! � such that conv f ðM n�Þ is compact.

Indeed, putting GðxÞ ¼ ’ðxÞ for x 2 � and GðxÞ ¼ fðxÞ for x 2M n�, we have a
continuous self-map G of the nonempty, closed, and convex set M with compact
convG ðMÞ. Hence, G has a fixed point in M which must belong to GðMÞ � �.

An analogous argument can of course be used to prove that F ¼ id is f-multiepi.
In particular, this argument can be used to simplify the proof of Proposition 2.1 for
the case fðxÞ � p (or even the general proof, if we assume the axiom of choice, so
that we may apply Dugundji’s extension theorem).

The coincidence Theorem 1.1 from Section 1 implies in view of Proposition 2.1
the following fixed point Theorem 2.1. Note that the only ingredient needed for its
proof is the fixed point theorem of Tychonoff (respectively of Schauder if X ¼ Y is a
Banach space).

Theorem 2.1. Let X ¼ Y, and � be nonempty and open in M ¼ K. Put
B ¼ � n�. Let the function H : ½0; 1� ��! K be continuous. Assume there is
some V � K with compact convV � Hðf0g � BÞ and there is some U � � with
� \ conv ðHð½0; 1� � ðU \�ÞÞ [ VÞ � U such that the following conditions hold.

1. The set convH ðf0g �DÞ is compact and contained in �.
2. We have x 6¼ Hð�; xÞ for all x 2 B and all � 2 ½0; 1Þ.
3. For any countable C � � \U the relation

C ¼ convðHð½0; 1� � CÞ [ VÞ \� ð23Þ

implies that convH ð½0; 1� � CÞ is compact.
Then x ¼ Hð1; xÞ for some x 2 �.

Proof. Put f ¼ Hð0; 
ÞjB. By Proposition 2.1, the map F ¼ id is f-epi on �. But F
is even f-epi on O ¼ �. Indeed, our assumption 2 for � ¼ 0 implies that f has no
fixed point on B. In particular, if FðxÞ ¼ ’ðxÞ with ’jB ¼ f and some x 2 �, we have
x=2B, and so x 2 �.

If Hð1; 
Þ has a fixed point in B, we are done. Otherwise, the assumptions of
Theorem 1.1 are satisfied with D ¼ �. Since F is f-epi on O, the equation
FðxÞ ¼ ’ðxÞ with ’ ¼ Hð0; 
Þ has a solution x in O. Hence, (1) holds with A ¼ fxg.
The compactness assumption follows from Proposition 1.1. &

Theorem 2.1 generalizes the main fixed point theorem from [25] slightly. Note
that the choice V ¼ ; is possible in the most important case � ¼ K ¼M (since then
B ¼ ;).

It is easily seen (for details see [25]) that Theorem 2.1 contains as special cases the
fixed point theorem of Darbo [5] and Sadovski�� [20] as well as the corresponding
countable version from [4]. Note that for the proof of these special cases, a constant
homotopy Hð�; xÞ ¼ GðxÞ suffices. Theorem 2.1 contains also the two fixed point the-
orems from [17]. (See also [6, Theorem 18.1 and Theorem 18.2].) Both are special cases.

Corollary 2.2. Let X ¼ Y, and � be nonempty and open in M ¼ K. Assume that
’ : �! K is continuous and there is some x0 2 � with the following properties.

1. The Leray-Schauder boundary condition holds on @�:
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’ðxÞ � x0 6¼ �ðx� x0Þ ðx 2 � n�; � > 1Þ:

2. If C � � is countable and satisfies

C ¼ � \ ð’ðCÞ [ fx0gÞ; ð24Þ

then C is compact.
Then ’ has a fixed point in �.

Proof. Put V ¼ fx0g and Hð�; xÞ ¼ �’ðxÞ þ ð1� �Þx0 in Theorem 2.1. The
Leray-Schauder boundary condition means that Hð�; 
Þ has no fixed points on @�
for 0 � � < 1. Now observe that Hð½0; 1� � CÞ ¼ ð’ðCÞ [ fx0gÞ, and so we have
ðHð½0; 1�� CÞ [ VÞ ¼ convð’ðCÞ [ fx0gÞ, for each C � �. &

For the multivalued case, we apply Theorem 1.3 analogously.

Theorem 2.2. Theorem 2.1 holds for upper semicontinuous functions
H : ½0; 1� ��! KðKÞ (with the conclusion x 2 Hð1; xÞ for some x 2 �) if one replaces
condition 3 by the folowing condition.

