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ABSTRACT. We investigate the sensitivity of a distributed enhanced temperature-index (ETI) melt model,
in order to understand which parameters have the largest influence on model outputs and thus need to be
accurately known. We use melt and meteorological data from two Alpine glaciers and one glacier in the
Andes of Chile. Sensitivity analysis is conducted in a systematic way in terms of parameters and the
different conditions (day, night, clear-sky, overcast), melt seasons and glaciers examined. The sensitivity
of total melt to changes in individual parameters is calculated using a local method around the optimal
value of the parameters. We verify that the parameters are optimal at the distributed scale and assess the
model uncertainty induced by uncertainty in the parameters using a Monte Carlo technique. Model
sensitivity to parameters is consistent across melt seasons, glaciers, different conditions and the daily
statistics examined. The parameters to which the model is most sensitive are the shortwave-radiation
factor, the temperature lapse rate for extrapolation of air temperature, the albedo parameters, the
temperature threshold and the cloud transmittance factor parameters. A parameter uncertainty of 5%
results in a model uncertainty of 5.6% of mean melt on Haut Glacier d’Arolla, Switzerland.

1. INTRODUCTION
Predictions of worldwide changes in glaciers in response to
a changing climate rely on the use of models of glacier mass
balance, i.e. glacier accumulation and ablation, as well as
models describing the dynamics of ice flow. Ablation
models of different complexity have been used to estimate
glacier melt and mass balance, and for future predictions in
particular (e.g. Huss and others, 2008; Hock and others,
2009; Farinotti and others, 2012; Immerzeel and others,
2012). For example, Nolin and others (2010) and Hock and
others (2009) used a degree-day model, Huss and others
(2008) and Farinotti and others (2012) employed a tempera-
ture-index model, including a shortwave radiation index, to
simulate the response of Swiss glaciers to a changing climate
and Le Meur and others (2007) used an energy-balance
model for future simulations of the mass balance of an
Alpine glacier.

For regional estimates of glacier changes (e.g. Hock and
others, 2009), as well as for applications in data-scarce
regions (Ragettli and Pellicciotti, 2012), melt models often
need to be applied with little or no recalibration of model
parameters. Even in the European Alps, applications outside
the few well-studied glaciers rely on limited datasets that do
not allow optimal calibration of all the parameters of a given
model. The data most commonly available for model
calibration and validation are glacier runoff (e.g. Huss and
others, 2008) and mass-balance data (e.g. Finger and others,
2011). The former, especially, does not allow internal
validation of the model by testing that the single processes
are correctly reproduced (Pellicciotti and others, 2012), and
might result in more than one set of parameter values
providing the same model performance; this has been
referred to as an ‘equifinality problem’ (Beven and Freer,
2001; Wagener and others, 2003; Beven, 2006).

In view of this limitation, there is a strong need to identify
which parameters melt models are sensitive to, and which
could be discarded from the calibration procedure because
their impact on model output is small (Saltelli and others,

2000). This is particularly important for empirical models
that rely more or less heavily on empirical parameters, such
as the simple degree-day model and, to a lesser extent,
enhanced versions of this approach (Hock, 1999; Pellicciotti
and others, 2005). However, it is also relevant for more
physically based approaches, such as energy-balance
models, since when models are applied at the distributed
scale, numerous additional parameters are introduced to
extrapolate meteorological and surface variables (Mac-
Dougall and Flowers, 2011).

Sensitivity analysis is a well-established technique in
hydrological modelling (e.g. McCuen, 1973; Saltelli and
others, 2000; Kunstmann and others, 2006; Tang and others,
2007) which serves several purposes. One of these is to
identify the most influential parameters on a given metric of
model performance or output (McCuen, 1973; Saltelli and
others, 2000). Less common is its use in studies of glacier
mass balance and runoff, but some examples do exist (e.g.
Klok and Oerlemans, 2002; Hock and Holmgren, 2005;
Pellicciotti and others, 2005; Anslow and others, 2008;
MacDougall and Flowers, 2011; MacDougall and others,
2011; Fitzgerald and others, 2012), all of which include
analysis of model sensitivity to parameters in the melt
modelling. However, most of these studies consider the
model sensitivity to only one or a few parameters, often
those taken from the literature or where the estimates were
known to be less accurate. To date, only MacDougall and
Flowers (2011), MacDougall and others (2011) and Fitz-
gerald and others (2012) have analysed the sensitivity of a
distributed melt or mass-balance model to single variations
in all of its parameters.

Several sensitivity methods exist. A main difference is
between local and global approaches. In local methods,
normally associated with so-called ‘one factor at a time’
(OAT) changes in parameters, the local response of the
outputs, obtained by varying the factors one at a time, is
investigated, while holding all other factors fixed to a central
(optimal) value (Saltelli and others, 1999). In global
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methods, the space of the parameters is explored within a
finite, larger region and factors are changed at the same
time, so that the variation in model output induced by a
factor is taken globally. The main disadvantage of local, OAT
methods is that they do not consider parameter interaction,
making them prone to underestimate the true model
sensitivities (McCuen, 1973; Saltelli and others, 2000).
However, they have the advantage of being straightforward
to implement, while maintaining modest computational
demands. Alternatively, global sensitivity methods vary all
model parameters in predefined regions to determine their
importance and potentially quantify the importance of
parameter interactions.

Model sensitivity is closely related to model uncertainty
(Iman and Helton, 1988). While sensitivity analysis involves
determination of the changes in the response of a model to
changes in individual model parameters, uncertainty analy-
sis involves the determination of the variation or imprecision
in model output that results from the (collective) variation in
the model parameters (or input variables). Therefore,
sensitivity can also be regarded as a tool to identify the
important contributors to the uncertainty in model output
(Iman and Helton, 1988).

