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ALMOST ALL EXTRASPECIAL p-GROUPS ARE SWAN GROUPS

DAVID JOHN GREEN AND PHAM ANH MINH

Let P be an extraspecial p-group which is neither dihedral of order 8, nor of odd
order p3 and exponent p. Let G be a finite group having P as a Sylow p-subgroup.
Then the mod-p cohomology ring of G coincides with that of the normaliser NQ{P).

INTRODUCTION

Let P be a finite p-group. Martino and Priddy call P a Swan group [5] if for every fi-
nite group G with Sylow p-subgroup P , the mod-p cohomology ring H*(G) coincides with
H*(NG(P)) = H'(P)NG(P\ In particular, if there are no so-called transfer summands in
the stable decomposition of the classifying space BP, then P is a Swan group.

We prove in Theorem 3.3 that all extraspecial p-groups are Swan groups, apart from
the well-known exceptions 2++2 = Dg and (for p odd) p]j.+2 = E. The cases where P is
the metacyclic group pL+2 = M(p3) with p odd, and where P is 2l+2n = Q8 * Ds * • • • * D8,
were proved in [5]; the former case being due to G. Glauberman. Earlier, the p = 2
case of the theorem was published in [7], but with an incorrect proof: see Remark 3.6.
In Corollary 3.5 we generalise another result of Martino and Priddy, exhibiting three
infinite families of Swan groups whose classifying spaces do have transfer summands in
their stable decompositions.

Throughout this paper we denote the mod-p cohomology ring H*(G, Fp) by H*(G).
A suitable reference on group cohomology is Evens' book [2].

1. EXTRASPECIAL P-GROUPS

Recall that a p-group P is called extraspecial if its centre Z(P), its derived sub-
group P' and its Frattini subgroup $(P) all coincide, and are cyclic of order p. So if P is
extraspecial there is a central extension

1 —> Fp —* P -U V —• 1

with V an elementary Abelian p-group. Hence there is a nondegenerate alternate bilinear
form f onV defined by f(ip{g), ip(h)) = [g, h] for ail g, he P.
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Moreover, for p odd there is a linear form A on V defined by X(ipg) — gp; and for
p = 2 there is a quadratic form Q on V defined by Q{ipg) — g2 with associated bilinear
form / . Conversely, such a pair (A, / ) determines an extraspecial p-group when p is odd,
and such a Q determines an extraspecial 2-group.

See [4, Chapter 6] for a reference on alternate bilinear forms, and [1, 1.16] for a
reference on quadratic forms in characteristic 2. Nondegeneracy means that V has even
dimension, say 2n. Up to change of basis for V there are two possibilities for Q when
p = 2, and exactly one choice of / for odd p. For p odd there are two possibilities for the
pair (A,/): either A is identically zero, or it is not. Note that in the case of nonzero A,
Witt's extension theorem does not hold for the pair (A, / ) , as the restriction of/ to ker(A)
does have a kernel.

So there are four types of extraspecial p-groups. In each case P is generated
by Ax,... ,An,Bu... ,Bn,C, with C central of order p, [Ai,Aj] = [Bi,Bj] = 1 and
[At, Bj] = CSi'. Moreover A\ - Bf - 1 for 2 ^ i ^ n. The four cases are:

• 2l
+

+2n = D8 * • • • * D8: here A \ = B2 = \.

• 2i+2n = Q8 * D8 * • • • * D8: here A\ = B\ = C.

• p]+2n = E*---*E has odd exponent p: here A\ = B{ = 1.

• p
l+2n = M{p3)*E*---*Ehas odd exponent p2: here A\ = C and B\ = 1.

The characteristic subgroup Qx (P) of P is the subgroup generated by all order p elements.
Denote Z(Qx{P)) by Y. If P has odd exponent p2 then Y = (BUC) is rank two
elementary Abelian; in all other cases, Y equals Z = Z(P).

The following result could be called Witt's theorem for extraspecial p-groups.

PROPOSITION 1 . 1 . Let P be an extraspecial p-group. Suppose that H, K are
subgroups of P containing Z, and that <j>: H —» K is a group isomorphism inducing the
identity map on Z. If P has odd exponent p2, assume further that H n Y = K n V and
that <j> induces the identity map on (H n Y)/Z. Then <j> extends to an automorphism
of P.

LEMMA 1 . 2 . In Proposition 1.1, suppose that P has odd exponent p2 and that
H D Y is Z rather than Y. Then <$> extends to an isomorphism from (H, Y) to {K, Y)
which itself satisfies the conditions of Proposition 1.1.

P R O O F : Since <j>[C) = C it follows that h~x(j>{h) lies in ker(A) for every h e H.

Hence <f>([h, Bx]) = [4>{h), Bx]. So we may set <t>{Bx) = Bx. D

P R O O F OF PROPOSITION 1.1: Denote by U, W the images in V of H, K respectively.

Since <j> is the identity on Z there is an Fp-vector space isomorphism p: U —> W induced
by 4> which respects the alternate bilinear form / on V.