30. For any countable C � � \U the relation

convðHð½0; 1� � CÞ [ VÞ \� � C � conv ðHð½0; 1� � CÞ [ VÞ \�

implies that convH ð½0; 1� � CÞ is compact and that C is precompact.

Note that if X ¼ Y is a Fréchet space (in particular complete), then it suffices to
require in the assumption 30 of Theorem 2.2 only that C is precompact. Indeed, if
C � � is precompact, then convH ð½0; 1� � CÞ is compact by Mazur’s Theorem
[9, V.2, Theorem 6] (since then ½0; 1� � C is compact, and H maps compact sets into
compact sets).

From Theorem 2.2 one may obtain of course a fixed point theorem for multi-
valued maps analogous to Corollary 2.2. However, the compactness condition is
not so nice as (24); it appears not possible to prove a complete analogue to
Corollary 2.2 for multivalued maps by our methods. Nevertheless, in [23] we shall
see that such an analogue is true, but the proof is not so elementary (it uses a fixed
point index).

Let R be a partially ordered set. To each set A � K, we associate a value

KðAÞ 2 R with the following properties.

1. 
KðAÞ ¼ 
KðconvAÞ.
2. 
KðA1Þ � 
KðA2Þ whenever A1 � A2.
3. 
KðA [ CÞ ¼ 
KðAÞ whenever C � K is precompact.
Using the notation of [1,20], the first two properties mean that 
K is a monotone

measure of noncompactness.
A typical example of 
K is the Kuratowski measure of noncompactness 
K ¼ �:

�ðAÞ is defined as the infimum of all numbers " > 0 such that A can be covered by
finitely many sets with diameter less than ". It might appear artificial that we do not
restrict ourselves to the Kuratowski measure of noncompactness throughout, or at
least to R ¼ ½0;1�. But this generalization has an important practical purpose, if Y
is not a Banach space.
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Example 2.1. If the topology of Y is generated by the seminorms jj 
 jjk
ðk ¼ 1; 2; . . .Þ, one may choose 
KðAÞ ¼ ð�1ðAÞ; �2ðAÞ; . . .Þ; where �kðAÞ denotes the
Kuratowski measure of noncompactness of A with respect to the seminorm 
k kk.
Here, we have R ¼ ½0;1�N.

For further details and other examples of measures of noncompactness, we refer
to [1,20].

Recall that an operator F : K! K is called L-contracting with respect to � (for
some L  0), if �ðFðAÞÞ � L�ðAÞ holds for eachA � K. For example, if F is the sum of
a Lipschitz-continuous operator (with Lipschitz constant L) and of a compact
operator, then F is L-contracting with respect to �.

We intend to generalize this definition in three aspects: we want to consider
operators F : �! K (also if � 6� K), more general ‘‘measures of noncompactness’’
than �, and we intend to replace ½0;1� by some partially ordered set �. To this end,
we have to fix some ‘‘measure of noncompactness’’ on �, and we have to introduce
some ‘‘multiplication’’ in R by elements from �.

We do this in one, slightly more general, step by fixing some partially ordered set�
and some function 
� : �� 2� ! R such that the following requirements are met.

1. Each nonempty subset of � has an infimum.
3. 
�ð�1;A1Þ � 
�ð�2;A2Þ whenever �1 � �2 and A1 � A2.
4. 
�ð�;AÞ  r for any � > �0, then 
�ð�0;AÞ  r.
Now, if ’ : �! Y or ’ : �! 2Y, we denote by ½’� the infimum of all � 2 � with


Kð’ðAÞÞ � 
�ð�;AÞ ðA� � and ’ðAÞ � KÞ ð25Þ

(if no such � exists, we write ½’�
 ¼ 1). By ½’�c
 , we denote the corresponding
infimum when we restrict the estimate (25) to countable subsets A � �. Evidently,

½’�c
 � ½’�
: ð26Þ

The infimum is actually a minimum.

Proposition 2.2. If ½’�
 6¼ 1, then


Kð’ðAÞÞ � 
�ð½’�
;AÞ ðA � � and ’ðAÞ � KÞ: ð27Þ

Similarly, if ½’�c
 6¼ 1, then


Kð’ðAÞÞ � 
�ð½’�;AÞ ðA � � countable and ’ðAÞ � KÞ: ð28Þ

Proof. Putting r ¼ 
Kð’ðAÞÞ and �0 ¼ ½’�
c

 (respectively, �0 ¼ ½’�
Þ, we have for

any � > �0 that 
�ð�;AÞ  r. Hence, 
�ð�0;AÞ  r. &

Let us illustrate the above definition by some typical examples.

