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Abstract

In this paper, we construct interpretable zero-inflated neural network models for modeling hospital admis-
sion counts related to respiratory diseases among a health-insured population and their dependants in
the United States. In particular, we exemplify our approach by considering the zero-inflated Poisson
neural network (ZIPNN), and we follow the combined actuarial neural network (CANN) approach for
developing zero-inflated combined actuarial neural network (ZIPCANN) models for modeling admission
rates, which can accommodate the excess zero nature of admission counts data. Furthermore, we adopt
the Local GLMnet approach (Richman & Withrich (2023). Scandinavian Actuarial Journal, 2023(1), 71—
95.) for interpreting the ZIPNN model results. This facilitates the analysis of the impact of a number of
socio-demographic factors on the admission rates related to respiratory disease while benefiting from an
improved predictive performance. The real-life utility of the methodologies developed as part of this work
lies in the fact that they facilitate accurate rate setting, in addition to offering the potential to inform health
interventions.

Keywords: Predictive modeling; neural network; actuarial; morbidity; zero-inflated neural network; admission rates

1. Introduction

Over the last few decades, one of the most imperative tasks of actuaries working within the life
and non-life sectors is to construct models with high predictive ability which can efficiently cap-
ture the stylized characteristics of claim count and severity data. Even today, traditional regression
models, particularly generalized linear models (GLMs) as introduced by Nelder & Wedderburn
(1972), are one of the widely adopted approaches for handling such data sets. Instances of appli-
cation of GLMs in an insurance context could be found in Ohlsson & Johansson (2010), De Jong
et al. (2008), Haberman & Renshaw (1996), and Frees (2009). Furthermore, morbidity studies
encompassing regression models under a Bayesian framework have also been considered by Arik
et al. (2021), and Ozkok et al. (2014).

As far as modeling of hospital admission frequency data is concerned, which is the main focus
of this study, it should be noted that one of the main issues associated with this and similar
type of rare event count data has been the zero-inflated nature of the data leading to overdisper-
sion. Although regression models with an underlying negative binomial distributional assumption
could address the issue of overdispersion, they fall short of effectively addressing the issue of excess
zeros (Gurmu & Trivedi, 1996). The problem of excess zeros magnifies once we start looking at
cause-specific events. For instance, in our context, we are interested in admissions to hospitals or
healthcare facilities, specifically due to respiratory diseases. Even though many individuals could
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suffer respiratory diseases, admission to hospital implies a severe condition and could be less fre-
quent. This highlights the difficulty and necessity for accurately modeling admission rates and
analyzing the impact of different risk characteristics on the medical condition. In addition to the
above-mentioned insurance context, numerous instances from other fields of research also deal
with zero-inflated data. Irrespective of the area of research, for any studies based on rare events
data, examples of which could be found in Ridout ef al. (1998), the issue of excess zeros presents a
challenge.

Different methodologies have been proposed to handle rare event data, out of which zero-
inflated Poisson regression modes, proposed by Lambert (1992), and the hurdle model by Mullahy
(1986), are two of the most popular approaches. The underlying principle behind both approaches
is similar. In essence, both approaches set forth a mixture distribution with two components: the
zero component and the count component. The zero component is used to model the zeros (in
case of hurdle models) or the excess zeros (in case of zero-inflated models), and the count com-
ponent is for the frequency data of the event of interest. Several variants and extensions have been
developed ever since, and the application of the same under different contexts has also been con-
sidered. Lambert (1992) considered the application to defects in manufacturing, whereas Gurmu
(1997) used a semi-parametric version of the hurdle model for Medicaid utilization. Famoye &
Singh (2006) proposed a generalized variant of the zero-inflated model in the context of domestic
violence data. In an actuarial setting, Yip & Yau (2005) used zero-inflated models for model-
ing insurance claim frequency data. Ridout ef al. (1998) provide details regarding other similar
instances. For additional information regarding the zero-adjusted models for handling data sets
with excess zeros, we refer to the textbook of Cameron & Trivedi (2013).

The advancing field of deep learning, a subset of artificial intelligence, embodies a modern
approach to designing and training neural networks (NNs) — computerized systems inspired by
the human brain that learn from complex data to make predictions or decisions. This methodol-
ogy has garnered remarkable successes in fields like computer vision, natural language processing,
and speech recognition. Furthermore, it is attracting growing attention within the actuarial com-
munity, as evidenced by works both in the academic research field (Wiithrich & Merz, 2019;
Denuit et al., 2019; Wiithrich, 2020; Denuit et al., 2021 and Wiithrich & Merz, 2023) and in the
insurance business sector. One drawback of neural network (NN) models is the lack of explain-
ability and interpretability of the results due to the inherent black box nature arising from their
complex structure. Several techniques, such as SHapley Additive exPlanations by Lundberg & Lee
(2017), LocalGLMet from Richman & Wiithrich 2023), locally interpretable model-agnostic expla-
nation proposed by Ribeiro et al. (2016) etc., have been developed to address the interpretability
issue. Out of these different approaches, here we adopt and extend the LocalGLMnet approach,
owing to its ease of implementation and the likeness that it provides to interpretations derived
from traditional regression models. Further criticism for NN models relates to the potential fail-
ure to maintain the balance property, thereby leading to bias at the population or portfolio level.
(see Wiithrich, 2020, 2022). Several bias regularization approaches, such as those discussed in
the aforementioned articles, have been proposed to address this problem.1 Also, autocalibration,
which was considered by Denuit et al. (2021), is a technique that can be employed to mitigate
population-level bias, and for this reason, it has gained wide popularity recently.

The main focus of this study is to enhance the predictive performance of zero-inflated models
utilized in the context of modeling admission rates associated with respiratory diseases in the US-
insured population, characterized by a significant prevalence of zero counts. This will be achieved
by constructing interpretable zero-inflated Poisson NN models capable of effectively analyzing
count data, where there is a high prevalence of zero occurrences, as is the case with the data used

'The approach of Wiithrich (2020) has also been considered in the context of the data used in this study in our previous
work Jose et al. (2022).
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herein. This is important since accurate forecasting of hospital admission rates would assist hos-
pitals in anticipating fluctuations in demand and thereby enhancing the overall quality of patient
care. Furthermore, in addition to improving predictive performance, retaining interpretability is
crucial for investigating the impact of covariates or input variables (see Table 2) on the admission
counts.

The primary motivation for considering admissions-related respiratory diseases is that they
remain one of the leading cause of mortality and morbidity. According to World Health
Organization (WHO), worldwide, hundreds of millions of people suffer from preventable chronic
respiratory diseases (CRDs) such as asthma, chronic obstructive pulmonary disease (COPD),
and occupational lung diseases, and around four million deaths occur each year due to CRDs
(Bousquet et al., 2007). Recent statistics indicate that each year 3 million people die from COPD,
which comes to nearly 6% of all the deaths worldwide, and globally 262 million people suffer from
asthma (WHO, 2022). The significance of having an efficient predictive model for analyzing the
admissions related to respiratory diseases arises from the fact that most CRDs are preventable
through early detection and intervention. This demands precise identification and understanding
of significant risk attributes of respiratory diseases. The alternative models which we consider in
this study facilitate more accurate modeling of admission rates compared to the ZIP model, while
also analyzing the impact of different risk attributes on these diseases. In particular, the main
contributions of this paper are outlined below.

e Firstly, following the CANN approach of Wiithrich & Merz (2019), we construct a Zero-
inflated Poisson Combined Actuarial Neural network (ZIPCANN) model for modeling
hospital admission frequency data. By embedding a zero-inflated Poisson regression into the
CANN framework, we can explore the gains in predictive power compared to conventional
regression models, and at the same time, we can accommodate the high presence of zeros in
the count data. Additionally, it is worth noting that the CANN model and its extensions are
part of the Residual Neural Network (ResNet) family, which employs skip connections, as dis-
cussed in He et al. (2016). These skip connections enable the model to address the vanishing
gradient effects commonly associated with deep NNG.

e Secondly, we interpret the results of the ZIPNN model using the LocalGLMnet approach.
It should be noted that interpreting results from a ZIP distributional assumption is more
complex compared to the Poisson distributional assumption counterpart. This complexity
arises due to the model’s mixture nature, wherein input features are incorporated through
the rate and probability parameters. Furthermore, the interpretations obtained from the NN-
based model are compared to those derived with the coefficient estimates of the ZIP regression
model. This comparison showcases the impact of potential non-linear interactions captured
by the NN on the final results.