In this work, we explore the parameter sensitivity and
uncertainty of a distributed, enhanced temperature-index
(ETI) melt model that was developed by Pellicciotti and others
(2005) for Haut Glacier d’Arolla, Switzerland, and applied to
several other locations and glacierized basins (Pellicciotti
and others, 2008; Finger and others, 2011; Petersen and
Pellicciotti, 2011; Ragettli and Pellicciotti, 2012). The model
is of intermediate complexity between simple temperature-
index and physically based energy-balance approaches.
High temporal and spatial resolution in simulated melt rate
is achieved by including variations in incoming shortwave

radiation and albedo, and separating temperature-dependent
and temperature-independent energy sources (Pellicciotti
and others, 2005). The drawback of this approach is that the
parameters might need recalibration for different melt sea-
sons and glaciers. Ragettli and Pellicciotti (2012) showed that
the model parameters needed recalibration for a glacier in
the dry Andes, but the parameters of the melt equation, once
recalibrated, were stable from one melt season to another.
This study was based on a large amount of glacio-meteoro-
logical data collected in the field over two ablation seasons.
However, such data are not always available. For recalibra-
tion, therefore, it is of relevance to know the parameters that
are crucial for the model outcome and hence should be
known with a high degree of confidence for a sound model
performance. Accordingly, our work has two main aims:

1. To identify which parameters most affect the ETI model
outputs, i.e. which parameters the model is most
sensitive to, and

2. To quantify the uncertainty associated with small
variations in the parameters.

Several authors have indicated that sensitivity depends on
the period and case study considered (e.g. McCuen, 1973).
MacDougall and Flowers (2011) showed that the sensitivity
of a distributed energy-balance model was different for two
neighbouring glaciers. For this reason, we apply the
sensitivity analysis to different modelling periods and
glaciers, in order to test the robustness of our results and
avoid conclusions that are time- or site-specific.

We investigate the parameter sensitivity in a systematic
manner in terms of the number of parameters changed, the
different conditions (day, night, clear-sky, overcast) during
one season on one glacier, different melt seasons and
glaciers. We use meteorological and ablation datasets from
two Alpine glaciers, Haut Glacier d’Arolla (ablation seasons
2001, 2006) and Gornergletscher (ablation season 2006),
and from Glaciar Juncal Norte (ablation season 2008/09)
located in the semi-arid Andes of central Chile. As a first step
we analyse parameter sensitivity according to an OAT
method for different seasons and glaciers to reveal the most
sensitive parameters (aim 1 above). For Haut Glacier
d’Arolla in 2001 we also check the ranking of parameter
sensitivity changes under different conditions (day, night,
clear-sky, overcast) in one melt season. In a second step, we
investigate the optimality of the parameters at the distributed
scale and the model uncertainty corresponding to a fixed
amount of uncertainty in model parameters (aim 2) for Haut
Glacier d’Arolla during the 2001 ablation season.

2. STUDY SITES AND DATA
2.1. Study sites
Haut Glacier d’Arolla is situated at the head of the Val
d’Hérens, Valais, Switzerland. The glacier is �4 km long,
has an area of �6.3 km2 and ranges in elevation from 2560
to 3540ma.s.l. (Fig. 1). It consists of an upper basin with
northwesterly aspect feeding a northward-flowing glacier
tongue (Pellicciotti and others, 2005).

Gornergletscher is located in Valais, at the head of the
Mattertal. It is a polythermal glacier with areas of cold ice at
temperatures below the pressure-melting point. It has a
length of 14 km, covers a total area of 57.5 km2 and ranges in
elevation from 2000 to 4600ma.s.l. The glacier tongue

Fig. 1. Map of Haut Glacier d’Arolla showing the glacier area (in
grey), the watershed border and the position of the AWSs and
ablation stakes in the 2001 ablation season.
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covers an elevation range from 2600 to 2300ma.s.l. Both
sides of the tongue are covered with debris (Müller, 2010).

Glaciar Juncal Norte is located in the upper Aconcagua
river basin, in the semi-arid Andes of central Chile. The
glacier is �7.5 km long, has an area of �7.6 km2 and ranges
in elevation from 2900 to 6100ma.s.l. (Pellicciotti and
others, 2008). The semi-arid Andes of central Chile are
characterized by a pronounced seasonality, with runoff in
summer (December–February) originating mainly from snow
and glacier melt (Pe~na and Nazarala, 1987; Masiokas and
others, 2006), and precipitation largely absent (Pellicciotti
and others, 2008). Most of the annual precipitation occurs in
winter (June–August).

2.2. Meteorological and ablation measurements
The meteorological and ablation datasets collected on Haut
Glacier d’Arolla during the 2001 and 2006 ablation seasons
(referred to as HGdA01 and HGdA06, respectively) are
described in more detail by Strasser and others (2004),
Pellicciotti and others (2005) and Carenzo and others
(2009). Here we use data from two automatic weather
stations (AWSs) on- and off-glacier (Fig. 1). AWS 1 was
installed on the glacier in the two ablation seasons and
recorded the following meteorological variables: air tem-
perature (8C) and relative humidity (%) (with shielded and
artificially ventilated sensors), wind speed (m s�1) and
direction (8) and incoming and reflected shortwave radiation
(Wm�2). Sensors were fixed at 2m above the surface on a
tripod which could lower along with the melting surface to
maintain a constant distance between the sensors and the
surface. Measurements were taken every 5 s and the average
stored every 5min on Campbell CR10 and CR10X data
loggers. The data were aggregated to hourly averages. The
proglacial station AWS 0 (Fig. 1) recorded the same variables
and also precipitation and incoming and outgoing longwave
radiation (Pellicciotti and others, 2005).

Ablation was measured at stakes installed on the glacier
(see Fig. 1). The first stake readings were performed on 21
July and the last on 15 August. The number of readings
differs from stake to stake (from 2 readings up to 12, with, on
average, 7.5 readings at each stake).

