PROBLEMS FOR SOLUTION

P 125. Let p be a prime > 5 . Show that there exist
primes q and n, both less than p, such that q is a quad-
ratic residue and n is a quadratic non-residue (mod p) .

J. Dixon, University of New South Wales

P 126. On any o-finite, infinite measure space there
exists a strictly positive, bounded function vanishing at infinity,
but with infinite integral, and a similar function with finite in-
tegral.

J.E. Marsden, Princeton University
P 127. A spread in euclidean 3-space is a collection of

skew lines with one line through every point. Give an easily
visualized example.

J. Wilker, University of British Columbia
SOLUTIONS
P 110. Find the order, class, number of nodes, and

number of cusps of the curve

2/3 2/3 2/3 _
x1 +x2 + x3 =0

in the complex projective plane.

H.S.M. Coxeter, University of Toronto

Solution by G.J. Griffith, University of Saskatchewan.

3 3 3
The curve xZ/ + yz/ + zz/ = 0 is rational with para-

metric representation
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2.3 3
px=(1-1t) ; py =8t ;pz=i(1+t2)3

3 3 L ek
Since it is clear that x =cos 6, y = sin 6, z =i satisfies the

e
equation. By letting t = tan /2 we immediately obtain the
above representation. Therefore the order of the curve is six.

The homogeneous line coordinates of the curve are
2 4 . 2
cu=2t(1+t); ov=41-t ; ow=2it(1-t)
Therefore the order of the dual, and hence the class of
the original curve is four. Since the curve is rational, it has
genus zero.
The equation

p=Z(m-1n-2)-(5+K

[1] equation (3), page 100, and the so called first Pliicker
equation

m =n(n - 1) - 2§ - 3K
[1] equation (1), page 99, yield
K=6 and § =4.
Equations (1') and (3) pages 99, 100 of [1] yield
t=0 and T=3.

It is readily verified that the cusps are located at the points
(1s i: O)’ (1’ 'i: 0)’ (1’ Os 1)» (1’ 0’ 'i): (O: '17 1) and (0: 1: '1) all

2 2 2
lying on the conic x +y +2z =0 and that the nodes are at
the points

(1’111): (1, 1,'1)s (17'1: 1) ("1: '1’ 1) ’

these real points being acnodes of the curve, whilst the bitangents
are the sides of the triangle of reference having coordinates

[1,0,0], [0,4,0], [0,0,1],
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these being the cuspidal tangents.
It should be noted that this curve is projectively equivalent
to the hypocycloid having four real cusps.
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