If p is 2 then p respects the quadratic form Q. Since Witt's extension theorem holds
for Q (see [1, p. 36]), we may extend p to a Q-orthogonal transformation p of V. Using
the standard generators for P we may lift p to an automorphism <p' of P. If h e H then
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4>'{h) = <j>{h)Cr for some r € Z/p. Since P has enough inner automorphisms, we may
assume that <j>' extends </>.

To be more precise: pick hi,... ,hm€. H whose images under rp: P -+ V constitute
a basis for U. Since the alternate bilinear form / on V is nondegenerate we can pick
Si, • • • ,0m S P such that f{4>(gi),^(4>hj)) = <5y. Hence conjugation by gt fixes (f>{hj) for
j / j and sends 4>{hi) to (j>{hi)C. So we can correct </>' by an inner automorphism of P to
ensure that <j>' = <j> on H.

Now suppose that p is odd. As Witt 's extension theorem holds for / (see [4, 6.9]),
we may extend p to a transformation of V that respects / . But then p respects A too:
this is trivial in the exponent p case, as A is then zero. In the exponent p2 case, we may
assume by Lemma 1.2 that H, K contain Y and that p fixes ip(Bi). So p respects A by
Lemma 1.3 below. As in the p = 2 case we can now lift p to an automorphism of P which
extends <f>. D

LEMMA 1 . 3 . Suppose P is an extraspecial p-group with odd exponent p2 . Taking
C as basis for Z = Fp, we may assume that X(ipAi) = 1. Then for any v £ V we have

P R O O F : Each element g of P has canonical form B[l • • • B*n • A[l • • • Ar
n
n • Cl. Then

Cr* = \9,Bx]. D

2. LOCAL SUBGROUP STRUCTURE

Throughout this section G is a finite group with extraspecial Sylow p-subgroup P.

LEMMA 2 . 1 . Suppose that P is not one of D8, E, M(p3). Then for any order p
element g of P, the centraliser of g in P has the same Frattini subgroup as P itself.

PROOF: If n ^ 2 then Cp{g) is not Abelian. In Qs, all order p elements are central.
The other three groups really are exceptions: take g — Bi. U

LEMMA 2 . 2 . Suppose that the centraliser of each exponent p element ofP has Z
as its Frattini subgroup. Then Z9 = Z for every g e G such that P D P9 contains Z.
Moreover, such g factorise as g = gig2 with gi € Nc(P) and g2 € CQ{Z).

PROOF: Observe that P is a Sylow p-subgroup of Cc{Z), and so all Sylow p-
subgroups of CG(Z) have Frattini subgroup Z. Now set R equal to P9 (~l Cc{Z). By
assumption the Frattini subgroup of R is that of P9, namely Z9. But R is contained in
a Sylow p-subgroup of CG{Z). We conclude that Z9 = Z.

Therefore P9 is itself a Sylow p-subgroup of Cc(Z), and so P9 = Ph for some
h € CG{Z). Take gx = gh~l and g2 = h. D

LEMMA 2 . 3 . Suppose that P has odd exponent p2. Then Y9 = Y for every
g e Cc(Z) such that Y ^ P C\P9. Moreover, such g factorise as gig2, where gx lies in
CC(Z) ("I NG(P) and g2 € CG{Z) n NG(Y) acts trivially on Y/Z.
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PROOF: Set D\ equal to CG(Y), which contains fii(P). Since the centre of P is
cyclic and fli(P) is maximal in P, it follows that f2i(P) is a Sylow p-subgroup of D\.
Now let R be P9 C\ Di, the centraliser of Y in P9. Since fii(P) has exponent p, so
does R. As g centralises Z, we deduce that R is a maximal subgroup of P9. But the only
exponent p maximal subgroup of P9 is ^[(P9) , which has centre y 9 . So g normalises Y.

Now set D2- {he CG(Z) f~l NG(y) | p acts trivially on Y/Z}. Then P is a Sylow
p-subgroup of D2, and P 9 is too since g lies in CG(Z) D Afc^)- SO P 9 = Ph for some
/i € D2. Take 51 = gh~l and g2 = h. D

3. STABILITY CONDITIONS

The following elementary reformulation of the usual stability condition is not new,
but does not appear to be widely known.

LEMMA 3 . 1 . Let P be a Sylow p-subgroup of a finite group G. The cohomology
class x G H'(P,¥P) lies in ImReSp if and only ifx is an NG(P) -invariant and

Cor?n p s Res£np» 9*{x) = 0 for all g € G - NG{P).

P R O O F : If x comes from H*(G), then it certainly satisfies both conditions. Con-
versely, observe that the conditions combined with the Mackey formula mean that
Res£ Cor£(z) = |JVG(P) : P\x. D

Let P be a finite p-group. The ring of universally stable elements I(P) was defined
in [3] as the subring of H*(P,FP) given by

= P | ImRes£,
G

where G ranges over all finite groups with Sylow p-subgroup P . The following observation

appears in [7]. Recall that OP(G) is the subgroup generated by all p'-elements of G.

LEMMA 3 . 2 . / ( P ) c H*(p)°'(out(P)).