In the 2006 ablation season on Gornergletscher (referred
to as GG06) one station on the glacier (AWS 1) and a station
installed on the lateral slopes (AWS 0) were operated. The

glacier station, AWS 1, recorded the same variables as on
Haut Glacier d’Arolla, while the proglacial station recorded
temperature and precipitation. (See Carenzo and others,
2009, and Müller, 2010, for details of sensors, set-up and
recorded variables.)

For the 2008/09 ablation season on Glaciar Juncal Norte
(referred to as JNG08/09), two stations, AWS 1 and AWS 3,
were installed on the tongue of the glacier and in the
proglacial valley, respectively. The stations recorded the
same meteorological variables as those on Haut Glacier
d’Arolla (Ragettli and Pellicciotti, 2012). (Details of the set-
up and measurements are provided by Pellicciotti and
others, 2008, and Ragettli and Pellicciotti, 2012.)

The measurement periods and coordinates of all AWSs
are given in Table 1. For each case study, data from the on-
glacier AWS are used to force the model. The off-glacier
AWS provides data for calculation of the cloud factor and
precipitation measurements.

2.3. Initial snow depth
Initial conditions of snow depth are required to run the
model simulations. Initial snow depth was estimated for
every gridcell of the watershed on all three glaciers, by
linear extrapolation of snow depth measurements taken on
each glacier at the beginning of the observation period. On
Gornergletscher and Glaciar Juncal Norte, measurements
were mostly carried out on the lower sections of the glacier,
because of restricted access (see Müller, 2010; Ragettli and
Pellicciotti, 2012, for the locations). The initial snow depth
observations were interpolated using an elevation gradient
and corrected with a residual field (based on the inverse
distance method) to obtain a map of gridded values of initial
snow water equivalent (Müller, 2010). If the slope of a
watershed cell was >458, initial snow depth was set to zero.
Snow depths were converted to snow water equivalent
(SWE) by means of measured density. Density was measured
on each glacier at the time of the snow depth survey at one
or two locations. (Details of the measurements are given by
Pellicciotti and others, 2005; Carenzo and others, 2009;
Müller, 2010; Ragettli and Pellicciotti, 2012.) Because of the
simple extrapolation used and the discrete nature of the
observations of snow depth and density, the initial distri-
bution of SWE is subject to uncertainty. This might influence
the model performance and its ability to reproduce the

Table 1. Measurement periods, modelling periods and coordinates of the AWSs for all glaciers and melt seasons. In parentheses after the
measurement period are periods of data gaps

Station Location Elevation Latitude Longitude Measurement period

ma.s.l.

Haut Glacier d’Arolla 2001 and 2006 (modelling period: 1 Jun–31 Aug 2001 and 1 Jun–31 Aug 2006)
AWS 0 Proglacial 2507 45859024.900 N 7830023.0000 W since Nov 2000
AWS 1 Glacier 2830 45858024.9500 N 7831024.7000 W 30 May–11 Sep 2001 (21 Jun–18 Jul)
AWS 1 Glacier 2830 45858024.9500 N 7831024.7000 W 26 May–10 Oct 2006

Gornergletscher 2006 (modelling period: 26 Apr–11 Sep 2006)
AWS 1 Proglacial 2648 45858037.0500 N 7848006.6100 W 25 May–11 Sep 2006
AWS 2 Glacier 2604 45857038.7700 N 7848001.5800 W 26 Apr–11 Sep 2006

(11–23 May, 26–31 Aug)

Glaciar Juncal Norte 2008/09 (modelling period: 8 Dec 2008 to 14 Feb 2009)
AWS 2 Proglacial 2811 32858027.6400 S 70806040.8100 W 7 Dec 208 to 15 Mar 2009
AWS 1 Glacier 3127 32859026.5800 S 70806031.2700 W 7 Dec 2008 to 15 Mar 2009
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evolution of the snowpack. Figure 2 shows the initial SWE
distribution per elevation band (bandwidth 100m) for every
glacier and melt season. On Haut Glacier d’Arolla there was
considerably more snow at the beginning of the season in
2001 than in 2006. For both GG06 and JNG08/09 there was
less snow at the beginning of the simulation and it was
mainly located at higher altitudes, where temperatures are
low and the snow is unlikely to melt (Ragettli and
Pellicciotti, 2012).

3. ABLATION MODEL
In the distributed ETI model, melt rate, M (mmw.e. h�1), is
computed as (Pellicciotti and others, 2005, 2008; Ragettli
and Pellicciotti, 2012):

M ¼ TF � T þ SRF � ð1� �Þ � I if T > TT
0 if T � TT

�
, ð1Þ

where T is the hourly mean air temperature at the screen
level (8C), � is the albedo and I is the incoming short-
wave radiation (Wm�2). The temperature factor, TF
(mm h�1 8C�1), and shortwave-radiation factor, SRF
(m2 mmW�1 h�1), are empirical parameters. TT is a threshold
temperature above which melt is assumed to occur.

Incoming shortwave radiation in every gridcell is
computed using a non-parametric clear-sky model based
on that of Iqbal (1983) and described in detail by Pellicciotti
and others (2011). Terrain parameters and the solar position,
as well as the interaction between solar radiation and the
topography, are derived using the vectorial algebra approach
of Corripio (2003). The only parameters needed in the clear-
sky solar radiation model are the visibility, vis, and ozone
layer thickness, O3. The net effect of clouds is modelled
using cloud transmittance factors, ctf, computed as a
function of the diurnal temperature range, following
Pellicciotti and others (2011). Use of a daily cloud factor
to account for the effect of clouds on the clear-sky global
irradiance is a widely used approach in mesoscale atmos-
pheric studies (e.g. Thornton and Running, 1999; Pfister and
others, 2003; Fitzpatrick and others, 2004) and it has
recently been used in distributed models of glacier melt
(Klok and Oerlemans, 2002; Anslow and others, 2008;
Ragettli and Pellicciotti, 2012). The approach is based on the
relationship between daily cloud transmittance, ctf, and the
daily temperature range:

ctf ¼ cf1 þ cf2 ��T , ð2Þ

where �T is the daily temperature range measured at an off-
glacier station and cf1 and cf2 are empirical coefficients
(Pellicciotti and others, 2011). To avoid underestimating the
clear-sky days radiation, a cloud factor threshold, cft is used,
following Pellicciotti and others (2011). Cloud factor values
greater than or equal to this threshold are set to 1, which
corresponds to clear-sky conditions.