With the above contributions, we have taken into account all of the alternative approaches that
have been developed in the recent actuarial literature concerning network-based models. For
instance, Noll et al. (2020) and Gao et al. (2019) consider NN models in the context of motor
insurance. Hejazi & Jackson (2016) propose a network-based approach for the valuation of large
portfolios of variable annuities, while Kuo (2019) considers a deep-learning approach to loss
reserving. Additionally, Hainaut (2018) adapts NNs for mortality forecasting. Richman (2021)
provides a detailed review of recent advances of Artificial Intelligence in actuarial science. For
more details regarding the application of NNs in an actuarial context, please refer to textbooks
Denuit et al. (2019) and Wiithrich & Merz (2023). Moreover, it is worth noting that the above
approaches and their combinations are used for the first time in the literature regarding the
zero-inflated Poisson model for the case of hospital admission data.

The rest of this article is organized as follows: Section 2 provides a general description of the
data, along with descriptive statistics and data considerations that were carried out prior to mod-
eling. The different models considered as part of this work, i.e., the ZIP, ZIPNN, and ZIPCANN
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Table 1. Frequency of number of admissions related to res-
piratory diseases

No. of admissions Frequency

0 2,046,167
1

models, are discussed in Section 3. Details of the different hyper-parameter assumptions associ-
ated with NN model fitting are given in Section 4. Section 5 describes the LocalGLMnet approach
and its extension for the ZIPNN model. A comparison of different models in terms of predic-
tive performance and interpretations derived is given in Section 6. Finally, Section 7 contains the
concluding remarks.

2. Data

The Merative (previously called IBM Watson Health) provides the admission data for the US
population. The data set was constructed by combining the enrollment information and the
admission details from different tables in the Commercial Claims and Encounters Database of
Merative MarketScan Research Databases. The data contain individual-level demographic and
employment-related information sourced from various employers and health plans around the
US. The International Statistical Classification of Diseases and Related Health Problems 10th
Revision - Clinical Modification (ICD-10-CM) codes were used for defining the underlying cause
of admission facilitating the categorization of the admissions based on the disease (CDC, 2016).
Also, multiple admission records of an individual due to a particular disease within a period of two
days were treated as a single admission. As our focus is predominantly on the working population,
we consider individuals in the age range [30, 65] for the year 2016. Different data considera-
tion steps were undertaken to create the final data set. For instance, a variable (INDSTRY) which
contained information regarding the industry in which the individual is employed, was excluded
due to a high proportion of missingness. For the rest of the data variables, only the complete
cases are used as the proportion of missingness was less than 2%. Additionally, variables, such
as HLTHPLAN and DATATYP, are excluded due to the high level of relationship with other vari-
ables. The HLTHPLAN variable indicates whether the employer or a health plan provides the data,
and the DATATYP variable indicates whether the individual’s plan is on a reimbursement or cap-
itation basis. The HLTHPLAN variable is strongly associated with employment-related variables
such as EECLASS and EESTATU, and the DATATYP variable is correlated with the PLANTYP
variable, which details the type of health plan the individual is part of. A description of the vari-
ous variables within the final data set is given in Table 2. Furthermore, the ceiling for the number
of admissions for an individual was set as five to address the unusually high numbers of indi-
vidual admissions, possibly due to the common healthcare data practices. The same data set
was used in earlier work (Jose et al., 2022), which contains a more detailed description of the
above-mentioned data considerations and the preliminary exploratory analysis that was carried
out. Here, the REGION variable is chosen over a more granular geographical variable EGEOLOC
which was used in Jose et al. (2022). The final data set contains 2,050,100 records with 4513 admis-
sions related to respiratory diseases (see Table 1). For a further in-depth understanding of the data
set and its analysis, we refer the reader to earlier work by Jose et al. (2022).
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Table 2. Description of variables in the admission data set

Variable Description Comment Categories
ENROLID Unique ID for individual ID variable -
AGE Age of the last birthday of the €[30, 65] -
individual
SEX Gender of the individual Factor w/2 categories 1:Male, 2:Female
UR Urban/ rural indicator based Factor w/2 categories 1:Rural, 2:Urban
on individual’s residence
REGION Geographical region of Factor w/5 categories 1: Northeast, 2:North Central, 3: South, 4:
residence West, 5: Unknown
EECLASS Employee classification Factor w/9 categories 1:Salary Non-union, 2:Salary Union, 3:Salary

Other, 4:Hourly Non-union, 5:Hourly Union,

6:Hourly Other, 7:Non-union, 8:Union,

9:Unknown

EESTATU Status of employment Factor w/9 categories 1:Active Full Time, 2:Active Part Time or

Seasonal, 3:Early Retiree, 4:Medicare Eligible
Retiree, 5:Retiree (status unknown),
6:Comprehensive Omnibus Budget
Reconciliation Act (COBRA) Continuee,
7:Long-Term Disability, 8:Surviving
Spouse/Depend, 9:Unknown

EMPREL

Relation to the primary Factor w/3 categories 1:Employee, 2:Spouse, 3:Child/Other
beneficiary
PLANTYP  Type of health plan individual Factor w/8 categories 2:Comprehensive Plan, 3:Exclusive Provider
is part of Organization Plan, 4:Health Maintenance

Organization Plan, 5:Non-Capitated (Non-Cap)
Point-of-Service, 6:Preferred Provider
Organization Plan, 7:Capitated (Cap) or
Partially Capitated (PartCap) Point-of-Service
Plan, 8:Consumer-Driven Health Plan,
9:High-Deductible Health Plan

2.1 Data pre-processing

Prior to carrying out any modeling, two data pre-processing steps were undertaken, the details of
which are outlined below.

(1) One-hot encoding: for all categorical variables with more than two levels, one-hot encoding
was applied. One-hot encoding represents a categorical variable with [ categories ¢, ¢2, . . ., ¢
using a [ dimensional feature vector which is of the form

T
Xj > <]1{x1:c1}’ RN ]l{xj:cl}) IS R (1)

(2) Min-max scaler: a min-max scaler which transforms the variable to a [ — 1, 1] scale was imple-
mented for the numerical and binary variables. The transformation was applied using the
formula

2(x; — m;)
x> xf =1L

J M —m; —le[—1,1] (2)

where m; and M; represent the minimum and maximum values of variable x;.

A more detailed description of the application of both one-hot encoding and min-max scaler on
the admission data set under consideration is given in Jose et al. (2022). Following the data pre-
processing steps, a 90:10 random split of the entire data set was created to be used as the learning D
and testing 7 data sets. All the models were fitted using the learning data set, and the performance
of the models on the testing data set was used to compare their performances.
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3. Models

The main models discussed as part of this work are the ZIPNN and ZIPCANN models, along with
the extension of the ZIPNN model developed by incorporating the LocalGLMnet approach, which
facilitates the interpretation of the results. A zero-inflated Poisson (ZIP) regression model is also
considered for comparing the predictive performance between traditional regression modeling
and network-based approaches. Furthermore, although not explicitly described here, instances of
traditional Poisson regression, NN, and CANN models as detailed in Jose et al. (2022) are also
considered for comparison. Before extending the LocalGLMnet approach to ZIPNN model, the
same was implemented for the NN model as well.