Example 2.2. For the choice 
K ¼ �, � ¼ ½0;1Þ, and 
�ð�;AÞ ¼ ��ðAÞ, the
constant ½’�
 is the minimum of all L  0 such that 
�ð’ðAÞÞ � L
KðAÞ holds for all
A � � with ’ðAÞ � K. If ’ ¼ ’1 þ ’2 where ’1 : �! Y is Lipschitz continuous with
constant L, and ’2 : �! Y maps bounded sets into precompact sets, then ½’�
 � L.

Example 2.3. If we choose in Example 2.2 
�ð�;AÞ ¼ j�j
��ðAÞ with some
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� 2 ð0; 1Þ, then ’ ¼ ’1 þ ’2 satisfies ½’�
 � L, if ’1 : �! Y is Hölder continuous
with constant L and exponent �, and ’2 : �! Y maps bounded sets into pre-
compact sets.

Example 2.4. A natural choice is also 
K ¼ �Y or 
K ¼ �K, and

�ð�;AÞ ¼ ���ðAÞ, 
�ð�;AÞ ¼ ��MðAÞ, or 
�ð�;AÞ ¼ ��XðAÞ. Here, �SðAÞ denotes
the Hausdorff measure of noncompactness of A in S; that is the infimum of all " > 0
such that A has a finite "-net in S.

Example 2.5. If X is a locally convex space generated by the family of semi-
norms 
k kX;k ðk ¼ 1; 2; . . .Þ, and 
K is as in Example 2.1, two choices for � and 
�
are natural.

On the one hand, one may put � ¼ ½0;1Þ, and 
�ð�;AÞ ¼ �ð�X;1ðAÞ;
�X;2ðAÞ; . . .Þ, where �X;k denotes the Kuratowski measure of noncompactness with
respect to the seminorm 
k kX;k. On the other hand, one may put � ¼ ½0;1ÞN or
� ¼ ½0;1�N, and


�ðð�kÞk;AÞ ¼ ð�1�X;1ðAÞ; �2�X;2ðAÞ; . . .Þ:

In the latter case, we have ½’�
 ¼ ð�kÞk where �k is the minimum of all �  0 such
that �kð’ðAÞÞ � ��k;XðAÞ, for all A � �. One has good estimates of this type if ’ is a
Volterra operator of vector functions andX ¼ Y ¼ Cð½0;1Þ;ZÞ. See, for example, [27].

Definition 2.2. Let k 2 �. We call a map F : �! Y
1. ð f; kÞ-epi (on � with respect to 
K; 
� and K) if for any continuous function

’ : �! K with ’j@� ¼ f and ½’�
 � k, the equation FðxÞ ¼ ’ðxÞ has a solution x in �;
2. ð f; kÞ-multiepi if for any upper semicontinuous function ’ : �! KðKÞ with

’j@� ¼ f and ½’�
 � k, the inclusion FðxÞ 2 ’ðxÞ has a solution x in �;
3. ð f; kÞc-epi respectively ð f; kÞc-multiepi if we may replace in the above defi-

nition the assumption ½’�
 � k even by ½’�c
 � k.
If fðxÞ � p 2 K, we call F ðp; kÞ-epi, ðp; kÞ-multiepi, etc.

We emphasize that the condition ½’�
 � k is a requirement on ’ only on the set
� (not on �).

It follows from (26) that each ð f; kÞc-epi map is ð f; kÞ-epi. The converse need not
hold. The class of ð f; kÞc-epi maps is of particular interest in the context of integral
and differential operators of vector functions, since for such operators one has
‘‘good’’ estimates for measures of noncompactness only on countable subsets. See,
for example, [13,17,18,27].

For the situation of Example 2.2, the class of ðp; kÞ-epi maps has been intro-
duced in [22]. (See also [14].) This class has certain desirable properties like homo-
topy invariance, normalization, etc. In the special case mentioned, the ð f; 0Þ-epi
maps are precisely the f-epi maps.

In the following, we shall assume that K is complete with respect to a translation
invariant metric on Y; this is of course satisfied if Y is a Fr�echet space.

Theorem 2.3. Let K be complete as described above. Let F : �! Y be f-epi. If
k 2 � satisfies


KðFðCÞÞ 6� 
�ðk;CÞ ðif C � � is countable;FðCÞ � K; and C is not compactÞ; ð29Þ

then F is ð f; kÞc-epi.
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Proof. Let ’ : �! K be continuous with ½’�c
 � k and ’j@� ¼ f. We have to
prove that FðxÞ ¼ ’ðxÞ has a solution in O ¼ �. To this end, we apply Theorem 1.1
with the constant homotopy Hð�; 
Þ ¼ ’, �0 ¼ 1, D ¼ U ¼ �, and B ¼ @�.