The albedo of ice, �ice, and of the surrounding bare
terrain, �bg, (the latter used in the solar radiation model;
Pellicciotti and others, 2011) are assumed to be constant.
Daily snow albedo is calculated using two different
parameterizations: (1) the US Army Corps of Engineers
(1956) approach and (2) the parameterization of Brock and
others (2000). In the first parameterization, snow albedo, �s,
is assumed to decay exponentially with the number of days,
n, since the last significant snowfall, ss:

�s ¼ �1us þ �2us � eð�kpos, neg�nÞ, ð3Þ
where �1us, �2us and kpos, neg are empirical parameters. k
differs for positive and negative temperatures.

According to Brock and others (2000), daily snow albedo
is computed as a logarithmic function of the accumulated
daily maximum positive air temperature, Tacc (8C), since the
last significant snowfall, ss:

�s ¼ �1br � �2br � log10ðTaccÞ, ð4Þ
where �1br and �2br are empirical parameters.

Temperature and precipitation measured at the point scale
of the AWSs are extrapolated to the gridcells of the watershed
with a temperature lapse rate, LR (8Cm�1), that is constant in
time, and uniform in space and precipitation gradient, �p

(mmm�1). To distinguish between solid and liquid precipi-
tation a simple phase threshold, pht (8C), is used.

In addition to the melt parameters for temperate, debris-
free ice (SRF and TF), separate values for cold ice and debris-
covered ice for the ETI model were introduced by Müller
(2010) for GG06, to take into account the different surface
characteristics of Gornergletscher. These are: SRFcoldice,
SRFdebrisice, TFcoldice, TFdebrisice and are also considered in
the sensitivity analysis.

4. SENSITIVITY TO INDIVIDUAL PARAMETERS
The approach used to compute the sensitivity to individual
parameters is an OAT method, adopted from Anslow and
others (2008) and Ragettli and Pellicciotti (2012). The
method was also used by MacDougall and Flowers (2011).
This is a well-established method for calculation of model
sensitivity (e.g. McCuen, 1973; Saltelli and others, 1999).
We varied the parameters about the optimal value in 5%
increments from �20% to +20%. We use a larger range than
commonly adopted to investigate the linearity of the model
response. In each model run, one parameter was changed
while the others remained fixed at their optimal value. For
every parameter change, the modelled total melt (cumu-
lative seasonal melt occurring over the whole watershed)
was computed as a percentage of the total melt modelled
with the optimal value. Sensitivity was calculated by fitting a
second-order polynomial to these results for a given
parameter and then determining the slope of the polynomial
about the optimal value (Fig. 3). (Details of the methods are
given by Ragettli and Pellicciotti, 2012.) The optimal
parameter values were calibrated in ad hoc studies at the

Fig. 2. Initial snow water equivalent of the watershed per 100m
elevation band, normalized by the number of model gridcells per
elevation band for every glacier and melt season.
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point scale, except for the extrapolation parameters. Their
sources are listed in Table 2.

The analysis was performed separately for total melt over
the entire basin, on the glacier and on the non-glacierized
slopes. We also considered, separately, sensitivity for the
daily minimum melt, daily mean melt, daily maximum melt
and daily standard deviation of melt, spatially averaged over
the whole watershed and temporally averaged over the
number of modelling days. These statistics are referred to
here as ‘daily min’, ‘daily mean’, ‘daily max’ and ‘daily
stdv’, respectively. A positive sensitivity denotes that an
increase in the parameter causes an increase in total melt; a
negative sensitivity that an increase in the parameter results
in a reduction in melt. All model runs were conducted using
the US Army Corps of Engineers (1956) approach for albedo,
except for the separate, specific runs to assess the model
sensitivity to the parameters �1br and �2br of the Brock and
others (2000) parameterization.

The method used implies that the initial parameter values
are the optimal ones, otherwise sensitivity is meaningless, as
it could be conducted in any region of the parameter space
with little relevance in terms of model performance.
Parameter optimization depends, however, on the period
considered, optimization methods and type of input data
used to force the models (measured or simulated) and
validation datasets employed to define the model perform-
ance, as well as the spatial scale of the model application.
Parameters optimized at the point scale, as by Pellicciotti
and others (2005) or Carenzo and others (2009), might
not be the optimal ones for distributed applications of
the model. The assumption that the optimal parameters

(calibrated at the point scale) used in this work are also the
optimal values at the distributed scale is considered in
Section 5.

In general, the parameter values for Haut Glacier d’Arolla
are likely to be optimal also at the distributed scale of this
application, because Haut Glacier d’Arolla is a small glacier
where variability in surface and meteorological conditions
can be expected to be small. The glacier has also been
extensively investigated (e.g. Brock and others, 2000;
Pellicciotti and others, 2005, 2011; Carenzo and others,
2009), so quite a large dataset of observations exists for
model calibration. For the two other glaciers, more
uncertainty is to be expected, given the more limited

Fig. 3. Illustration of the method used to determine the sensitivity of
individual parameters: change in total melt is plotted against the
corresponding change in a given parameter. The dashed grey line is
the fitted second-order polynomial and the red line indicates the
slope around the optimal value used as measure for the sensitivity.