P R O O F : Pick any outer automorphism of order prime to p, and lift it to an auto-
morphism a of the same order. Let G be the semidirect product P x (a). D

It is immediate that if P is a Swan group then equality holds in Lemma 3.2. The
main result of this paper is:

THEOREM 3 . 3 . All extraspecial p-groups P apart from Ds and E are Swan
groups. If P is Ds or E, then the universally stable elements for P are strictly con-
tained in H'•(p)O'(Out(P))

P R O O F : See [5] for a proof that M(p3) is a Swan group. The groups D8 and E
are treated in Lemma 3.4 below. So we may assume that P satisfies the hypotheses of
Lemma 2.1 and hence those of Lemma 2.2.

https://doi.org/10.1017/S0004972700018566 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018566


[5] Swan groups 153

Let G be a finite group with extraspecial Sylow p-subgroup P , and let x € H* (P) be
an iVG(P)-invariant. We show that the conditions of Lemma 3.1 are satisfied. Let g be
an element of G — NQ{P). If P9 l~l P is elementary Abelian but not maximal in P , then
corestriction from P9 n P to P is zero: for corestriction from any group H to H x Cp is
zero.

We may therefore assume that P 9 , P both contain Z = $ ( P ) . Write i / for P n P 9

and L for 9 P n P . By Lemma 2.2 we deduce that g normalises Z. Moreover, since
x is invariant under Nc{P), we may in fact assume that g stabilises Z. If P has odd
exponent p2 we deduce further by Lemma 2.3 either that g normalises Y and can be
taken to act trivially on Y/Z, or that H<~\Y = LflY = Z.

So we can now apply Proposition 1.1 and deduce that conjugation cg: H -¥ L
extends to an automorphism <j> of P . Then R e s ^ p * = Res#$*, which means that
Cor£ Res£" g* = 0 as H is a proper subgroup of P . D

LEMMA 3 . 4 . If P is D8 or E, then the inclusion in Lemma 3.2 is strict.

PROOF: Let G be GI/3(FP). Then the upper triangular matrices with ones on the
(1 0 (A

diagonal form a Sylow p-subgroup isomorphic to P. We may take Bx — 0 1 1 and
A 0 A /0 1 0\ \0 0 1/

C = 0 1 0 . Pick 5 = 1 0 0 . Then F = P n P9 equals (Bu C), a maximal
\ 0 0 1/ \ 0 0 1/

elementary Abelian subgroup. Let /?, 7 be the dual basis for F*.
Taking the first Chern class is an Fp-linear monomorphism from F* to H2(F). Let p

be an ordinary representation of P with character x, the sum of all p2 linear characters.
These linear characters restrict to F as scalar multiples of /?, each scalar multiple being
the image of p characters. So by the Whitney sum formula, the total Chern class c(p)
restricts to F as follows:

Res£c(p)=

This equals 1 - / ^ (P- 1 ' . Set r\ equal to Cp^-^p) in H^^'^iP). Then T) lies in
^.(p)O»(Out(P))] s i n c e x i s a n i n v a r i a n t of Aut(P). But Res^(r?) = -/JPCP-1) is distinct
from g' Res^(r;) = -Y^'^, so 77 is not stable. D

Suppose that P is a p-group whose classifying space does not have any transfer
summands in its stable splitting. Then P is a Swan group by [5, Theorem 3.5]. Martino
and Priddy give one counterexample to the converse: M(p3).

COROLLARY 3 . 5 . Let P be 2++2n with n ^ 2; or p++2n with p odd and n ^ 2;
or pL+2n with p odd and n > 1. Then although P is a Swan group, the stable splitting of
BP involves a transfer summand.
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P R O O F : F — ( B 1 ) . . . ,Bn,C) is a self-centralising, maximal elementary Abelian
subgroup. By [8, Theorem 0.1], the Steinberg summand L(n + 1) of BF is a transfer
summand of BP. D

REMARK 3.6. Ogawa's proof of Theorem 3.3 hinges around the following claim: if M is
a maximal subgroup of an extraspecial 2-group P ^ D8, then P acts trivially on H*(M).
As observed in [6], the proof of this claim in [7] uses inflation incorrectly. We shall now
see that the claim is false for 2++2n.

Let P be Ds* • • • * Ds, or p++2n if p is odd. Let M be Cp(Bi), an index p subgroup
of P. Then F = (B\,... ,Bn,C) is maximal elementary Abelian in M and in P. Let
A, • • • , Pn, 7 be the dual basis of F', which we embed in H2(F) by taking the first Chern
class. Then S{F*) C H'{F). Define C € H2pn~\M) to be the Evens norm A ^ ( 7 ) , and
set g = A\. Let U be the subspace of F* spanned by ^2 , . . . , (3n- By standard properties
of the Evens norm map (see [2, Chapter 6]), we have:

Resjf (77) = Y[ (7 + u) and so g' Res£f (7?) = J\ (7 + Pi + u) -
u6£/ u€t/

These restrict to (Bi,C) as 7"""' and (7+A)"""' respectively. So Res™(g*r)) differs from
Res^(r;), which means that r\ is not invariant under A\.
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