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Abstract

The inverse semigroup TE of isomorphisms of principal ideals of E onto principal ideals of
E, where E is a semilattice, has been introduced and studied by Munn (1966, 1970). He showed
that, for any inverse semigroup S with semilattice E, there is a representation of S by an inverse
subsemigroup of TE. The Munn representation, however, is not always faithful. In this paper, the
possibility is considered of enlarging the carrier set E of the Munn representation in order to ob-
tain a faithful representation of S as an inverse subsemigroup of a structure resembling TE in
many ways. A structure X is obtained by replacing each element of £ by a set. Then X =
U{X,: e £ E], where X, denotes some set, has a natural pre-order relation < (where x < y if
and only if i 6 Xo y £ X, and e S f) inherited from E such that if T = {(x,y)e X x X;x < y
and y < x} then X/T is isomorphic to E. Such a set X is referred to as a pre-semilattice with
semilattice E. If Tx denotes the set of all isomorphisms of principal ideals of X onto principal ide-
als of X then Tx is an inverse semigroup. Basic properties of Tx are considered. It is shown that
when X is locally uniform, that is, when | X. | = | Xf |, for all e, f £ E, Tx may be described as a
wreath product of a permutation group with TE.

The set 5 itself is a presemilattice with semilattice E with respect to the pre-order < defined
by a < b if and only if a~'a S b'b. It is then shown that the Vagner-Preston representation em-
beds S as a full inverse subsemigroup of Ts. As an application of these concepts the following re-
sult is established. Let R and S be inverse semigroups and let 0i(02) be an isomorphism of a
semilattice E onto the semilattice of R(S). Then there exists a locally uniform presemilattice W
and embeddings <pu ip2 of R and S, respectively, as full inverse subsemigroups of Tw such that (1)
0,(p, = $2(f>2 and (2) (e0,<p,, e02(p2)£ 2) if and only if Ee is isomorphic to Ef.

Introduction

For a semilattice E, Munn (1966) introduced the inverse semigroup TE of
all isomorphisms of principal ideals of E onto principal ideals of E. He then
showed that, for any inverse semigroup S with semilattice E, there is a natural
representation of S by an inverse subsemigroup of TE. This representaion,
which we shall refer to as the Munn representation, is not always faithful and,
in fact, induces the maximum idempotent separating congruence on S. Here
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[2] Inverse semigroups 29

the possibility is considered of enlarging the carrier set E of the Munn rep-
resentation in order to obtain a faithful representation of S as an inverse sub-
semigroup of a structure resembling TE. Intuitively this structure is obtained
by replacing each element of E by a set. This enlargement X =
U{Xe: e E E}, say, of E has a natural pre-order relation < (where x < y if
and only if x £. Xe, y & X, and e g / ) inherited from E such that if T =
{(x, y):x <y and y < x } then X/T is isomorphic to E. We call X a pre-
semilattice with semilattice E. If Tx denotes the set of all isomorphisms of
principal ideals of X onto principal ideals of X then Tx is an inverse semi-
group. The first section is devoted to basic properties of Tx. In the second sec-
tion we consider the case where X is locally uniform, that is, where | Xt | =
| Xf |, for all e,fEE. For such a locally uniform X, it is shown that Tx may be
described as a wreath product of a permutation group with TE.

It is then observed that any inverse semigroup S is a presemilattice with
respect to the pre-order < defined by: a < b if and only if a'1 a S b^b. The
Vagner-Preston representation of S then embeds S as a full inverse sub-
semigroup of Ts.

An application of these concepts is then given. Let R and 5 be inverse
semigroups and let d,(d2) be an isomorphism of a semilattice E onto the
semilattice of R (S). Then there exists a locally uniform presemilattice W and
embeddings <pu <p2 of R and S, respectively, as full inverse subsemigroups of
Tw such that

(1) 01<Pl = 62<p2

(2) (e$l<pi,fd2<p2)E.3i if and only if Ee is isomorphic to Ef.

1. Basic concepts

The reader is referred to Clifford and Preston (1961 and 1967) for the
basic properties of inverse semigroups and all undefined notation and ter-
minology.