Table 2. Optimal parameters for the sensitivity analysis to individual parameter changes

Abbreviation Parameter HGdA01 HGdA06 GG06 JNG08/09 Unit

Model parameters
TF Temperature factor 0.04a 0.04a 0.04b 0f mmh�1 8C�1

TFcoldice TF on cold ice 0.05b mmh�1 8C�1

TFdebrisice TF on debris-covered ice 0.01b mmh�1 �C�1

SRF Shortwave-radiation factor 0.0094a 0.0094a 0.0094b 0.0105c m2 mmW�1 h�1

SRFcoldice SRF on cold ice 0.007b m2 mmW�1 h�1

SRFdebrisice SRF on debris-covered ice 0.0045b m2 mmW�1 h�1

TT Temperature threshold 1a 1a 1b 5c 8C

Parameters used in modelling surface and meteorological variables
�ice Albedo ice 0.2a 0.2a 0.3b 0.2c

�1br Albedo parameter 1 (Brock) 0.86a 0.86a 0.86a 0.713d

�2br Albedo parameter 2 (Brock) 0.155a 0.155a 0.155a 0.075c

kpos Albedo parameter 3 (Brock) 0.40e 0.40e 0.40e 0.4e

kneg Albedo parameter 3 (Brock) 0.30e 0.30e 0.30e 0.3e

�1us Albedo parameter 1 (US Army) 0.50e 0.50e 0.50b 0.40f

�2us Albedo parameter 2 (US Army) 0.45e 0.45e 0.45b 0.25f

ss Significant snowfall 1a 1a 1a � mmh�1

�bg Albedo bare ground 0.15e 0.15e 0.15e 0.15e

vis Visibility 75a 75a 75a 75a km
O3 Ozone layer thickness 0.35a 0.35a 0.35a 0.35a km
cf1 Cloud factor parameter 1 0.3097a 0.3097a 0.3097a 0.6124g

cf2 Cloud factor parameter 2 0.0600946a 0.0600946a 0.0600946a 0.0246g

cft Cloud factor threshold 0.8h 0.8h 0.8h 1h

Extrapolation parameters
LR Lapse rate �0:00250a �0:00250a �0:00811b �0:00689g 8Cm�1

�p Precipitation gradient 0.0001a 0.0001a 0.0001a – mmm�1

pht Phase threshold (rain/snow) 1.3a 1.3a 4.0b – 8C

aPellicciotti and others (2005); Carenzo and others (2009). bMüller (2010). cRagettli and Pellicciotti (2012). dBrock and others (2000). eStrasser and others
(2004). fAdjusted, based on Ragettli and Pellicciotti (2012). gComputed with measured data. hPellicciotti and others (2011).
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datasets used to optimize the model parameters and the
glaciers’ larger elevation ranges and types of surface
characteristics.

For JNG08/09 the optimal value of TF is zero (Ragettli and
Pellicciotti, 2012), therefore this parameter is varied from
0 to 0.016, which corresponds to the range over which it is
varied for HGdA01, HGdA06 and GG06. The same applies
to the optimal cloud factor threshold which is equal to 1 and
hence is changed from 0.67 to 1.00.

To estimate whether parameter sensitivity is robust to
different conditions, we performed the analysis separately
for the following four conditions for Haut Glacier d’Arolla
ablation season 2001: (1) day, (2) night, (3) clear-sky and
(4) overcast. The sensitivity during daytime and night-time
was determined by considering the melt in the hours
08:00–22:00 and 22:00–08:00, respectively. To distinguish
between clear-sky and overcast days an algorithm developed
by Carenzo and others (2009) was used. Since the
conditions analysed are largely independent of the climatic
setting, we do not expect large differences among sites, and
we carried out the analysis only for HGdA01.

5. PARAMETER OPTIMALITY AT THE DISTRIBUTED
SCALE AND MODEL UNCERTAINTY FOR HGDA01
To test that parameters are optimal at the distributed scale
and quantify model uncertainty we use a Monte Carlo
approach. The same method was employed by Anslow and
others (2008) and Ragettli and Pellicciotti (2012). A total of
104 model realizations were obtained by randomly selecting
model parameters from a uniform distribution out of a range
vector with parameter changes from –5% to +5% around the
optimal value (with a step size of 1%). By plotting the model
performance associated with each model run we can
evaluate whether the optimal parameter values at the point
scale are also optimal at the distributed scale in the space
searched by the Monte Carlo simulations. For every run, we
plotted the total melt against the corresponding root-mean-
square error, rmse, at the ablation stakes (Fig. 1).

The standard deviation, stdv, of the total melt for the 104

runs provides a measure of the uncertainty in model
outcome that is associated with a particular amount of
uncertainty in model parameters (Ragettli and Pellicciotti,
2012). Because stdv depends on the number of runs, we
plotted it against the number of runs and verified that stdv
stabilizes around a particular value within the 104 runs. We

then took the mean of the stdv during the period after which
no further important changes in stdv are evident.

To determine model uncertainty it is crucial to perform
the 104 runs with parameters which are near their optimal
value at the distributed scale. We therefore performed 103

preliminary runs with the optimal values calibrated at the
point scale, validated them against the stake readings,
identified a new optimal value and started the 104

realizations with the new parameter set.
In the assessment of the sensitivity of individual par-

ameters (Section 4), the albedo parameters from the
parameterization of Brock and others (2000) were found to
be more sensitive than those of the US Army Corps of
Engineers (1956) model. Therefore for the model uncertainty
simulations, albedo was computed based on the parameter-
ization of Brock and others (2000).