3.1 Zero-inflated Poisson regression

As mentioned earlier, zero-inflated Poisson models are based on a mixture distribution compris-
ing two components (Lambert, 1992; Cameron & Trivedi, 2013). In practice, a count distribution
such as the Poisson or negative binomial distribution is used to represent the count component,
and a Bernoulli distribution is assumed for the zero component. Hence a zero-inflated Poisson
(ZIP) regression model is of the form

Vi {0 with probability ; 3)

Poisson(rie;) with probability (1 — ;) oofori=1,...,n

with u; = Xje; being the mean of the Poisson part of the ith record with exposure e; and rate
parameter A;, while 7r; represents the probability of only having zero admissions. Zeros arise from
both the zero component and the count component, with the two components having probability
m; and (1 — m;), respectively. Hence, the probability mass function of the ZIP mixture distribution
is

mi+ (1 —m)e ™, yi=0

Pr(Yi=y) = —ni i (4)
(I=m)—r= >0
and the corresponding mean and variance are given by
E(Y;) = (1 — )i V(Yi) =1 — m)ui(1 + ). (5)
The ZIP model allows both w; and 7; to be modeled using a set of covariates. This would be of
the form :
10g (41) = 0i + Bo + B ogXi = 0i + o + (Begs Xi) (6)
and
logit(mry) = yo + ¥ ' wi (7)
where o;=log(e;) is the offset term, By, the intercept terms and {ﬁ;le—zg’ yT)=
(B1>--->Bg> V15 - - -» ¥s) being the unknown vector of coefficients to be estimated corresponding
to the sets of covariates x; = (x;i, . . . ,x,-,q)T and w; = (Wi, .., wi,s)T considered in the two

regression functions with dimensions g x 1 and s x 1, respectively. Regarding the treatment of
exposure within the ZIP model, it is possible that the exposure or period at risk could potentially
influence the probability of admission, as well as the rates of admission. Consequently, the
exposure could be factored into both components, as detailed in Feng (2022). Here, we follow the
general practice of treating it as an offset term in the regression function for u, as discussed in
Lee et al. (2001).

The model selection procedure was carried out for both count and zero components of the
ZIP regression model. All variables entered the model for the count component, and thus, a
full model with all the covariates was utilized for the Poisson regression function. Similarly, for
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Table 3. Summary of the variable selection process of the logistic component of the ZIP
regression model

Model Degrees of freedom BIC
Step 1: ~1
[ T e 53’84778
+AGE ................................ e 53,3295
+ SEX 35 53,860.14
+ s o 53,94526
+ EMPREL 36 53,867.1
Step2 T R =
+ SEXRT 36 53,840.2
+ EMPREL 37 53,844.43

the regression function associated with the zero component, a forward step-wise variable selec-
tion process based on the Bayesian information criterion (BIC) was carried out(Vrieze, 2012).
As we are using logistic regression to model the probability parameter, we refer to it as the
logistic component from here on. The summary of the variable selection process of the logistic
component of the model is given below in Table 3. Under the forward step-wise variable selec-
tion process, we start from a model without any terms in the logistic component and consider
adding one variable at a time. The outcome of any particular step is the model that yields the
lowest BIC value, and the whole process is repeated until there is no further reduction in the
BIC value. The model thus identified from the variable selection process had the vector of coef-
ficients {8, B reg> Y0, ¥V} = (Bo> B1s - - - » By ¥o, ¥1) corresponding to the complete set of covariates
as presented in Table 4. The ZIP regression model was fitted using the zeroinfl () function
in the pscl package which employs the optim() function to estimate the model parameters in
both components simultaneously, by maximum likelihood, using optimization algorithms such
as Nelder-Mead or a quasi-Newton method (Zeileis et al., 2008).

3.2 Zero-inflated Poisson neural network (ZIPNN) model

A generic feed forward NN comprises an input layer, followed by multiple hidden layers and then
the output layer. The structure of a feed forward NN is first discussed using a NN model with an
underlying Poisson distribution assumption (model 3 in Table 5). A feature space X’ is taken as
the input layer with dimension go. Assuming a network architecture of d € N hidden layers with

gm € N, 1 <m < d neurons in each of the layers then a neuron z}m), 1 <j<gm,in the m'™ hidden

layer 2™ is given by

2”@ =v (8".2),) ®)
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Table 4. List of covariates and the corresponding coefficient parameters in both the components of the ZIP
regression model

Covariate Coefficient Description

Count component

B Bo Bintercept
ACE B Poge
REGION {B2,...,Bs) Bregiong @=1,...,5
B BT B
[ B o Bur .
EECLASS i NPy Peedlass, b=1,...,9
EESTATU {Bis, - - - » Bas} Beestatu. €=1,...,9
EMPREL By e Bempreyd=1,.. .3
PLANTYP (B30, - . ., B3} Bptantype €=1, - - -, 8
e e
Intercept Yo Yintercept

AGE " Yage

Table 5. Predictive performance of Poisson and ZIP regression models and network-based models with and
without an additional layer for interpretation based on NLL. The empirical mean of the observed data is 0.0027

Model no. Model Learning loss Testing loss Average fitted mean
Model 1 Pois.reg 28,524.2 3016.8 0.0027
Model2  zIPreg 266623 2822 00028
w/o attention layer
P NN(20,15,10) e 23,2023 e
P CANN(20,15,10) [ 282206 e
Model5  ZIPNN(20,1510) 263645 28083 00027
>M0>d‘el>é o ‘ZIFb’CA>l\‘lN(‘20,>l‘5,l‘O) - 2>6,3b9‘9.7‘ - >2‘80§.4H . 6.0027 -
w/attent|onlayer 00tk O
P NN(20,15,10) B 23,2179 e
Model 8 ZIPNN(20,15,10) 26,424.2 2807.8 0.0026

with " represented as

2RI R, 25 20 (2) = (1,2 (@), .., 20 (2) T 9)

T qm-1+1
0<I=gm_1 € Rim are the network

parameters and ¥: R — R, the activation function. The network parameters corresponding to the

inclusive of the intercept component, where ﬂ;m) = (,31(;1))

hidden layer 2™ are the <ﬂ (lm), ces ﬂr(;,:,l)) € R1m. The comprehensive set of network parameter

isgivenby 8 = (ﬂ(ll), .. ,ﬂ;i), ﬂ(dH)) € R”, where the dimension is r = an:l qm (qm,l + 1) +
(g4 + 1). The predictor of the NN obtained from the output layer is then of the form

(05> x;) > log (uNN) = 0; + (B, (29 0 - - 0 2V)(wy), (10)
for i=1,...,n, where ﬂ(dH) e R94t! are the weights associated with the output layer which

connects the last hidden layer z? to the output layer R, .
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For a ZIPNN model, the feature space X’ with dimension ¢ is taken as the input layer, i.e.,
qo = g. The construction of ZIPNN models involves incorporating zero-inflation considerations
through the establishment of a distribution layer within the NN. This distribution layer, referred
to as a lambda layer? in machine learning terminology, is a component in a NN that facilitates the
integration of custom operations by defining a function applied to input data. In particular, this
functionality allows for the inclusion of specific computations not covered by standard layers. In
the specific context of zero-inflated NNs, the distribution lambda layer is employed to integrate a
zero-inflated distribution assumption into the NN, enabling the model to capture complex rela-
tionships in the data. Also, we take g; = 2 with ¥: f(x) = x. In other words, a dense layer with two
neurons without activation is defined before the distribution layer.

The output of these two neurons is then used to calculate the probability () and rate (1)
parameters of the zero-inflated Poisson distribution constructed using the distribution layer that
follows. The distribution layer thus created has an underlying zero-inflated Poisson mixture
distribution. The model output is then derived as the mean of the distribution given by

E(Y)—(l zzpnn)M:lenn (11)

1

where JTiz P and u; " are the rate and probability parameters of the underlying zero-inflated

Poisson distribution. As in the case of a ZIP model, the exposure is taken as an offset term in the
count component of the ZIPNN model. An exponential transformation is applied to the sum of
the offset term and the output from the neuron associated with A. A sigmoid function is applied
to the output from the neuron associated with 7 to restrict the value of 7 to [0, 1] interval. The

uflp " is then given by

zipnn

log (™" =247 @) = v (81", ) +o01= (" 2) + 0, (12)
or equivalently

log (WP = 0; + (B, 2@V o - 0 2D)(xy)). (13)

Similarly, 7} "7 is of the form
logit(e;"™") =47 (2) = y (184", 2)) = (B, 2). (14)

B (ld) and B gd) represent the network weights associated with the two neurons in the last hidden
layer corresponding to probability and rate parameters. In essence the Equations (6) and (7) are
replaced by Equations (13) and (14). Alternatively, we could also define

logit(1 —nfipnn)zzgd)(z)zw (( gd) ) ﬂgd),z (15)

Since the zero-inflated distribution is defined as a mixture distribution using the distribution layer,
the models could also be constructed using the p; = (1 — 7;) parameter with ease. This means that
instead of 7, the probability of zero component, the distribution layer considers p, which is the
probability of count component or, in other words, the probability of having a non-zero admis-
sion. The only difference is how the mixture distribution is defined. For ease of interpretation,
while using the attention layers, we have adopted the latter approach. A schematic representa-
tion of a ZIPNN with 20,15,10,2 neurons (model 5 in Table 5) in each dense layer is shown in
Fig. 1. Code for implementing the same is given in Listing 3 and additional details regarding the
approach can be found in Diirr et al. (2020). The structure of the ZIPNN model in terms of the
connection between layers, the shape of input and out of each layer, and the number of parameters

2For more details regarding the lambda layer, refer to https://keras.io/api/layers/core_layers/lambda/.
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Figure 1. An illustration of a sample ZIPNN model with three hidden layers and 20,15,10,2 neurons in each layer.