By Lemma 1.1, there exists a retraction � of Y onto conv f ð@�Þ. Since F is f-epi,
the equation FðxÞ ¼ �ð’ðxÞÞ has a solution x in O. Then (1) holds for A ¼ fxg and
V ¼ fð@�Þ [ fFðxÞg. For assumption 1 of Theorem 1.1, note that V � K because
FðxÞ ¼ �ð’ðxÞÞ 2 K (and recall Lemma 1.2).

To verify the compactness assumption, let C � � be countable and satisfy (4).
We have FðCÞ � convð’ðCÞ [ VÞ � K. In view of (28), it follows that


KðFðCÞÞ � 
Kðconvð’ðCÞ [ VÞÞ ¼ 
Kð’ðCÞÞ � 
�ð½
�
;CÞ � 
�ðk;CÞ:

By (29), this is only possible if C is compact. Since ’ maps compact sets into
compact sets (and K is complete), the set convð’ðCÞ [ VÞ � convð’ðCÞ [ VÞ is
compact. &

Recall that [10, Theorem 4.2.1] plays an important role in the definition of the
Furi-Martelli-Vignoli spectrum for nonlinear operators that is based on so-called
stably solvable maps [2,10]. The above Theorem 2.3 plays a similar role for the
definition of a spectrum based on 0-epi maps. We discuss this in [21].

The multivalued version of Theorem 2.3 does not require many more assump-
tions.

Theorem 2.4. Let K be complete as described above. Assume either the axiom of
choice or that @� is separable or that f has an extension to an upper semicontinuous
function f : �!KðKÞ with precompact range. Let F : �! Y be f-multiepi, k 2 �
satisfy (29) and


�ðk;CÞ ¼ 
�ðk;C \�Þ ðC � � countableÞ: ð30Þ

Then F is ðf; kÞ-multiepi.

Proof. In all cases we may extend f to an upper semicontinuous function
f : �! KðKÞ with precompact range. (If @� is separable, this follows from
Proposition 1.2, and if we assume the axiom of choice, this follows from Ma’s
generalization of Dugundji’s extension theorem [16, (2.1)].)

Let ’ : �! KðKÞ be upper semicontinuous with ½’�
 � �0 and ’j@� ¼ f. To
prove that FðxÞ ¼ ’ðxÞ has a solution in O ¼ �, we apply Theorem 1.3 with the
constant homotopy Hð�; 
Þ ¼ ’, �0 ¼ 1, D ¼ U ¼ �, and B ¼ @�.

Since F is f-multiepi, the inclusion FðxÞ 2 fðxÞ has a solution x in O ¼ �. Then
(1) holds with A ¼ fxg and V ¼ fð�Þ, and also the condition 7 of Theorem 1.3 is
satisfied. Note that V � K. To verify the compactness assumption, let C � � be
countable with (19). Then FðCÞ � convð’ðCÞ [ VÞ. Since C � ðC \�Þ [ @� and
’j@� ¼ f, it follows that

FðCÞ � convð’ðC \�Þ [ fð@�Þ [ VÞ ¼ convð’ðC \�Þ [ VÞ � K:

In view of (27) and (30), this implies that
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KðFðCÞÞ � 
Kðconvð’ðC \�Þ [ VÞÞ ¼ 
Kð’ðC \�ÞÞ � 
�ð’;C \�Þ � 
�ðk;CÞ:

By (29), this is only possible if C is compact. Since ’ maps compact sets into com-
pact sets (and K is complete), convð’ðCÞ [ VÞ is compact too. &

One may swap the roles of the strict inequalities in (5) and (29).

Definition 2.3. Let k 2 �. We call a map F : �! Y
1. ðf; k�Þ-epi (on � with respect to 
K; 
� and K) if for any continuous func-

tion ’ : �! K with ’j@� ¼ f and


Kð’ðCÞÞ 6 
�ðk;CÞ ðC � � and C is not compactÞ ð31Þ

the equation FðxÞ ¼ ’ðxÞ has a solution x in �.
2. ðf; k�Þ-multiepi if for any upper semicontinuous function ’ : �! KðKÞ

with ’j@� ¼ f and (31) the inclusion FðxÞ 2 ’ðxÞ has a solution x in �.
3. ðf; k�Þc-epi resp. ðf; k�Þc-multiepi if we require (31) only for countable

sets C.
If fðxÞ � p 2 K, we call F ðp; k�Þ-epi, ðp; k�Þ-multiepi, etc.
Each ðf; k�Þc-epi map is ðf; k�Þ-epi. In the situation of Example 2.2, ðp; k�Þ-epi

maps have been introduced in [22]. In this situation, the relation (31) for k ¼ 1
means that ’ is condensing with respect to � (if � is bounded). The notation k� is
explained by the following observation.