6. RESULTS

6.1. Sensitivity to individual parameters
Figure 4 shows the magnitude of calculated sensitivity for
the most sensitive parameters (sensitivity >0.5 for basin
section: glacier) for the different basin sections and the four
daily melt statistics for HGdA01. Parameter sensitivity
ranking is consistent across different basin sections and
daily statistics, except for the minimum melt. The same
results were obtained for all melt seasons and glaciers
examined and are not reported here, for reasons of space.
For HGdA01 the parameters to which the model is most
sensitive to are the parameters related to the modelling of
the shortwave-radiation flux, i.e. SRF (Eqn (1)), �1br and �1us,
as well as cf2. Minimum melt, by contrast, is controlled by
the temperature factor, TF, of the melt equation (Eqn (1)).
Since mean and maximum melt are more relevant than
minimum melt for assessment of glacier melt, we concen-
trate on the model sensitivity with respect to these, and
consider minimum melt no further here.

In Table 3, the top ten parameters to which the model is
most sensitive are listed for the different melt seasons and
glaciers. In contrast to glacier ice, the amount of snow on the
slopes is limited during one ablation season and this affects
parameter sensitivity. On the slopes, an increase in melt rate
is reflected in parameter sensitivity only if additional snow is
available for melt. Similarly, small reductions in melt rates
might still be sufficient to melt all the snow if there is only a

Fig. 4. Sensitivity of parameters (reported only for those parameters with a sensitivity >0.5 on the glacier) for HGdA01. Sensitivity is depicted
separately for the different basin sections (total basin, glacier area and non-glacierized slopes) and for different daily statistics: minimum
total melt (min), mean total melt (mean), maximum total melt (max) and standard deviation of total melt (stdv). Sensitivity is given as % melt
change per % parameter change (dimensionless).
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limited amount, and therefore the model would be equally
sensitive to the parameters. Therefore sensitivity on the non-
glacierized slopes strongly depends on the amount of snow
available, which in turn depends on the initial SWE and
solid precipitation.

Uncertainty in the initial snow conditions or in the
distribution of the ablation season precipitation might
therefore affect the results. Hence we focus on the sensitivity
in the basin as a whole and on the glacier where this
influence is smaller. The parameter ranking for ‘daily mean’,
‘daily max’ and ‘daily stdv’ is, except for minor differences,
the same for the basin, and the ranking for the basin is the
same as for the glacier. Therefore only the ranking of ‘daily
mean’ melt on the glacier is shown.

Results are consistent for the different sites (Table 3).
Mean melt, together with its daily variation (stdv) and
maximum melt, is controlled by the parameters influencing
the shortwave-radiation-dependent term of the melt equa-
tion (Eqn (1)). There are some differences in the actual
magnitude and ranking of the sensitivities, but the first eight
parameters for all sites and seasons are the SRF, the albedo
parameters and the coefficients of the cloud factor par-
ameterization (Table 3). In addition to these, important
parameters are the LR for both Gornergletscher and Glaciar
Juncal Norte and TT for Glaciar Juncal Norte. For all the
glaciers the empirical parameter, SRF, is among the most
sensitive (Table 3). For Alpine glaciers, where summer
precipitation is important, the model is sensitive to the
albedo parameters, �1br and �1us, in contrast to JNG08/09,
where precipitation is largely absent. The model is sensitive
to cloud factor parameters across melt seasons and glaciers
(Table 3).

On the non-glacierized slopes, where only snowmelt can
occur, the albedo parameters, �1br and �1us, and the SRF are
important, as well as LR, TT and pht. The latter control the
amount of snow available for melt, either by increasing the
number of cells where melt occurs (LR and TT) or by
increasing the amount of solid precipitation (pht).

6.2. Sensitivity under different conditions
Figure 5 depicts the parameter sensitivity on HGdA01 for
different conditions over one season (as well as for the entire
period of record). Since the sensitivities for ‘daily mean’,
‘daily max’ and ‘daily stdv’ are very similar, only the
sensitivity for ‘daily mean’ is shown.

During daytime, the sensitivity of the incoming short-
wave-radiation-related parameters is slightly increased
compared to the entire period of record. During night-time
(22:00–08:00), I is absent for most of the hours and therefore
the model is not very sensitive to I-related parameters.
Model sensitivities under clear-sky conditions are basically
the same as for the entire period of record (Fig. 5). Under
overcast conditions, however, sensitivities are markedly
distinct. The parameters �1br, �1us and SRF become less
important (with a decrease in model sensitivity of �15%),
while the cloud factor parameters are more important (by
�25%).

6.3. Parameter optimality at the distributed scale and
model uncertainty for HGdA01
Figure 6 shows total melt plotted against the corresponding
rmse for every run, for HGdA01. The rmse is calculated by
comparing modelled and measured melt at the ablation
stakes and is used here as an indication of the best model

Table 3. Top ten parameters to which the model is most sensitive and corresponding sensitivity, calculated for mean daily glacier melt,
ranked from highest to lowest sensitivity, for all the glaciers and melt seasons considered

HGdA01 HGdA06 GG06 JNG08/09

Parameter Sensitivity Parameter Sensitivity Parameter Sensitivity Parameter Sensitivity

�1br �1:86 SRF 1.07 LR 0.91 SRF 1.03
�1us �1:13 �1br �1:05 SRF 0.90 LR 0.94
SRF 1.11 �1us �0:56 �1br �0:90 TT �0:86
cf2 0.47 cft �0:52 cf2 0.68 cf1 0.57
�2br 0.43 cf2 0.52 cft �0:61 cf2 0.32
�2us �0:41 cf1 0.32 �1us �0:51 �1br �0:25
cft �0:37 �2br 0.26 cf1 0.50 cft �0:20
cf1 0.36 �2us �0:16 �2us �0:28 �ice �0:18
pht �0:19 �ice �0:15 �ice �0:26 �1us �0:08
kpos 0.16 TF 0.12 TT �0:13 �2br 0.06

Fig. 5. Parameter sensitivity under specific conditions during the melt season compared to all conditions (black bars, indicated as ‘allcond’ in
legend) for ‘daily mean’ melt on HGdA01.
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performance. In Figure 6a the 103 preliminary runs are
depicted and Figure 6b shows the 104 runs where the
parameter set with the lowest rmse of the 103 preliminary
runs was used as the starting point.