Listing 1. Structure of the ZIPNN model.

1 Model: "ZIPNN model"

5 Design (InputLayer)
6 hiddenl (Dense)

7 dropout_2 (Dropout)
8 hidden2 (Dense)

9 dropout_1 (Dropout)
10 hidden3 (Dense)

1 dropout (Dropout)

12 Net (Dense)

13 LogVol (InputLayer)

14 concatel (Concatenate)

Output Shape Param # Connected to
4 ===—=—=—=——=—=—=—==——==——==—=—==—=—==—=—==—=—==—=—=—===—==—===—==—==—=—==—=========================
[(None, 37)] O [1]
(None, 20) 760 [’Design[0][0] ]
(None, 20) 0 [’hidden1 [0] [0] ]
(None, 15) 315 [>dropout_2[0][0] "]
(None, 15) 0 [’hidden2[0] [0] ]
(None, 10) 160 [>dropout_1[0][0] "]
(None, 10) 0 [’hidden3 [0][0] ]
(None, 2) 22 [’dropout [0][0] ]
[(None, 1)] 0 (]
(None, 3) 0 [’Net [0][0]°,’LogVol[0][0]"]
(None, None) O [?’concatel1 [0][0] "]

15 distribution_lambda
16 (DistributionLambda)
18 Total params: 1,257
19 Trainable params:
20 Non-trainable params:

1,257

0

is shown in Listing 1. The final layer of the model is the distribution layer, which follows a zero-
inflated Poisson distribution. The mean of the distribution is taken as the output or the response,
which, in our case, is the admission count.
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3.3 Zero-inflated Poisson combined actuarial neural network (ZIPCANN) model

The ZIPCANN model contains additional skip connections, as in the case of a CANN model. In
a CANN model (model 4 in Table 5), a skip connection connects the input features directly to the
output layer. In effect, the predictor of a CANN model contains an additional regression function
compared to the predictor of a NN and is of the form

(04, ) > log (EANN) = 0; + (B, x;) + (BT, (2D o - - 0 2W)(xy)), (16)

with the parameters from the regression function or skip connection represented by B
(Schelldorfer & Wuthrich, 2019; Jose et al., 2022). As detailed in Schelldorfer & Wuthrich (2019),
various versions of CANNSs exist depending on whether the weights in the regression part are
updated or not whilst training the model. More specifically, one can either estimate the weights
in the skip connection during training, or alternatively, keep the weights of the regression com-
ponent fixed as the iterated weighted least squares estimates from the corresponding regression
model. In this work, we adopt the former approach for all models containing skip connections.
For the ZIPCANN model, two skip connections are used; one for the rate parameter and one
for the probability parameter. Instead of the output layer, the skip connection is made to the two
neurons in the last hidden layer. In order to be consistent with the ZIP model, only the age variable
was used in the skip connection associated with 7, whereas all the features were used in the skip
connection for ;. Consequently, the predictor for the ZIPCANN model is of the form

E(Y)=(1— lecann)ﬂ?ipcann 17)
where Mfip “M s given by
log (u57"™y = (878, x;) + (B, 2) + 0; (18)
and niz tpeann given by
logit(r/P“"™) = yugex™° + (B, 2) (19)
or alternatively,
logit(1 — nzzpmnn) = yagex ,Bgd), z). (20)

Similarly to the ZIPNN model, the final output layer of the ZIPCANN model is also a distribution
layer. The code for fitting the ZIPCANN model is given in Listing 4, and a diagrammatic repre-
sentation of a sample model with one-hot encoding, skip connections, and 20,15,10,2 neurons in
each of the layers (model 6 in Table 5), is shown in Fig. 2. The structure of the ZIPCANN model
is given in Listing 5.

4. Model fitting

The ZIP regression model was fitted using zeroinf1 () function in the pscl package in RStudio
(Zeileis et al., 2008; Jackman, 2020; R Core Team, 2021; RStudio Team, 2021). The zeroinfl ()
utilizes the Nelder and Mead optimization method for estimating the model coefficients. For
the network-based implementation of the ZIP model, we mainly employed the tfprobability
package (Keydana, 2022; Dillon et al., 2017) in addition to the keras (Allaire & Chollet, 2021)
and tensorflow (Allaire & Tang, 2021) packages used for constructing NN models. The
tfprobability package allows to define probability distributions within a deep-learning model
using a distribution layer. The main parts of the code used for building the network-based models
are given in Appendix A.2.
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Figure 2. An illustration of a sample ZIPCANN model with skip connections, one-hot encoding, and 20,15,10,2 neurons in
each of the layers.

4.1 Hyper-parameters

The fitting of NN models requires determining a number of associated hyper-parameters, includ-
ing the depth of the network, choice of activation function, loss function, and gradient descent
method. The hyper-parameter options identified and adopted in Jose et al. (2022) have also been
used here, with details given below.

e Gradient descent method (GDM): the Nesterov-accelerated adaptive moment estimation
(Nadam) method was used as the choice of the Gradient descent optimization algorithm for
estimating the model weights.

e Network architecture: for NN and CANN models, a network architecture with three hidden
layers with (20,15,10) neurons in each layer was considered. As mentioned earlier, the ZIPNN
and ZIPCANN models have an additional layer with two neurons. In addition to the lay-
ers mentioned above, an attention layer is used to interpret the results from NN models (see
Section 5). Also, for the ZIPNN and ZIPCANN models, alternate architectures with differ-
ent numbers of neurons in the first three hidden layers were considered. The results, as given
in Table A.1, indicate that the choice of (20,15,10) architecture has the best predictive per-
formance compared to other architectures in the case of the ZIPNN model. Moreover, for
the ZIPCANN model, the (35,25,20) architecture only minimally outperforms the (20,15,10)
architecture. Hence, the combination of (20,15,10) neurons in the initial three hidden layers
is adopted for both models.

e Batch size and epochs: a combination of 30,000 batch size and 500 epochs were used for fitting
the NN models. The 30,000 batch size was identified as a reasonable choice in earlier work by
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Jose et al. (2022), and the large epoch was used since the early stopping approach implemented
using the callback method will restrict the model from overfitting.

e Validation split: a further 80:20 split of the learning set was used as the training set, D(~), and
a validation data set V.

e Loss function: the negative log-likelihood (NLL) was used as the objective function, which
the GDM algorithm minimizes for estimating the model weights. The log-likelihood of ZIP
mixture distribution is given by

Ior, wsy) =Y uiln (i + (1 — 75) exp ( — pu))

i=1
+ (1= u)[In (1 —7) — pi+ yiln (ui) — In (yi)],

where u; = I(y; = 0), ; is the mean of the Poisson component, 77; the probability parameter and
y; is the response variable. It is worth noting that in the case of the zero-inflated models, the
saturated model reduces to the saturated version of the count component (Martin & Hall, 2016).
This follows from the fact that a saturated model has the mean responses equivalent to the data,
i.e., E(y;) = yi. For the zero-inflated models, this is true when we set w; = y; and replace 7; with
u; =1I(y; = 0) since E(y;) = (1 — ;). Hence, the saturated model for ZIP mixture distribution
will be a saturated Poisson distribution.

