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THE PATTERNS OF THE ISONEMAL
TWO-COLOUR TWO-WAY TWO-FOLD FABRICS

J.A. HoskINs AND R.S.D. THOMAS

This paper connects the literature on weaving with that on coloured tilings of the
plane. It sets the many published designs of woven cloth in the context of (2, 2, 2)-
fabrics, that is, those in which strands of two colours run in two perpendicular
directions to cover the plane doubly almost everywhere. At the same time, it con-
nects with the interesting topological question of when a weave hangs together.
The main result is that isonemal (2, 2, 2)-fabrics can be made from isonemal un-
coloured fabrics either by colouring them in the conventional way (black warp,
white weft), or by colouring warp and weft in thin or thick stripes to give the
visual appearance of conventionally coloured isonemal pre-fabrics that fall apart,
and in no other way. Such visual appearance can always be realised by the strip-
ing of an isonemal fabric, but not uniquely. A figure showing the fifty isonemal
(2, 2, 2)-fabrics of exact orders up to sixteen coloured by striping is included.

1. INTRODUCTION WITHOUT COLOUR

This paper is meant to be a contribution to the mathematical literature of weaving
that has been accumulating for the ten years from the publication of [8] (the best
introduction to the subject) to [7], which is the most up-to-date treatment known
to us. Some of the terminology introduced over this period—by the authors among
others—is unhelpful; some of it we shall simply ignore, but we shall indicate terms
not in the above references or different use of those that are. Most of the literature
is intended to refer to mathematical models of real or possible products of the ancient
craft of weaving; that is the intention of this paper, which will be restricted to two-way
weaves (in which the strands run in two directions at right angles to each other—warp
or vertical and weft or horizontal) and to two-fold weaves (in which there are never
more than two strands crossing each other) that are periodic (defined below). Because
these three restrictions are understood at the outset, we shall not continually mention
them, as in the following definition. We call a prefabric a planar arrangement of infinite
strands into two layers such that, at every point of the plane that does not lie on the
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boundary of one of the strands, one or the other of the vertical and horizontal strands
is uppermost. For a more formal treatment of the ranking of the strands, as well as for
the possibilities of n-way and n-fold prefabrics, [7] (which some of the above wording
imitates) should be consulted. It is of some importance that the mathematical notion
of prefabric does not include that the physical structure modelled will hang together, as
does most cloth; the matter of hanging together and its opposite falling apart has been
one of consistent interest in this theory [8, 1, 10, 6, 4, 2]. We further this discussion.

A symmeiry of a prefabric is defined in [7] to be any isometry of the plane of
the strands that maps each strand of the prefabric P onto a strand of P and either
preserves the rankings at each point or else reverses all the rankings. A prefabric is
called periodic if the normal subgroup of its symmetry group consisting of isometries
that preserve rankings contains translations in at least two nonparallel directions. As
we remarked at the outset, our prefabrics are assumed to be periodic. A prefabric
(understood to be two-way, two-fold, and periodic) is called a fabric if it hangs together.
A prefabric is called isonemalif its symmetry group is transitive on its strands. Since an
isonemal prefabric has symmetries taking warp strands to weft strands, the symmetry
group contains equal translations of n strands in both horizontal and vertical directions;
the smallest such integer n we shall call the ezact order of the prefabric, and call its
multiples orders. The term ‘order’ was introduced in [8] with this meaning. It is a
convention of the weaver’s craft to represent the ranking of strands of a prefabric in
a diagram called a design that is precisely the appearance of the prefabric if its warp
strands are coloured black and its weft strands are coloured white. The structure of
a prefabric of exact order n is fully represented by a square diagram consisting of n?
squares coloured black or white, and virtually all the weaving literature follows this
convention. (That [10] is an exception allowed the misprinted first two rows of the first
design in Table 1 of [10] to go uncorrected.) Much of the visual appeal of the weaving
literature depends on this convention, which makes the structure much more apparent
than it is in actual cloth woven of strands of a single colour. As soon as one wishes
to discuss the colouring of the warp and weft strands, however, the convention entails
much possibility of confusion. (See (9], Section 8.8.)

2. INTRODUCTION OF COLOUR

This paper is also meant to be a contribution to the literature of colour symmetry;
Escher’s jibe about scientific ‘colourlessness’ 5] is no longer apt thirty years later. We
shall refer to the colouring of the strands that results in the appearance displayed in the
conventional design of an uncoloured prefabric (warp and weft uniform and different)
as the normal colouring. A two-coloured prefabric will be called tsonemal if

1. the uncoloured prefabric is isonemal and
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2. the strands are perfectly two-coloured; that is, every symmetry of the
uncoloured prefabric induces a permutation of the colours (the identity
or the interchange of the colours of all of the strands).

Colourings of the strands of a prefabric of exact order n in any way at all with
vertical and horizontal period n will result in a visual appearance representable by a
square diagram consisting of n? squares each coloured with the colour of the strand
uppermost there. We shall refer to this appearance as the paitern of the coloured
prefabric. Accordingly the design of a prefabric is equivalent to the pattern of its normal
colouring. Any such n? squares are the design of some prefabric but not necessarily the
pattern of a fabric. The designs of the isonemal prefabrics of exact orders up to sixteen
that fall apart are illustrated in Figure 1.