The optimal set calibrated at the point scale is within one
standard deviation of the optimum identified with the 104

realizations (Fig. 6). Compared to the run with the lowest
rmse (indicated by the triangle), total melt was over-
estimated by 4%. The parameter values calibrated at the
point scale were compared to the parameter values of the
new optimal run (i.e. the run with the lowest rmse in
Fig. 6b). Considering all parameters, parameter values
change on average by <3%, and considering only the most
sensitive parameters (sensitivity >0.5 on the glacier) values
change on average by only 2%. This is an indication that,
albeit with some margin for improvement, the parameter set
calibrated at the point scale is nearly optimal.

The development of the standard deviation (stdv) is
shown in Figure 7, together with the mean standard
deviation of the 104 model realizations, for HGdA01. After
�6000 runs stdv starts to fluctuate around a mean value of
1:28� 106 m3 w.e., which corresponds to 5.6% of the mean
total melt of the 104 runs.

7. DISCUSSION
7.1. Sensitivity to individual parameters
One of the main findings of our work is that the model
is most sensitive to parameters controlling the net short-
wave-radiation flux. The much higher sensitivity of the
shortwave-radiation-related parameters compared to tem-
perature-dependent parameters depends partly on the nature
of the model, in which the shortwave-radiation flux is
explicitly included. However, it also indicates that the
shortwave-radiation flux is the dominant source of melt
energy for glaciers in the climatic settings considered, as
found by numerous modelling studies (e.g. Greuell and
Smeets, 2001; Willis and others, 2002; Pellicciotti and
others, 2008). This is particularly so for glaciers in the dry
Andes of Chile, where incoming shortwave radiation is very
high during the melt season and clouds are basically absent
in summer (Pellicciotti and others, 2008; Ragettli and

Pellicciotti, 2012). It might be different for glaciers such as
maritime ones, where temperature-dependent energy fluxes
(e.g. the sensible heat fluxes) are higher (Giesen and others,
2008). These results seem to be robust, as sensitivity ranking
is consistent across the different basin sections, different
conditions and the daily statistics examined.

For Alpine glaciers with precipitation events in summer,
the snow albedo parameters have a key influence upon the
spatial and temporal evolution of melt rates, in agreement
with, for example, Favier and others (2004) and Pellicciotti
and others (2005). The same results were obtained by
MacDougall and Flowers (2011) when analysing the
sensitivity of an energy-balance model, even though the
authors used a different albedo parameterization. Estimation
of solid precipitation from point measurements is affected
by uncertainties associated with both lack of knowledge
about how best to extrapolate it in space and in its phase, as
well as by undercatch errors at the gauges. For glaciers and
seasons characterized by larger or more frequent summer
precipitation it might be expected that the model is more
sensitive to the parameters related to solid precipitation
than revealed by the current analysis. However, this would
not affect the ranking of the most sensitive parameters, as
the model is already very sensitive to the albedo parameters
(Table 3). Errors due to gauge undercatch might affect the
sensitivity of the model to �p and pht. Undercatch errors are
difficult to evaluate in the absence of accurate measure-
ments of wind at the gauge (Ne�spor and Sevruk, 1999;
Zweifel and Sevruk, 2002) and these data were not
available for Gornergletscher. Simpler constant correction
factors would need calibration and would therefore
compensate for any number of other errors, thus we did
not use any in this study. Solid precipitation might therefore
be underestimated and model sensitivity to the phase
threshold and precipitation gradient might be higher. At our
study sites, summer accumulation was relatively modest
compared to total melt: summer accumulation is <5.4% of
total ablation at the location of the AWSs at our three sites,
and <7% for HGdA01 and HGdA06 when the wind-based
correction for gauge undercatch of Zweifel and Sevruk
(2002) is implemented (with total ablation calculated with
an energy-balance model; Carenzo and others, 2009). The
impact of the same correction on the summer mass balance
at the distributed glacier scale is also minor, with
differences in total ablation of 2.1% and 0.8% for HGdA01

Fig. 7. Standard deviation of the total melt against the number of
runs (step size 200 runs) used to compute the standard deviation,
for HGdA01. The dashed red curve is the mean standard deviation
for the fluctuation period from run 6000 to run 104.

Fig. 6. Total melt and corresponding rmse of the model realizations
conducted to estimate model uncertainty and investigate whether
parameters fall in the optimal region at the distributed scale, for
HGdA01. (a) 103 preliminary runs and (b) 104 final runs. The
standard deviation depicted is the mean stdv in Figure 7.
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and HGdA06, respectively, if we include the correction of
Carenzo (2012).

For glaciers such as GG06 and JNG08/09 with a wide
altitudinal range, LR is among the parameters to which the
model is most sensitive, in agreement with findings of Li and
Williams (2008), Gardner and Sharp (2009), Petersen and
Pellicciotti (2011) and Ragettli and Pellicciotti (2012). The
high sensitivity of the model to the lapse rate and the
increasing awareness that lapse rates that are uniform in
space and constant in time are not appropriate for hydro-
logical and glaciological studies (Braun and Hock, 2004; Li
and Williams, 2008; Gardner and Sharp, 2009; Minder and
others, 2010; Petersen and Pellicciotti, 2011) point to the
need for further investigation of the spatial and temporal
variability of air temperature, and the way this is represented
in melt and mass-balance models.