For any set X, $x will denote the summetric inverse semigroup on X. Let
£ be a semilattice and let TE denote the subset of $E consisting of those a for
which the domain and range are principal ideals and a is an isomorphism of
its domain onto its range. We shall denote the domain and range of a mapping
a by A(a) and V(a), respectively. The semilattice E is uniform if and only if
any two principal ideals are isomorphic.

LEMMA 1.1 (Munn (1966)). For any semilattice E, TE is an inverse
subsemigroup of'3E with semilattice isomorphic to E. Furthermore TE is bisimple
if and only if E is uniform.
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An inverse subsemigroup S of an inverse semigroup T is a full inverse
subsemigroup if and only if S contains all the idempotents of T. Howie (1964)
showed that an inverse semigroup has a maximum idempotent separating
congruence. Munn (1970) observed that this is also the maximum congruence
contained in $f.

LEMMA 1.2 (Munn (1970)). Let S be an inverse semigroup with semilat-
tice E.

(1) For all a & S, the mapping 6a: Eaa~' —»Ea~la defined by

x6a = a~1xa (x £ Eaa~l)

is an isomorphism and so 6a G TE.
(2) The mapping 6: S —* TE defined by ad = 6a (a G S) is a homomorphism

and 6 ° 6~' is the maximum idempotent separating congruence on S.
(3) SB is a full inverse subsemigroup of TE.

We shall refer to the homomorphism 6, defined in Lemma 1.2, as the
Munn representation of S on E. In general, of course, 6 is not faithful and
clearly 0 is faithful if and only if the maximum idempotent separating congru-
ence on S is the identity congruence. An inverse semigroup is fundamental if
and only if the maximum idempotent separating congruence on S is the iden-
tity congruence. From Munn (1970), we than have the following observation.

COROLLARY 1.3. Let S be an inverse semigroup with semilattice E.
Then S is fundamental if and only if S is isomorphic to a full inverse subsemig-
roup of TE.

The Munn representation has been of great interest to those studying in-
verse semigroups and it is natural to ask if it is possible to inflate or enlarge
the set E, on which S is represented, in order to obtain a faithful representa-
tion of S while retaining some of the features of the Munn representation. We
show that, in fact, modulo a certain interpretation, one already exists and then
we shall give an application of the concepts introduced.

Let X be a set and S an inverse subsemigroup of $x. An equivalence re-
lation p on X will be called an S-congruence if and only if the following two
conditions are satisfied: (1) if xGA(a) then xpCA(a) and (2) if x and
y G A(a) then (x, y) G p if and only if (xa, ya) G p. A mapping a of X onto a
set Y is S-compatible if and only if a ° a~l is an S-congruence. If a: X—* Y is
an S-compatible mapping then each a G S induces a mapping a* with do-
main {xa: x G A(a)} such that, for xa G A(a*), (xa)a* = (xa)a. Moreover,
the mapping a —» a * is clearly a homomorphism of S into 3>Y which we call
the homomorphism induced by a.
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Our objective is to find a set X and a homomorphism i/> of S into Sx for
which there is an S-compatible mapping £ of X onto E such that the induced
homomorphism £* actually maps Stp into TE and composes with ifr to yield
the Munn representation 6. See Figure 1.

X

Viewing X as an enlargement of E, one might if X has any structure. By
a pre-order on a set A we shall mean any reflexive transitive relation. Let <
be a pre-order on a nonempty set A and let v = {(a, b)G A x A : a < b and
b < a}. Then v is an equivalence relation on A and Ajv is a partially ordered
set with respect to the induced relation

(1) av^bv if and only if a<b.

We call =§ the naturally induced order on A / K Clearly v is the smallest
equivalence relation on A for which (1) defines a partial order on Alv. We
call v the minimum partial order congruence (mpo-congruence) on A and say
that A is a presemilattice if and only if A/v is a semilattice with respect to the
naturally induced order. Clearly, then, X above would be a presemilattice
with respect to the relation < defined by

x < y if and only if xg = y£.

So we begin with some comments on presemilattices.
Let X be a presemilattice with pre-order < and mpo-congruence v.

Clearly X is a semilattice with respect to < if and only if v is the identity rela-
tion. A subset A of X is an ideal of X provided that x < y and y E A implies
that x £ A. In particular, if A is an ideal and x £ A then xi/ C A. Also A is
clearly a presemilattice with respect to the restriction of the pre-order on X to
A and the mpo-congruence on A is just the restriction to A of the mpo-
congruence on X. For a £ X, we call {x E X: x < a} the principal ideal gener-
ated by a and denote it by (a).

