NOTES AND PROB LEMS NOTES ET PROBLEMES

This department welcomes short notes and problems
believed to be new. Contributors should include solutions
where known, or background material in case the problem is
unsolved. Send all communications concerning this department
to I.G. Connell, Department of Mathematics, McGill University
Montreal, P.Q. '

A DISCRETE ANALOGUE OF OPIAL'S INEQUALITY
James S. W. Wong
In a number of papers [1] - [7], successively simpler

proofs were given for the following inequality of Opial [1], in
case p=1.

THEOREM 1. If x(t) is absolutely continuous with
x(0) = 0, thenfor any p>0,
(1) fa l '(t)xp(t)ldt<-3p— fa l 1(e)| P gt ;
o x S | x ;

Egquality holds only if x(t) = Kt for some constant K .

Proof. Let z(t) = ft lx'(s)lds and note that z(t)> lx(t)l
o
for all t> 0 . Observe that

pt+l
fa lx'(t)xp(t)ldts fa zl(t)zp(t)dt - Z !a! )
°© (o}

ptl

+
By Holder's inequality, we have zp+1(a)f_ aP fa lz'(t),p 1dt ,
. o
from which (1) readily follows.
We remark that a proof of (1) for p a positive integer is
given in [7], but the same proof fails for general p . The purpose
of the present note is to prove the following discrete analogue of

(1).

THEOREM 2. Let ui be a non-decreasing sequence of
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non-negative numbers. Then for p> 141, we have

n ) n
(2) CEfu,-u, P BHE oo et
i=1 i i-14" i — p# =1 i i-1

where u =0,
—= o

i
Proof. Let x,. = u, - u, ; thenm u, = £ x. where
—_— i i i-1 i j=1 j

xi_>_ 0 . We may now rewrite (2) as

n i ‘ P n

(3) x (2 ox g BHL 5 ¥

i=1 b j=q ) P j=g

We shall procegd to prove (3) by induction. Clearly (3) holds

with n =41 . Now we assume (3) holds for n, and observe

n+1 i
+

(4) x. ( T x )P M{pr1+(+1) Py
. i . J - nt1 n+i
i=1 j=1 i=1

* 1 k
where x =1 Z x, . By Young's inequality, one easily sees
k joq T
_pti *p+1 . "
< + lder's

that (p+1) x +1 X m<E 4 P X ", Using Hélder's
inequality, we may show that

+

o Pt A nzi P
*n — nti i

j=1

Substituting these estimates into (4), we find

n+1 i P n+1 n+1
+1 p +1
Zx,(Zx.)pg_Lr‘l%L{fo +‘I-1:I ZXS}
i=4 * j=1 I P i=1 i=1
p nH
+
P i=1

which is what we wish to prove.

REMARK 1. Inequality (3) fails to hold for p< 1.
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Consider p=—, n=2, u, =1, and u2=2~.

REMARK 2. From the above proof, one readily sees that
for all p > 1, strict inequality in fact holds in (2). Incase p =1,
equality occurs only when u, = Ki for some constant K> 0 and

for all i=1,2,3,...

REMARK 3. To see that (2) is indeed a useful inequality,
set x, = 1 for all i=1,2,3,... in (3) and obtain for all p > 1

n +1
s KP< (n+1)pn < (n+1)p -1 _ fn+1 Pasx
k=1 p+i pH+l A !

which shows that (2) yields a better estimate than that obtained
by simply comparing areas. Incase p =1, (3) reduces to the
familiar identity

n
s k= n‘n+1[
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