As previously mentioned, for the ZIPNN and ZIPCANN models, the output layer is a distribu-
tion layer (see Listing 1 and A5) with underlying Zero-inflated Poisson distribution and the mean
of the distribution is taken as the model outcome or response which is the admission number.
More precisely the distribution layer is considered as the model output. The NLL is the negative
sum of the logarithm of the likelihood assigned to the observed count by the conditional prob-
ability distribution (— > _ log(P(y|x, w))). As the model’s output is the distribution layer, we can
obtain this by defining the loss function as shown in Listing 2.

(21)

Listing 2. Negative log-likelihood loss function used for training zero-inflated neural network
models.

#negative log-likelihood loss function
nll<-function(y_true,y_pred)
{
-y_predS$log_prob(k_reshape(y_true,shape = c(-1)))# k_shape for flattening
the tensor

2w N =

5 #y_pred is the ZIP distribution layer
6 #y_true is the observed admission count
7}

Additionally, the early stopping and dropout model improvement approaches, as detailed in
Jose et al. (2022), were used to avoid overfitting for all the network-based models.

5. Interpreting network-based models using the LocalGLMnet approach

The underlying principle of the LocalGLMnet approach, as proposed by Richman & Wiithrich
2023), is to use a NN for estimating the model coefficients of a GLM, as indicated by the name local
generalized linear model network or LocalGLMnet. In this case, the coefficients B are replaced by
feature-dependent non-linear functions f(x). The implementation of this approach involves cre-
ating an additional network layer, called the attention layer, with the same dimension as that of
the feature space g = g, containing the so-called regression attention f(x). The regression atten-
tion terminology follows from its similarity to the attention weights proposed by Bahdanau et al.
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(2014) and Vaswani et al. (2017). The motivation behind the attention weights is to give suffi-
cient weight (attention) to the different features reflecting their significance. Richman & Wiithrich
2023) further extended this to develop Local GLMnet to derive explanations from the results simi-
lar to a GLM. The key assumption behind this is the additive decomposition of the predicted value
in terms of the features, as shown in Equation (22). In other words, the predicted value could be
represented in terms of the weighted sum of features. Thus, in the case of a LocalGLMnet, the
predictor is of the form

xi > g(wi) = g(u(x:)) = Bo + (B(xi), xi) + o
(22)
= Bo + (Bi(xi)xin + . . . + By(xi)xig) + 0i
where
x> B =2V () = (Mo ... 0 2D) (x) (23)

with g() being the link function and p; being the mean of the distribution underlying the NN
regression function. Interpretations are then obtained by considering the covariate contribu-
tion Bj(x;)x; associated with each of the features x;,j=1,...,qo, obtained by extracting the
component-wise product. The layer thus containing the component-wise product was termed
the LocalGLM layer by Richman & Wiithrich 2023). As Bj(x;) depends on the features x; =
(xi1, - - - » Xij), Bj(xi)xij vary for each of the record and interpretations are derived for each feature
xj by looking at the Bj(x;)x;; fori=1, ..., n. Prior to extending the approach to the ZIPNN model,
we implemented it for a NN model, as proposed by Richman & Wiithrich 2023). This highlights
the merits of the LocalGLMnet approach, as well as its potential to be extended for more complex
models. A diagrammatic representation of a sample LocalGLMnet with three hidden layers and
(20,15,10) neurons in each of the layers (model 7 in Table 5) is shown in Fig. 3 and the code for
implementing it is given in Listing 6.

To demonstrate the process of deriving interpretations we consider, as an example, the covari-
ate contributions for the variables AGE and SEX. These are shown in Fig. 4, while the crude
admission rates are shown in Fig. 5. Detailed analysis and interpretations for other covariate
contributions is given later using the ZIPNN model.

The crude admission rates clearly show that the rates increase with age for both males and
females. Also, the female population generally has higher rates compared to the male popula-
tion. The same conclusion can be inferred from the covariate contributions. The median value of
covariate contributions for females (SEX = 2) is higher than for males (SEX = 1), indicating higher
admission rates. Similarly, the covariate contribution for the AGE variable implies an increasing
trend of admission rates with age, with more variability at younger and older ages.

5.1 Interpreting the ZIPNN model

In order to interpret the results obtained from ZIPNN model, we extend the additive decomposi-
tion assumption to the u and p = (1 — &) parameters of the underlying ZIP mixture distribution
as shown in Equation (4). The regression weights corresponding to each feature are calculated
separately for ¢ and p. Hence, the dimension of the layer analogous to the Local GLM layer with
the component-wise product of regression weights and features is 2 x go. Among these 2 x gy
weights, go weights are associated with p and the rest with p.

5.1.1 Regression attention for ZIPNN

The ZIPNN model, as defined in Section 3.2, consists of an input layer, multiple hidden layers,
with the last hidden layer containing two neurons, followed by the distribution layer and the
output layer. To create the interpretable ZIPNN model, the attention layer is introduced before
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Figure 3. An illustration of a sample LocalGLMnet model with LocalGLM layer, one-hot encoding, and 20,15,10 neurons in
each of the layers.

(a) Covariate contribution: AGE (b) Covariate contribution: SEX

covariate contribution [1{x)x
covariate contribution [3{x)x

30 40 50 60 TMale 2Female
AGE SEX

Figure 4. Graphical representation of covariate contribution from LocalGLMnet model for the testing set (a) age variable; (b)
male, female; the blue line indicates a spline fit approximate curve and the yellow line has been added as a reference line at
levels -0.25 and 0.25.
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Figure 5. Age-wise crude rates of admission due to respiratory diseases for male and female patients for the entire data set.

the distribution layer, effectively replacing the last hidden layer of the ZIPNN model with two
neurons (see Fig. 6).
Hence, the rate and probability parameters defined in Equations (13) and (14) are replaced by

zipnn

log (1) = Bop + (Bgo+1:290) ()> Xi) + 0i (24)

and
logit(p™™) = Box + (B1sge)(x,): i) (25)

with x> B(x) =29 (x) = (20 o....02D)(x;). The attention weights B(1:q0)(x) and
B(go+1:244)(x) are associated with parameters p and u respectively. The interpretations or the
impact of the different features on parameters 1 and p are derived by analyzing the covariate
contributions: Bj(x;)x;; for p; and By,+j(xi)x;j for w;, where j=1, ..., qo. Sample code for creat-
ing an interpretable ZIPNN model (model 8 in Table 5) is given in Listing 7. The structure of the
interpretable ZIPNN model is given in Listing 8.

Although it is possible to create interpretable versions of both CANN and ZIPCANN models
similar to those for the NN and ZIPNN models, the introduction of the attention layer nullifies
one of the primary purposes of skip connections, which is to distinguish the main effects from the
complex effects. This is because the attention layer will integrate the main effect represented by
the skip connection and with the complex effect from the network. Hence, in this work, we do not
discuss interpretable versions of the CANN and ZIPCANN models.

6. Comparison of models

In this section, we compare the different models discussed so far. The models are compared in
terms of predictive performance and the insights obtained from the model results.
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Figure 6. An illustration of an interpretable ZIPNN model with regression attention, one-hot encoding, and 20,15,10 neurons
in each of the layers.

6.1 Predictive performance

The NLL was used to compare the predictive performance of the implemented models. While
other comparison measures are available, such as the mean absolute error and the mean square
error, these focus on the deviation of the predicted value from the actual observed value and do
not fully account for the considered probability distribution when using a probabilistic model.
Also, other alternative measures, such as the predicted probability of a zero count, fall short
of providing a comprehensive comparison as they only consider the probability of admission
as a dichotomous event, and fail to consider the admission rate. The NLL of a model has the
form:

La(B) = —log (Lf) (26)

where A represents the data set and Ly gives the likelihood of the fitted model (e.g. Equation
(21) for the log-likelihood of a ZIP mixture distribution). Performance was compared based on
the NLL L7 of different models for the testing set 7. Values of the NLL for both the testing
and training data sets, for all considered models, are shown in Table 5. Table 5 also contains the
average fitted mean [ for each model for the full data set. The difference between the average
fitted mean of a model and that of the empirical mean of observed data indicates population-level
bias.