A bijection a of one pre-ordered set A onto another B will be called an
isomorphism provided that, for all a, b E A, a < b if and only if aa < ba. In
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particular, if vA and vB denote the respective mpo-congruences then (a, b)G
vA if and only if (aa, ba)G vB.

Let Tx denote the subset of Jx consisting of those mappings a for which
the domain and the range are both principal ideals and a is an isomorphism.
Note that the use of the notation Tx does not conflict with the notation intro-
duced by Munn and described above since, in the event that X is a semilat-
tice, Tx as defined here is the same object as introduced by Munn. The verifi-
cation of the following lemma is entirely routine.

LEMMA 1.4. (1) Tx is an inverse subsemigroup of $x with semilattice
isomorphic to X/v.

(2) v is a Tx- congruence.

For x £ X we denote by ex the identity mapping on (x). Then el =
EX £ Tx. On the other hand every idempotent of Tx is clearly of this form, al-
though the representation may not be unique since e, = ey if and only if
(x,y)Ev.

Extending the terminology introduced by Munn (1970) we shall say that
X is uniform if and only if (x) is isomorphic to (y), for all x, y £ X and that X
is locally uniform ii\xv\ = \yv\, for all x, y £ X. Let E = XI v. Let x, y £ X

(x, y) £ v, a £ Tx and w C A ( a ) . Then (xa, ya) £ v. Hence, if A(a) = (a), a
induces a mapping a' oi E which can be defined as follows:

(1) A(a') = { io£%)} = (av);

(2) (xv)a' = (xa)v (xv £ A(a')) .

Since a is an isomorphism, a' is well defined. Also the domain of a ' is a prin-
cipal ideal, by definition, while the range of a ' is clearly ((aa)v), a principal
ideal. Let xv, yv £ A(a'). Then x, y £ A(a) and xv g yv if and only if JC < y.
Since a is an isomorphism, x < y if and only if xa < ya, that is, if and only if
(xa)v ^ (ya)v. Thus a' is an isomorphism and so a ' £ TE.

LEMMA 1.5. Themappingv:a—*a'ofTxintoTEisahomomorphismof

Tx onto a full inverse subsemigroup of TE such that TT°TT~1 is the maximum
idempotent separating congruence on Tx. Furthermore -u is an epimorhism if
and only if | xv \ = | yv | whenever (xv) and {yv) are isomorphic ideals (x, y £
X). In particular, TT is an epimorphism if X is locally uniform.

PROOF. Clearly n is a homomorphism. Let xv £ E. Then e i is the iden-
tity mapping on (xc). Hence n maps the idempotents of Tx onto those of TE

and TXTT is a full inverse subsemigroup of TE. On the other hand, if ex^ ey

then (x, y)fc v while A(e'x) = (xv) and A(eJ,) = (yv). Therefore e'x^ e'y and n
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is idempotent separating. However, by Corollary 1.3, TXTT is fundamental and
so 77 ° w~' must be the maximum idempotent separating congruence on Tx.

Now suppose that | xv | = | yv | whenever (xv) and (yv) are isomorphic.
Let /3 G TE. Let A(/3) = (yv), for some y G X. For each xv G A(/3), (xv) is
isomorphic to (xv/3) and so let jS,,, be a bijection of xv onto xvfi. Let a be the
mapping defined as follows:

(1) A(a) = (y>;

It is straightforward to verify that a G Tx and that a' = /3. Thus TT is an
epimorphism.

Conversely, if it is an epimorphism and (xv) is isomorphic to (yv) then
there exists an isomorphism /3, say, of xv onto yv. Let a £ I x be such that
a' = p. Then xa G yv and so the restriction of a to xv is.,a bijection of xv
onto yv. Thus | xu | = | yt; |.

We shall refer to n as the natural projection of Tx into TE and, for each
a G Tx, we shall refer to a' = air as the projection of a in rE.

LEMMA 1.6. The following statements are equivalent.

(1) Tx is bisimple.
(2) X is uniform.
(3) X is locally uniform and E = X/v is uniform.