Proposition 2.3. If F is ðf; k�Þ-epi, and k0 2 � is such that 
�ðk0;CÞ < 
�ðk;CÞ
holds for each set C � � for which C is not compact, then F is ðf; k0Þ-epi.

Proof. The relation ½’�
 � k0 implies (31). &

Similarly, ð f; k�Þc-epi maps are ðf; k0Þ
c-epi if k0 � k is such that


�ðk0;CÞ 6¼ 
�ðk;CÞ for each countable set C � � for which C is not compact.
In the situation of Examples 2.2–2.4, the conditions of Proposition 2.3 hold if �

is bounded, � is complete, and k0 < k. The same is true for Example 2.5, provided
one understands ‘‘bounded’’ with respect to each seminorm (i.e. in the metric vector
space X), and if one understands the relation k0 < k componentwise.

Theorem 2.5. If the assumptions of Theorem 2.3 hold with (29) replaced by


KðFðCÞÞ  
�ðk;CÞ ðif C � � is countable and FðCÞ � KÞ; ð32Þ

then F is ðf; k�Þc-epi.

Proof. The proof is analogous to the proof of Theorem 2.3. To verify the com-
pactness assumption of Theorem 1.1, let C � � be countable and satisfy (4). Since
FðCÞ � convð’ðCÞ [ VÞ � K, we have


�ðk;CÞ � 
KðFðCÞÞ � 
Kðconvð’ðCÞ [ VÞÞ ¼ 
Kð’ðCÞÞ:

228 M. VÄTH
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By (31), this implies that C is compact. Hence, conv ð’ðCÞ [ VÞ � conv ð’ðCÞ [ VÞ is
compact. &

Corollary 2.3. (Normalization property for ðf; kÞ-epi maps). Let X ¼ Y and
K ¼M. Let K be complete in the sense described earlier, � 6¼ ;, and k 2 � be such
that for any countable C � � the relation 
�ðk;CÞ  
KðCÞ holds.

If the set convfð@�Þ is a compact subset of �, then F ¼ id is ðf; k�Þc-epi.
In particular, F ¼ id is ðp; k�Þc-epi if and only if p 2 �.

Proof. Proposition 2.1 shows that F is f-epi. Hence, the statement follows by
Theorem 2.5. &

For the choice 
�ð�;AÞ ¼ �
KðAÞ, Corollary 2.3 implies again the fixed point
theorems of Sadovski�� [20] and its countable generalization from [4]. The statement
that F ¼ id is ð0; 1�Þ-epi on � ¼ K means in this case precisely that any continuous
map ’ : K! K has a fixed point if it is condensing with respect to 
K (if K is
bounded).

The multivalued variants of the previous results read as follows.

Theorem 2.6. If the assumptions of Theorem 2.4 hold with (29) replaced by (32),
then F is ðf; k�Þ-multiepi.

Proof. The proof is analogous to the proof of Theorem 2.4. To verify the com-
pactness assumption of Theorem 1.3, let C � � be countable with (19). As in the
proof of Theorem 2.4, we then find that FðCÞ � convð’ðC \�Þ [ VÞ � K, and so


�ðk;C \�Þ ¼ 
�ðk;CÞ � 
KðFðCÞÞ � 
Kðconvð’ðC \�Þ [ VÞÞ ¼ 
Kð’ðC \�ÞÞ:

By (31), we find that C \� is compact. Then also ’ðCÞ � ’ðC \�Þ [ fð@�Þ is pre-
compact, and so convð’ðCÞ [ VÞ is compact. &

Corollary 2.4. (Normalization property for ðf; kÞ-multepi maps). Let X ¼ Y
and K ¼M. Let K be complete in the sense described earlier, � 6¼ ;, and k 2 � be
such that for any countable C � � the relation 
�ðk;CÞ  
KðCÞ holds. Assume that
also (30) holds.

If the set conv f ð@�Þ is a compact subset of �, and if we assume either the axiom
of choice or that @� is separable or that f has an extension to an upper semicontinuous
function f : �! KðKÞ with precompact range, then F ¼ id is ð f; k�Þ-multiepi.

In particular, F ¼ id is ðp; k�Þ-multiepi if and only if p 2 �.
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