7.2. Optimal parameters and model uncertainty
Using Monte Carlo techniques it is possible to generate
model realizations by randomly sampling the space of the
parameters in a given interval, to verify that the parameters
identified as optimal with any of numerous available
methods (from manual calibration to automatic techniques,
from local to global optimization methods) are indeed
optimal in a global sense (Iman and Helton, 1988). A key
issue in this type of analysis is the number of model
realizations that guarantees that the entire relevant space of
plausible parameters is sampled (Finger and others, 2011).
Even though the 1120 possible parameter set combinations
(ten possible changes plus one initial value per parameter
and 20 parameters) might seem too many compared to the
104 model runs performed for HGdA01, Figure 6 shows that
104 runs are enough to clearly develop the expected shape
of a parabola and indicate that the shape is unlikely to
change with additional runs. They also allow identification
of the minimum in model error associated with the optimal
parameter set. Although the identification of the optimal
parameters depends on the dataset used (here stake
measurements) and the optimization criterion (here rmse)
employed to compare the model simulation with the
observations (Pellicciotti and others, 2012), our results
indicate that the sensitive parameters calibrated at the point
scale are also in the region of the optimal values at the
distributed scale.

8. CONCLUSIONS
We have analysed the sensitivity of a distributed ETI melt
model for a number of glaciers and seasons in the Swiss
Alps and the central Andes of Chile, with the aim of
identifying the parameters to which the model is most
sensitive. By identifying the main parameters controlling
the model behaviour, sensitivity analysis helps in deciding
which parameters should be the focus of calibration (Tang
and others, 2007). This is important in general, but
especially in cases where only limited datasets are
available for calibration, such as in the Andes of Chile
and in the Himalaya (Pellicciotti and others, 2012). This
type of investigation is particularly important to inform the
design of field measurement campaigns (Tang and others,
2007), especially for models of snow and ice melt that
often require devoted field campaigns at sites that are
remote and difficult to access. In this light, such analysis is
useful to identify the data that need to be collected to

constrain model parameters that are relevant to the
modelling. Also, despite the fact that the ETI model has
been applied in various investigations in different regions of
the world (Pellicciotti and others, 2005, 2012; Carenzo and
others, 2009; Finger and others, 2011; Ragettli and
Pellicciotti, 2012), this is the first study that analyses
systematically, over several glaciers and seasons, its
sensitivity to both model parameters and parameters
controlling the extrapolation of the meteorological and
surface variables used as input to the model.

Our main conclusions are as follows:

1. The parameters the model is most sensitive to are the
shortwave-radiation factor, SRF, the air temperature lapse
rate (especially for glaciers with a large elevation range),
the albedo parameters (especially if precipitation is
present), the cloud factor parameters and the tempera-
ture threshold (depending on the number of hours with
temperatures close to TT).

2. These results are consistent across different basin
sections, different meteorological conditions over one
season and the daily statistics examined, as well as
across melt seasons and glaciers, with some differences,
that are explained by the different climatic and topo-
graphic characteristics of the glaciers.

3. These results are useful for calibration strategies, as they
indicate which parameters should be the focus of
calibration and thus of the design of devoted monitoring
campaigns. In particular, our findings suggest, in agree-
ment with several recent studies, that the LR used for
extrapolation of air temperature to the glacier or basin
scale should be known with accuracy, as the model is
very sensitive to it, especially for large basins. More
measurements of air temperature variability over glaciers
are therefore encouraged (Minder and others, 2010;
Petersen and Pellicciotti, 2011).

4. Some of the parameters the model is most sensitive to are
parameters of the equation used to calculate melt (e.g.
SRF and TT). Others, however, are parameters related to
the generation of distributed fields of input meteoro-
logical and surface variables (e.g. air temperature,
albedo and shortwave radiation). Our results are there-
fore likely to be valid for any distributed model that
requires such input data (including energy-balance
models), as confirmed by the findings of MacDougall
and Flowers (2011), who also found a distributed energy
balance was most sensitive to albedo parameters, and by
those of Fitzgerald and others (2012), who found the
same results for an enhanced version of a temperature-
index model.

5. The parameter values calibrated at the point scale for
HGdA01 seem to be in the region of the optimal values
at the distributed scale. Monte Carlo techniques, such as
the one employed in this work, are a useful tool to test
that the identified model parameters are optimal, also
because in most cases only limited datasets are available
for parameter calibration.

6. Finally, a parameter uncertainty of 5% results in a model
uncertainty of 1:28� 106 m3 w.e. for Haut Glacier
d’Arolla, which corresponds to 5.6% of the mean
total melt.
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Le Meur E, Gerbaux M, Schäfer M and Vincent C (2007)
Disappearance of an Alpine glacier over the 21st Century
simulated from modeling its future surface mass balance. Earth
Planet. Sci. Lett., 261(3–4), 367–374 (doi: 10.1016/j.epsl.2007.
07.022)

Li X and Williams MW (2008) Snowmelt runoff modelling in an arid
mountain watershed, Tarim Basin, China. Hydrol. Process.,
22(19), 3931–3940 (doi: 10.1002/hyp.7098)

MacDougall AH and Flowers GE (2011) Spatial and temporal
transferability of a distributed energy-balance glacier melt
model. J. Climate, 24(202), 1480–1498 (doi: 10.1175/
2010JCLI3821.1)

MacDougall AH, Wheler BA and Flowers GE (2011) A preliminary
assessment of glacier melt-model parameter sensitivity and
transferability in a dry subarctic environment. Cryosphere, 5,
1011–1028

Masiokas M, Villalba R, Luckman BH, Le Quesne C and Aravena JC
(2006) Snowpack variations in the central Andes of Argentina
and Chile, 1951–2005: large-scale atmospheric influences and
implications for water resources in the region. J. Climate, 19(24),
6334–6352

McCuen R (1973) The role of sensitivity analysis in hydrologic
modeling. J. Hydrol., 18(1), 37–53

Minder JR, Mote PW and Lundquist JD (2010) Surface temperature
lapse rates over complex terrain: lessons from the Cascade
Mountains. J. Geophys. Res., 115(D14), D14122 (doi: 10.1029/
2009JD013493)

Müller L (2010) Modelling glacier and snow melt on Gorner-
gletscher: a study of model robustness and transferability.
(Master’s thesis, ETH Zürich)
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