PROOF. Suppose that Tx is bisimple. Let x, y G X. Then there exists an
element a G Tx with era"1 = ex and a'1 a = ey; that is, A(a) = (x)and V(a) =
(y). Hence (x) is isomorphic to (y) and X is uniform. Thus (1)
implies (2).

Now let X be uniform and x,yEX. Then there is an isomorphism a G
Tx with domain equal to (x) and range equal to (y). Therefore (xv)a = yv
and | xv \ = | yv \. Thus X is locally uniform. Furthermore, the projection a' of
a in TE has domain (xv) and range (yv). Hence E is uniform. Thus (2) implies
(3).

Finally, let (3) hold. By Lemma 1.1, TB is bisimple. Since X is locally un-
iform, it follows from Lemma 1.5, that the natural projection IT of Tx is an
idempotent separating homomorphism of Tx onto TE. Hence Tx is bisimple.

Let £ be a semilattice and U be a nonempty set. Then the relation <
defined on U x E by

(«,e)<(v,f) if and only if eSf

is a pre-order on U x E which we call the natural pre-order. The mpo-
congruence v on U x E is such that
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((M, e), (v,/))£ v if and only if e = f.

Thus U x E/v is clearly isomorphic to E and 1/ x E is a presemilattice. Also
U x E is locally uniform. Hence 1/ X E is uniform (and TUxE is bisimple) if
and only if E is uniform.

LEMMA 1.7. Lef X be locally uniform and x0 G X. Let U = xov and E =
XIv. Then X is isomorphic to U x E under rhe natural pre-order and Tx is
isomorphic to TuxE-

PROOF. For each xv G E let /*„ be a bijection of xv onto xov. Since X is
locally uniform such bijections exist. Define i p : X - > ( / x £ by

x<p = (x/U xv)

It is clear that <p is an isomorphism and the result follows.
Since a locally uniform presemilattice decomposes nicely, by Lemma 1.7,

into the product of a set and a semilattice we now relate an arbitrary pre-
semilattice to a locally uniform semilattice. If X is a presemilattice with mpo-
congruence v we call XI v the semilattice of X.

LEMMA 1.8. Let X be a presemilattice. Then X can be embedded in a lo-
cally uniform presemilattice Y in such a way that the semilattice of Y is
isomorphic to the semilattice of X. Moreover, the embedding can be chosen so
that Tx can be embedded as a full inverse subsemigroup of TY, in a natural way.

PROOF. Let Z be any set such that \Z\ = |X | , if X is infinite, and
countably infinite if X is finite. Let Y = Z x X and define the relation < on
Y by

(zi, Xi)< (z2, x2) if and only if Xi<x2.

Then < is a pre-order on Y. Let vx(vY) be the mpo-congruence on X(Y).
Then, for any x E. X, z G Z, it is easily seen that (z, x)vY = Z x xvx. Hence
the mapping (z, x)vY —> xvx is an isomorphism of the semilattice Y/vY of Y
onto the semilattice X/vx of X. Also since, for all z G Z, x G X, | (z, x)vY \ =
| Z x xvx | = | Z |, Y is locally uniform.

Let z0 G Z. Then the set of elements of the form (z0, x) where x G X is
clearly a presemilattice contained in Y isomorphic to X. For convenience
identify this presemilattice with X. We now show that we can embed Tx in TY

in such a way that the restriction of the action of the embedded elements to X
(really {zo}x X) is just the action of the original elements of Tx.

For each a G Tx let a+ be the mapping defined as follows:

(1) A(«+) = {(z,x):xGA(«)};
(2) (z,x)a+ = (z,xa) ((z, x)G A(a+)).
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Then a+ G TY and the mapping a —> a+ is an embedding of Tx as a full
inverse subsemigroup of 7V with the desired properties.

2. Decomposition of Tx

If X is a locally uniform presemilattice then we saw, in Lemma 1.8, that
X is isomorphic to the product of any one of its mpo-congruence classes with
the semilattice of X under the natural pre-order. In this section we show that
in these circumstances Tx also decomposes. For this purpose we introduce a
variant of the wreath product construction.