The results indicate that the ZIPNN model has the lowest testing loss compared to other
models. In general, the models with an underlying zero-inflated mixture distribution assump-
tion performed better than those with a basic Poisson distribution assumption. The ZIPNN and
ZIPCANN models performed better than the traditional ZIP regression model. Similarly, the NN
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and CANN models performed better than the conventional Poisson regression model. As the
difference between the testing loss of ZIPNN and ZIPCANN models is small, it is not possible
to conclusively state the supremacy of one over the other due to the inherent randomness in
NN results. The different attributes leading to the randomness in NN model results have been
extensively discussed by Richman & Wiithrich (2020). Approaches such as nagging predictor
and k-fold validation could be adopted to address this randomness, as done in previous work
by Jose et al. (2022). More than the inherent randomness, the underlying architecture sways
the model performance on a larger scale. Hence we analyzed this impact by considering dif-
ferent architectures of varying complexity. As shown in Table A.1, the combination of 20,15,10
neurons in the first three hidden layers is a suitable choice for both ZIPNN and ZIPCANN
models.

6.2 Model interpretability

In order to compare the interpretations derived from the model results, we consider the coefficient
estimates from the ZIP regression model and the covariate contributions from the ZIPNN model.
The coefficient estimates (Beg, ¥) from the ZIP regression model are given in Table 6. For the ease
of interpretation of the results, a sum-to-zero constraint was applied to the coefficient estimates
of different levels of all the non-binary categorical variables.

The interpretation of coefficient estimates from a ZIP distributional assumption is more com-
plex compared to a conventional regression model, because it refers to a mixture distribution. For
the ZIP regression model considered here, the count component considers all features, whereas
the zero component only considers the age variable. Additionally, in the case of the ZIPNN model,
an attention layer is used for both X and p parameters, which means that the covariate contri-
butions of different variables for A need to be considered in conjunction with those for the p
parameter. This makes interpreting the results and comparison with ZIP regression model less
straightforward. The comparison was carried out between the most significant coefficient esti-
mates in the ZIP regression model and the corresponding covariate contribution using the ZIPNN
model.

The plots showing the covariate contributions were produced using the test data. Figs. 7 and
7 (continued) show the covariate contributions for different variables associated with the rate ()
parameter, while Figs. 8 and 8 (continued) show the covariate contributions for the p parameter.
The horizontal yellow line in the plots was added as a reference line at levels -0.25 and 0.25. This
can help to compare the magnitude of the covariate contributions and how they are associated
with the parameters.

The analysis of the covariate contributions using the ZIPNN model for the AGE variable for
both the probability and rate parameters (Figs. 7 and 8) indicates an increasing trend over age. This
suggests a positive relationship showing that as age increases, both the probability of having an
admission and the rate of admission increase. The spline fit (blue line) indicates an almost linear
trend, with the greatest variability at younger and older ages. In both cases, this suggests that the
impact of the age variable on the parameters varies at different ages. The variation appears to be
lowest around the age of 47 before increasing for older ages as well. The highly significant positive
coefficient estimate for the AGE variable in the count component of the ZIP regression model (see
Table 6) indicates that the rate of admission increases with age. The negative estimate in the zero
component associated with the 7 parameter also suggests that the probability of having excess
zero decreases with age. In other words, the probability of having non-zero admissions increases
with age.

The covariate contributions under the ZIPNN model for the SEX variable indicate a higher
probability and rate of admission for females (SEX =2) compared to males (Figs. 7 and 8). The
significant positive coefficient estimate in the count component of the ZIP regression model also
implies the same. This is in line with the pattern displayed by the crude rates (see Fig. 5). The low
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Table 6. Coefficient estimates based on the ZIP regression model with the significance codes (", s, "5, """ ")
indicating the level of significance of the estimates at levels (0, 0.001,0.01, 0.05,0.1,1)
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Figure 7. Graphical representation of covariate contributions for parameter A in the ZIPNN model: (a) AGE; (b) SEX; (c) UR;
(d) REGION; (e) EECLASS; (f) EESTATU.

variability in both cases suggests that gender has a consistent and explicit impact on admissions
related to respiratory diseases.

Regarding the UR variable, the ZIP regression model suggests a lower admission rate for
individuals in the urban area (UR=2), based on its significant negative coefficient estimate
(Table 6). This contradicts the pattern observed under the ZIPNN model. Although not consid-
erably different, the covariate contributions suggest that people in urban areas are more prone to
respiratory disease-related admissions (Figs. 7 and 8). This difference could be arising due to the
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Figure 7. (continued). Graphical representation of covariate contributions for parameter 2 in the ZIPNN model: (a) EMPREL;
(b) PLANTYP.

fact that the network architecture captures complex interactions between different features, which
is accounted for while estimating the non-linear regression weights, 8(x). For instance, there may
exist an interaction between the age and UR variables, due to the possibility that retired or older
individuals are more likely to reside in rural areas.

The coefficient estimates based on the ZIP regression model for the REGION variable
(Bregion,»z=1,...,5), given in Table 6, indicate a higher rate of admission when the REGION
variable is unknown (REGION = 5). However, the estimate is not significant. The high variabil-
ity of covariate contribution under the ZIPNN model for level 5 of the region variable is also
pointing toward this uncertainty (see Fig. 7). On the other hand, the "west" region (REGION =4)
has a significant negative coefficient estimate under the ZIP regression model, implying a lower
admission rate for individuals from the western region. The covariate contribution in the ZIPNN
model corresponding to the A parameter for the REGION variable also suggests the same
(Fig. 7).

In the case of the EECLASS variable, a significantly higher rate of admission is inferred from
the coefficient estimates of the ZIP regression model for "hourly non-union" and "hourly union"
(levels 4 and 5) and significantly low rates for individuals with unknown (level 9) employee clas-
sification (Table 6). A comparable trend is observed when the covariate contributions for both
rate and probability parameters under the ZIPNN model are considered together, which is essen-
tial as interpreting the results based on a single parameter could be unclear. For example, the
covariate contributions for the "salary union" level (level 2) of the EECLASS variable related to
the rate parameter (see Fig. 7) suggest that the admission rate is high for individuals belonging
to that employee classification cohort. However, the covariate contribution associated with the
probability parameter (Fig. 8) indicates that the probability of having an admission is very low for
individuals in that group. In contrast, for individuals with unknown employee classification, the
covariate contributions not only indicate a lower probability of admission but also imply a lower
admission rate.

Similarly, for the EESTATU variable, the combined analysis of covariate contributions of
both parameters (Figs. 7 and 8) points toward a higher propensity for admission related to
respiratory diseases for individuals with employment status categorized as "long-term disabil-
ity" (level 7), whereas it is low for individuals with employment status "Active Part Time or
Seasonal" (level 2). The same pattern is inferred from the associated coefficient estimates in the
ZIP regression model. It is reasonable to conclude that the higher admission rates for people
with long-term disability are as anticipated. Drawing further inferences regarding the relation-
ship between employment details of individuals and hospital admission for respiratory diseases
is difficult in the current context of admission data. The data provider has compiled the data set
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Figure 8. Graphical representation of covariate contributions for parameter p in the ZIPNN model: (a) AGE; (b) SEX; (c) UR;

(d) REGION; (e) EECLASS; (f) EESTATU.

by assigning the employment-related information of the primary beneficiary/employee to their
dependents as well. In other words, the employment information of those individuals classified as
dependents (EMPREL as "spouse” (level =2) or "child/other" (level = 3)) in the data set does not
accurately represent their actual employment status. For instance, an unemployed dependent of
an employee/primary beneficiary will also have the same employment-related information as the
employee. Due to these inaccuracies within the data set, it becomes challenging to draw conclu-
sive associations between employment information and the rate of admission due to respiratory

diseases.
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Figure 8. (continued). Graphical representation of covariate contributions for parameter p in the ZIPNN model: (a) EMPREL;
(b) PLANTYP.