It should be noted that the area of a fundamental block or period parallelogram
of a pattern (which generates it by translations) can be smaller than the square of the
exact order of the prefabric. In the first entry in Figure 1.1, 4-1-1%, it is half the area.
In other cases it is less, and in the case of some sponge weaves (see (7] or [8]) it is
a small fraction. This discrepancy suggests to the authors the avoidance of the term
‘period’ for order. It can further be noted that what the eye fastens on tends to be a
motif that generates the pattern by isometries and colour interchange, for example a zig
zag of a single colour in the first, fourth, and fifth entries in Figure 1. Except in very
few entries in Figure 1, this motif is itself infinite and periodic with a period totally
unrelated to order. The exceptions are interesting, expecially how few of them there
are only 4-1-2*, 4-1-3*, 8-9-1* (omitted from [6]), 16-2193-1*, and 16-2193-2*.

The patterns of exact order sixteen for the most part extend families of patterns at
lower orders. The family of ornamented doubled zigzags, which begins with 8 — 11 -9
(see Figure 2), is expanded with 153-1*, 153-2*, 291-1*, 291-2*, 291-3*, 531-3*, 531—
4*, 561-2*. The family of finite motif within an infinite motif, which begins in the
simplest possible way with 8-5-3*, begins containing interesting motifs with 291-4%*,
531-1*%, and 561-1*. A wholly new family is that which mixes finite motifs, namely
that of 8-9-1* with that of 4-1-2* in 2193-1* and with that of 4-1-3* in 2193-2*.
Attention should also be drawn to the interestingly different pair 1093-3* and 1105-2*.

Figure 2. The simplest of the ornamented doubled zigzags,
found in [10], numbered 8-11-9 in [6].
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12-69-1* 12-69-2* 12-69-3* 12-69-4*

Figure 1.1

3. COLOURING A WEAVE

LEMMA 1. The normally coloured isonemal fabrics are isonemal two-colour fab-
rics.

This fact, which we regard as obvious, has been implicit in the mathematical weav-
ing literature stimulated by [8]. Fabric designs are the patterns of perfect two-colourings
of the fabrics. Normal colouring is not, however, the only way that such fabrics can
be two-coloured perfectly. We must consider how strands can be non-normally two-
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16-277-3*

Figure 1.2

coloured perfectly. Each strand can be taken to its two adjacent strands by symmetries
(possibly inverses of each other modulo translation) called construction [10] or transi-
tion [11] rules (so called because they determine the construction of the whole prefabric
from a single strand by transitions to adjacent strands). Whether the rules for the two
transitions are inverses or not, they may both induce colour interchange and the strands
are alternately coloured or they may induce different colour permutations, that is, one

https://doi.org/10.1017/50004972700029439 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700029439

J.A. Hoskins and R.S.D. Thomas (6]

38

16-291-2*

16-291-1*

16-277-4*

=
T
m

i

oy Bnens
nmn..m“..mmu
pgs n%..mH..

L)

16-531-1*
16-5314*
16-1093-1*

16:2914*
16-531-3*
16-561-2*
Figure 1.3

16-291-3*
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16-561-1*

LEMMA 2. Isonemal two-colour fabrics not normally coloured must have thinly

alternate in pairs. The same is true of both warp and weft strands because of isone-
mality, so that the warp and weft are striped either thinly or thickly. We have proved

the identity and the other interchange. In the latter case the colours of the strands
the following lemma.
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Figure 1.4
The actual alternation of colours forced upon weavers

Figure 1. The designs of the isonemal prefabrics of exact or-
ders up to sixteen that fall apart. The numerical labels are

explained at the end of Section 3.
It should be noted that striping warp and weft is a standard weaving device not

or thickly striped warp and weft.
the invention of the authors.
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to produce some of the most attractive patterns that there are (including the simplest
houndstooth, 4-1-2* in Figure 1.1) renders unsuitable the term ‘colour alternation’ used
in the earlier mathematical literature on weaving in a wholly colourless (structural)
sense; it is superseded by the language of genera introduced in [6]. Isonemality need
not be assumed in the following lemma.

LEMMA 3. The pattern of a two-colour fabric made from striped warp and weft
cannot be a (normally coloured) fabric design; it must be the design of a prefabric that
falls apart.

PROOF: Take the 2nx2n pattern of a two-colour fabric, say black and white, made
from thinly or thickly striped warp and weft, and consider this pattern to be normally
coloured fabric. This will cause the patiern and the design to be equivalent and will
result in a lattice of black squares, where a black warp strand crosses a black weft strand,
and a lattice of white squares, where a white warp strand crosses a white weft strand
which are independent of the interlacement structure. The colour that appears at the
remaining intersections is wholly dependent on the interlacement structure. The warp
and weft strands can obviously be permuted so as to produce a pattern (and design)
with an n X n black square in the upper left corner and an n x n white square in the
lower right corner, a necessary and sufficient condition for this design to be that of a
prefabric that falls apart [12]. 0

COROLLARY. Isonemal two-colour fabric patterns that are made with striped
warp and weft are of exact order a multiple of four and are the designs of the isonemal
prefabrics of genus II, IV, or V with one quarter of the squares in half the rows black.