Let U and F be sets. Let A be an inverse subsemigroup of JF and H be
a subgroup of the symmetric group, Su, on U. Let W denote the set of ele-
ments a in JUxF for which there exists an a' G A and, for each e G A(a'), an
ae E H with

(1) A(a) = {(u,e):eEA(a')}-

(2) (u,e)a=(uat,eat) ((«, e)E A(a)).

Let a* denote the mapping e —» ae of A(a') into H. Then a is completely de-
termined by the pair (a*, a') and we identify a with this pair.

On the other hand, given an a ' E J?F and a mapping a*: e —» ae of A(a')
into if we can use (1) and (2) above to define an element a in W. Thus we can
consider W as consisting of all such pairs. As elements of $V*F we can multi-
ply elements of W and we shall see that such products fall into W.

Let a=(a*,a') and j8 = (/3*, j8') be elements of W. Then

A(a/3) = {(«, e): («, e) £ A(a), («, e)a £ A(/3)}

Furthermore, for (M, e)G A(a/3),

(M,e)a/3=(«ae,ea')/3

= (uae/3ra., ea'fi').

Thus a/3 = (y*, -y') where

(2) y' = a'j8' and ey* = (ea*)(ea')P* (e G A(a'/8')).

Therefore a/3 G W and W is a subsemigroup of $UXF-

LEMMA 2.1. W is an inverse subsemigroup of iU x F. The element a =
(a*, a') is an idempotent if and only if a' is an idempotent and ea* is the
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identity of H for all e G A(a'). Thus the semilattice of W is isomorphic to the
semilattice of A. If /3 = (/8*,/3')G W and $ denotes any one of Green's
relations then (a, /3) G <£ if and only if (a1, /3') G (§.

PROOF. We have already seen that W is a subsemigroup of ^UxF. Let
a = (a*,a')E W. Then one can easily verify that a"1, as an element of J'UXF,

is just (j8*,/3') where j8' = (a')"' and, for all / G A(j8') = A((a')-') = V(a'),
//3* = (ea*)~\ where e is the unique element of A(a') such that / = ea'. Thus
W is an inverse subsemigorup of $V*F.

The conditions for a =(<**,«') to be an idempotent follow easily
from (2).

Let a = (a*,a'), j8 = (/3*,/3') be any elements of W. Let a"' =
(y *,(«')"'). p-' = (8*,(PV), say. Then

a a ' = (K, « ' (« ' ) ' ) and /3/T1 = (A, P'(P')'1)

where, since aa~' (j8/3"') is an idempotent, «(A) maps A(a'(«')')
(A(/3'(j3')"')) onto the identity of H. Hence aa"1 = /3/3' if and only if
a'(a')~' = P'(P')'1. In other words a5/l(3 if and only if a'0tp'. Similar
arguments can be applied to the relations !£, %€, 3) and $.

COROLLARY 22. W is bisimple if and only if A is bisimple.

Since the construction of W is analogous to that of wreath products we
write W = (H, U) wr (A, F).

We are particularly interested in the case H = Sv A = TE where U is a
set and £ is a semilattice. Let U x £ be endowed with the natural pre-order.
Then we have the following result decomposing TUXE-

THEOREM 2.3. Tu*E = (Su, I/) wr (TE, E).

PROOF. Let W = (Sv, U)wr(TE,E) and let a = (a*, a')G W. If A(a ' ) =

(e) and HoG [/ then

= {(«,/):(«,/)< (MO, e)} =

Thus A(a) is a principal ideal and also V(a) = A(a~'). Let (a, / ) , (b, g)G A(a).
Then (a, f)a = (a(fa *), fa') and (b, g)a = (b(ga *), ga'). Now (a, /) < (b, g) if
and only if / g g, while (a,f)a < (ft, g)a if and only if /a ' ^ ga'. But, since
a'G TE / g g if and only i f / a ' g g a ' . Therefore (a,/)<(/), g) if and only if
(a,f)a < (ft, g)a. Thus a is an order isomorphism of A(a) onto V(a) and
a E TuxE. Hence W C TuxE.

We now consider the converse inclusion. Let v denote the mpo-
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congruence on U x E. Thus v = {((u,f), (v, g)): / = g} and (w, f)v —» / is an
isomorphism of UxE/v onto £. If we identify UxE/v with £ via this
isomorphism then the natural projection 77: TUXE —» TE of Lemma 1.5 can be
described as follows: for a £ TL,*E

(1) A(an) = {e: U x {e } C A(a)},

(2) e(air) = f, where (C/x{e})a = [/ x {/}, (e- EA(aTT-)).