For the EMPREL variable, the pattern is slightly more evident. The coefficient estimates based
on the ZIP regression model indicate a significant difference in the admission rates for different
levels of EMPREL covariate (Table 6). The individuals with EMPREL as "child/other" (level = 3)
have the highest rate of admission, followed by "spouse”(level =2) and "employee"(level =1).
Although the same pattern is observed in the covariate contribution related to the A parameter
(Fig. 7 (continued)), the covariate contribution associated with p (Fig. 8 (continued)) indicates a
lower probability of admission for individuals with EMPREL categorized as "spouse” compared to
"employee."

The coefficient estimates for the different levels of the PLANTYP variable in the ZIP regression
model indicate that the admission rates are significantly lower for the High-Deductible Health
Plan (HDHP) (level = 9) than for other types of plans. This trend is also supported by the ZIPNN
model. The covariate contributions not only indicate a lower probability of admission (Fig. 8
(continued)) but also suggest lower admission rates (Fig. 7 (continued)) for individuals under
the "HDHP" plan type. This suggests that individuals who are covered under HDHP plans may
have a lower likelihood of getting hospitalized for respiratory diseases, and if they do, it occurs at
a lower rate. This might be due to the fact that the HDHP plan incentivizes individuals to be more
proactive in managing their health and seek care only when essential or have more restrictive
coverage.

7. Concluding remarks

In this article, we have considered the combined actuarial neural network (CANN) approach for
constructing a Zero-inflated Poisson Combined Actuarial Neural Network (ZIPCANN) model
for modeling admission rates related to health insurance. We also employed the LocalGLMnet
approach to interpret the findings under the ZIPNN model and compared them with those
obtained from the ZIP regression model. The comparisons demonstrated the capability of NN-
based models to capture potential non-linear interactions among risk factors for both the prob-
ability and rate parameters of the mixture model (see Figs. 7 and 8, respectively). Furthermore,
from a practical standpoint, the separate attention layers that we included in the NN structure for
the two model components, enabled us to analyze the impact of important risk factors on both
the probability and rate of admissions.

The results indicate that the ensemble of models developed in this work benefit from superior
predictive performance compared to conventional regression models. Furthermore, the underly-
ing zero-inflated mixture distribution allows the ZIPNN and ZIPCANN models to accommodate
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the excess zero nature of the data, while also benefiting from improved predictive performance
offered by NN methodologies. Moreover, the network architecture enables the model to capture
potential interactions between features without the need to manually identify and specify them, as
required in regression models. Additionally, the attention layer approach facilitates deriving inter-
pretations from the model, allowing for an in-depth understanding of the various risk attributes
on admissions related to respiratory diseases.

An interesting approach for further research would be to consider bivariate or multivariate
versions of the developed models, aiming to address rates related to comorbidities. These models
could extensively aid in devising healthcare intervention programs and investigating admissions
related to other diseases. They could also be easily extended and adapted for other rate-setting
problems within the insurance sector. Finally, it is worth noting that other zero-inflated models,
such as a zero-inflated negative binomial model, can be implemented under the proposed frame-
work, while extensions to bivariate and/or mutlivariate versions of such zero-inflated models for
dealing with different types of claims are possible.
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A. Appendix
A. 1. Tables

Table A.1. The testing loss, learning loss, and average fitted mean of the ZIPNN and ZIPCANN models with
(50,35,25), (35,25,20), (25,20,15), (20,15,10), and (15,10,5) neurons in the initial three hidden layers.

Model Learning loss Testing loss Average fitted mean
ZIPNN(50,35,25) 26,191.8 2823.2 0.0026
ZIPNN(35,25,20) 26,218.9 2827.9 0.0025
ZIPNN(15105) e 264302 S 28061 e 00026 S
ZIPCANN(50,35,25) 26,358.8 2815.1 0.0027
ZIPCANN(15,10,5) 26,383.0 2817.5 0.0027
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A.2. Codes and model structure

Listing A3. Code for implementing ZIPNN.

1

40
41
42
43

45
46
47

# Main architecture with 3 hidden layers with q1,92,93 nodes in each layer
Network<- Design %>%
# 1st hidden layer
layer_dense (units = ql, activation = ’tanh’, name = ’hiddenl’) %>%
layer_dropout (rate = p) %>%
# 2nd hidden layer
layer_dense (units = g2, activation = ’tanh’, name = ’hidden2’) %>J
layer_dropout (rate = p) %>%
# 3rd hidden layer
layer_dense(units = g3, activation = ’tanh’, name = ’hidden3’) Y>%
layer_dropout (rate = p) %>%
# provide two neuron in the intermediate layer
layer_dense (units = 2, name = ’Net’)

Network<-list (Network,LogVol) %>% layer_concatenate(name=’concatel’)# adding
offset node
#function used in lambda layer to add the exposure and to define the zero
inflated distribution
zero_inf <-function (out){
# rate/lambda= exp(node 1 + offset) and the squeeze function is used to
flatten the tensor
rate=1list (out[,1],0ut[,3]) %>% layer_add(name = ’Add’) %>% k_exp() %>%
tf$squeeze ()
#probability of count component = node 2 and the sigmoid function ensures
value between O and 1
s = tf$math$sigmoid (out[,2]) %>% layer_flatten ()
probs = layer_concatenate(list(l-s,s),axis = -1) # probabilities of two
components in the mixture distribution

# Defining zero inflated distribution as a mixture distribution
return (tfd_mixture( #(I)
cat = tfd_categorical (probs = probs), #(II)
components = list(
tfd_deterministic(loc = tfSzeros_like(rate)), #(III)
tfd_poisson(rate = rate)) #(IV)

#(I): Creates a mixture distribution with two components: one for zero and
#one for a Poisson distribution.

#(II): Represents the probabilities of these two components using an
#instance of a categorical distribution.

#(III) and (IV) correspond to the two components:

#(III): Represents a definite value of zero using a scalar deterministic
#distribution.

#(IV): Represents a value derived from a Poisson distribution.

#negative loglikelihood loss function
nll<-function(y_true,y_pred)
{
-y_pred$log_prob(k_reshape(y_true,shape = c(-1)))# k_shape for flattening
the temnsor
#y_pred is the ZIP distribution layer
#y_true is the observed admission count
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49 Ho-mmmmmmmmmm— Defining the distribution layer------------------------——-
5o #Model is defined in such a way that the output layer is distribution layer.
51 #The ‘convert_to_tensor_fn’ is set to ’tfd_mean’ in order to extract the

52 #fitted mean E(y) from the distribution.

53 #Samples from the distribution could be generated using ‘tfd_sample’.

s« #Input to the ‘make_distribution_fn’ is the function used to define the ZIP
ss #distribution.

57 #Constructs a distribution layer with an underlying ZIP distribution
ss #assumption, which is defined as a mixture distribution.

0 p_y_zi =layer_distribution_lambda(make_distribution_fn = zero_inf,
convert_to_tensor_fn = tfd_mean)#tfd_sample for sample

L e

62

63 #H ——-—————————-———-- Model configuration and fitting -------------------------

64 # Model assembly
6s model_zi = keras_model (inputs= c(Design,LogVol), outputs=p_y_zi(Network))
66 summary (model_zi)

68 #callback to avoid overfitting
6 CBs<-callback_model_checkpoint ("pathO",monitor = "val_loss",save_best_only =
TRUE, verbose = 1, save_weights_only = TRUE)

71 # Model configuration
72 model_zi %> compile(

73 loss = nll, # set poisson NLL 1loss function as the objective loss function
74 optimizer = ’nadam’
75 )

76 # Model fitting by running gradient descent method to minimize the objective
loss function

77 fit <- model_zi >4 fit(

78 list (Design.learn,LogVol.learn), # all predictors and the offset term

79 Ylearn, # response

80 verbose = 1, # verbose = 0 silences the progress bar for the process

81 # verbose = 1 shows the fitting process, incl. learning loss and
validation loss, epoch by epoch

82 epochs = epochs, # epochs = 250

83 batch_size = batchsize, # batchsize = 30,000

84 validation_split = 0.2, # 20% as validation set

8 callbacks = CBs)

86 load_model_weights_hdf5 (model_zi,"pathO")
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Listing A4. Code for implementing ZIPCANN.