PROOF: The non-trivial isonemal prefabrics that fall apart were determined in [10]
to be of exact order a multiple of four, and of genus II, IV, or V (that is, having at least
one transition rule involving reversal of ranking) such that their designs have exactly
one quarter of the squares in half the rows black. An elegant proof has since appeared
in [2].

THEOREM 1. Isonemal two-colour fabrics can be made from isonemal fabrics ei-
ther by colouring them normally or so that they have the patterns of normally coloured
isonemal prefabrics that fall apart if that colouring is possible.

Theorem 1 is proved by Lemmas 1, 2 and 3. An example of striping to produce
a non-normally two-coloured pattern is shown in Figure 3. It is based on a twill (all
twills are isonemal) of exact order eight which, depending on how it is thinly striped,
has the pattern of the prefabric 8-5-1* of exact order eight or 4-1-1* of exact order
four, showing that the order of a pattern can be a proper factor of the order of the
underlying weave.

Isonemal two-colour fabric patterns can be divided on account of Theorem 1 into
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Figure 3. The design of a twill of exact order eight and its
colouring by thin striping to produce the prefabric patterns
4-1-1* and 8-5-1*.

six genera, five corresponding to the designs of the normally coloured fabrics of the
overlapping genera I to V [6] and the distinct sixth being the designs of the isonemal
prefabrics that fall apart. The patterns of genus VI in Figure 1 are identified like those
in Figure 5 of [6] illustrating the designs of isonemal fabrics that are not twills: exact
order — binary index — serial number (with an asterisk to avoid duplication with
the serial numbers in [6]). The binary index is the decimal expression of the minimum
(under cyclic permutations of the row, reversal of order, and reversal of black and white)
of the n-digit binary number obtained from a row by interpreting each black square as
1 and each white square as 0.

4. WHAT WEAVE TO COLOUR

The example of Figure 4 indicates that the pattern 4-1-1* can be produced from a
twill with the design sequence black, black, white, white or black, white, white, white or
their concatenation, just as (in Figure 3) from the sequence black, white, white, white
or black, black, white, black, (not really different) or their concatenation.

2 i &

e B

Figure 4. The designs of two twills of exact order four and
one of exact order eight, all of which can be thinly striped to
produce the pattern 4-1-1*.

https://doi.org/10.1017/50004972700029439 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700029439

42 J.A. Hoskins and R.S.D. Thomas [10].

There is a great deal of freedom in the choice of the isonemal fabric from which to
produce an isonemal two-colour fabric if it is not normally coloured. There is, however,
a simple choice, and our second theorem shows that it is always available.

THEOREM 2. An isonemal two-colour fabric not normally coloured can always be
produced from an isonemal fabric determined by a simple algorithm.

PROOF: In order to specify the simple algorithm, we need to divide the squares of
the black and white pattern into two classes, those where rows and columns of predom-
inantly the same colour cross, which we call uninteresting, and those where rows and
columns of predominantly different colours cross, which we call interesting. To produce
the design of an underlying isonemal fabric from the pattern, colour the uninteresting
squares white and colour the interesting squares according to the normal rule, that is,
warp uppermost black and weft uppermost white. Which strand is uppermost must be
determined by comparison of the colour of the square in the pattern with the (different)
colours of the corresponding warp and weft. The algorithm is certainly simple, and
it does produce a prefabric design. We must show that the prefabric is isonemal and
hangs together.

The first thing to note is that the uninteresting and interesting squares form a
chequerboard with one another, the size of the squares depending on whether the pattern
is thinly or thickly striped. By the isonemality of the pattern, the symmetries of the
pattern take rows and columns of predominantly the same colour to rows and columns
of predominantly either the same colour or (both) of predominantly the other colour.
Accordingly, interesting squares go to interesting squares and uninteresting squares go
to uninteresting squares in all symmetries of the pattern. The uninteresting squares have
all been made white, and so all the symmetries of the pattern preserve their colouring.
For the isonemality of the pattern there must be a symmetry to take any strand to
any strand, perhaps reversing the colours of all the strands. The same isometries still
take any strand to any strand in the design; the ranking of the interesting squares was
carefully preserved by the algorithm. Colour reversal in a pattern symmetry is necessary
because strands of predominantly one colour are being mapped by the isometry to
strands of predominantly the other colour. In the design there is no colour to be
reversed, and so the symmetries of the design are the symmetries of the pattern except
that, in the design symmetries, there are no colour reversals, just isometries. These
symmetries are sufficient for isonemality of the design.

The second thing to note is that, because every row and column has been con-
structed to be at least one half white, the isonemal prefabric designed fails to be of a
kind that can fall apart (as specified in the proof of the Corollary to Lemma 3). 0
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