#skip connection for lambda

Skip_1<-Design %>% layer_dense(units = 1, activation = ’linear’, name = ’
Skip_17)

#skip connection for probability

Age<-layer_input (shape = c(1), dtype = ’float32’, name = ’Age’)

Skip_2<-Age %>, layer_dense(units = 1, activation = ’linear’, name = ’Skip_2’)

add_skip<-function(out,skip_1,skip_2){
r<-list(out[,1],skip_1) %>% layer_add(name = ’rate_skip’)
s<-list (out[,2],skip_2) %>% layer_add(name = ’p_skip’)
net_skip<-1list(r,s) %>% layer_concatenate(name=’net_skip’)
return(net_skip)
}
Network<-add_skip (Network ,Skip_1,S8kip_2)
Network<-list (Network ,LogVol) %>% layer_concatenate(name=’concatel’)# adding
offset node
# Model assembly
model_zi = keras_model (inputs= c(Design,LogVol,Age), outputs=p_y_zi(Network))

Listing A5. Structure of the ZIPCANN model.

1 Model: " ZIPCANN model"

2

3 Layer (type) Output Shape Param# Connected to

4 =====================================================================
5 Design (InputLayer) [(None, 37)] O (1

6 hiddenl (Dense) (None, 20) 760 [’Design [0] [0] ]

7 dropout_2 (Dropout) (None, 20) 0 [’hidden1 [0] [0] ]

8 hidden2 (Dense) (None, 15) 315 [>dropout_2[0][0] "]
9 dropout_1 (Dropout) (None, 15) 0 [’hidden2 [0] [0] *]

10 hidden3 (Dense) (None, 10) 160 [?’dropout_1[0][0] ]
1 dropout (Dropout) (None, 10) 0 [’hidden3 [0] [0] ]

12 Net (Dense) (None, 2) 22 [>dropout [0] [0] ’]

13 Age (InputLayer) [(None, 1)] 0 [1

14 tf.__operators__.getitem (None ,) 0 [’Net [0] [0] "]

15 (SlicingOpLambda)

16 Skip_1 (Dense) (None, 1) 38 [’Design [0][0]°]

17 tf.__operators__.getitem_1 (Nomne,) 0 [’Net [0] [0] "]

18 (SlicingOpLambda)

19 Skip_2 (Dense) (None, 1) 2 [>Age[0][0] "]

20 rate_skip (Add) (None, 1) 0 [’tf.__operators__.
21 getitem [0] [0] ",

2 >Skip_1[0][0] "]

23 p_skip (Add) (None, 1) 0 [’tf.__operators__.
24 getitem_1[0][0]",
25 >Skip_2[0][0] ]

% net_skip (Concatenate) (None, 2) 0 [’rate_skip [0][0]",
27 ’p_skip[0][0]’]

28 LogVol (InputLayer) [(None, 1)] 0 (1

29 concatel (Concatenate) (None, 3) 0 [’net_skip[0][0] ",
30 ’LogVol[0][0]"]
31 distribution_lambda (None, None) O [’concatel [0][0] "]
2 (DistributionLambda)

3 Total params: 1,297
35 Trainable params: 1,297
36 Non-trainable params: 0

https://doi.org/10.1017/51748499524000058 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499524000058

Annals of Actuarial Science 673
Listing A6. Code for implementing LocalGLMnet.
1 # Main architecture with 3 hidden layers and attention layer
> Attention <- Design %>%
3 # first three hidden layers
4 layer_dense (units = ql, activation = ’tanh’, name = ’hiddenl’) %>}
layer_dropout (rate = p) %>%
5 layer_dense(units = q2, activation = ’tanh’, name = ’hidden2’) %>}
layer_dropout (rate = p) %>%
6 layer_dense (units = q3, activation = ’tanh’, name = ’hidden3’) %>}
layer_dropout (rate = p) %>%
7 #layer for attention weights
8 layer_dense (units = qO0, activation = ’linear’, name = ’Attention’)
9
10 Network<-list(Design,Attention) %>%
1 # taking dot product of attention weights and feature set
12 layer_dot (name=’localglm’,axes = 1) %>%
13 # provide one neuron in the output layer
14 layer_dense(units = 1, activation = ’linear’, name = ’Network’)
15 Response = list(Network, LogVol) ¥%>%
16 # add the exposure and the last neuron
17 layer_add (name = ’Add’) %>%
18 # give the response
19 layer_dense (units = 1,
20 activation = ’exponential’,
21 name = ’Response’,
22 trainable = FALSE,
23 weights = list(array(l, dim = c(1,1)), array(0, dim = c(1)
)))
2%
25 model <- keras_model (inputs = c(Design,LogVol), outputs = c(Response))
Listing A7. Code for interpretable ZIPNN model.
1 # Main architecture with 3 hidden layers
2 Attention<- Design %>%
3 layer_dense (units = ql, activation = ’tanh’, name = ’hiddenl’) %>/
layer_dropout (rate = p) %>%
4 layer_dense (units = q2, activation = ’tanh’, name = ’hidden2’) %>/
layer_dropout (rate = p) %>%
5 layer_dense (units = q3, activation = ’tanh’, name = ’hidden3’) %>/
layer_dropout (rate = p) %>%
6 #layer for attention weights with dimension= 2xq_0
7 layer_dense (units = c(2xq0), activation = ’linear’, name = ’Attention’)

9 # rate parameter from attention weights

10 lamda_local<-list(Design,Attention[,1:q0])%>% layer_dot(name=’localglm_1’,axes

= 1) %>%
lamda_local’)

layer_dense (units = 1,

12 # probability parameter from attention weights
<-list(Design,Attention[,(q0+1) :(2%xq0)1)%>% layer_dot (name=’
layer_dense (units

13 p_local
localglm_2’,axes = 1) %>%
name = ’p_local’)

15 Network<-list(lamda_local,p_local,LogVo
”)

16 #the rest of the steps is same as that of the ZIPNN model without attention

layer

activation =

’linear’, name = ’

= 1, activation =

>linear’,

1) %>% layer_concatenate(name=’concatel
y
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Listing A8. Structure of the interpretable ZIPNN model.

)

3 Layer (type) Output Shape Param # Connected to

4 ==========================================================================
5 Design (Inputlayer) [(None, 37)] O []

6 hiddenl (Dense) (None, 20) 760 [’Design [0][0] "]

7 dropout_2 (Dropout) (None, 20) 0 [’hidden1 [0] [0] ]

8 hidden2 (Dense) (None, 15) 315 [’dropout_2[0]1[0]"]
9 dropout_1 (Dropout) (None, 15) 0 [’hidden2[0][0] "]

10 hidden3 (Dense) (None, 10) 160 [>dropout_1[0][0] "]
1" dropout (Dropout) (None, 10) 0 [’hidden3[0] [0] ]

12 Attention (Dense) (None, 74) 814 [’dropout [0] [0] ]

13 tf.__operators__.getitem (None, 37) 0 [’Attention [0][0] ]
14 (SlicingOpLambda)

15 tf.__operators__.getitem_1 (None, 37) 0 [’Attention [0] [0] ]
16 (SlicingOpLambda)

17 localglm_1 (Dot) (None, 1) 0 [’Design[0][0] ",

18 ’tf.__operators__

0 getitem [0] [0] "]

20 localglm_2 (Dot) (None, 1) 0 [’Design([0][0]",

21 ’tf.__operators__.

2 getitem_1[0][0] ]

23 lamda_local (Dense) (None, 1) 2 [’localglm_1[0][0] "]
24 p_local (Dense) (None, 1) 2 [’localglm_2[0][0]"]
2 LogVol (InputLayer) [(None, 1)] 0 []

26 concatel (Concatenate) (None, 3) 0 [’lamda_local [0][0] ",
27 ’p_local[0][0]",

28 >LogVol[0][0]"]

2 distribution_lambda (None, Nomne) 0 [’concatel [0][0] ]

30 (DistributionLambda)

2 Total params: 2,053
33 Trainable params: 2,053
3 Non-trainable params: O
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