For a £ TUxE and e £ A(an) define a mapping ae:U—*U by (M, e)a =
(«a,, e(«7r)), for all u G U. Since the restriction of a to (7 x {e} is a bijection
of t / x { e } onto t/xjeav?-}, it follows that ae £ Sv. Now define
a*:A(a7r)-^Su by ea* = a,. Then clearly /3 = (a*,a77-)£ W. But,

A(j8) = {(«, e): e £ A(a77)} = {(«, e): U X {e } C A(a)}

= A(a)

and, for (u, e) G A(a) = A(j8),

(u,e)P = (u(ea*),e(an))

= (uao e(a77-))

= (u, e)a

Thus a = p £ W and TUxE C W, as required.

3. An inflated Munn representation

In this section we consider the first application of the concepts developed
above. We show that there does exist an inflated Munn representation and
that, in fact, with the appropriate interpretation the Vagner-Preston rep-
resentation will serve for this purpose.

Let S be an inverse semigroup. Defines the relation < on S by: a < b if
and only if a 'a ^ b 'b. Then < is clearly a pre-order on S for which the
mpo-congruence is v = J£. Hence S/v = S/i?, under the naturally induced
order from < , is just the set of i?-classes of 5 under the usual partial
ordering of the i?-classes of an inverse semigroup and so is isomorphic to the
semilattice of S. Hence S is a presemilattice under < .

Let p:a^>pa mapping S into 3S be the Vagner-Preston representation
of S. Then

(1) A( P a )=Saa- ;

(2) xpa = xa (x E S a a ' ) .
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C o n s i d e r i n g S as a p r e s e m i l a t t i c e as a b o v e , A(pa) = Saa~' = ( a ~ ' \ a p r inc ipa l
idea l of 5, as is V ( p a ) = Sa la = ( a ) . A l s o , for x , y £ A ( p a ) , x~ 'x , y~ 'y 2= aa~[.
N o w x < y if a n d on ly if x ~ ' x S= y ~ ' y whi le xa < ya if a n d only if a'x'xa =
( x a ) ' ( x a ) = ( y a ) ~ ' ( y a ) = a l y ^ y a . B u t , s i n c e x ' x , y H y § a a " 1 it f o l l o w s
that JC~'x S y~'y if and only if a~'x~'xa S a"'y~'ya. Therefore x < y if and
only if xa < ya. Thus pa is an isomorphism of (a"1) onto (a) and 5p C Ts. We
are now part of the way towards proving the following theorem.

THEOREM 3.1. Let S be an inverse semigroup and define the relation <
on S by a < b if and only if a~'a S b 'b. Then < is a pre-order on S with
respect to which S is a presemilattice. The Vagner-Preston representation p of S
embeds S as a full inverse subsemigroup of Ts.

If v is the mpo-congruence on S then v = i£ and S/v is isomorphic to the
semilattice E of S. Moreover, the mapping £: a —> a~la is an S-compatible
mapping of S onto E such that p£* is the Munn representation of S on E.

PROOF. It remains to show that Sp is a full inverse subsemigroup of Ts

and to verify the assertions regarding £
Let e be an idempotent of Ts with domain (a), a G S. Let e = a "'a.

Then e and pe are both identity mappings on (a). Thus e = pe and Sp is a full
inverse subsemigroup of Ts.

For a, b G 5 we have that (a, fo)G £°£" ' if and only ii a~'a = b'b; that
is, if and only if (a, b)EL v. Hence £°£~' = v, a Ts-congruence and therefore
an S-congruence. Hence £ is an S-compatible mapping and clearly maps S
onto E.

Let a G S and consider a = apt;*. Since S£ = E, we know that a G $E.
By the definition of £*,

where we continue to denote by 6: a —» 6a the Munn representation of S on
E. Also, for x£ E A(a) (x G S),

Thus

(x"'x)a = a-'x-'xa =(x-1x)flo.

Hence a = 6a and p$* = 6, as required.

COROLLARY 3.2. Let S be an inverse semigroup with semilattice E. Then
there exists a set U and an embedding <p of S as a full inverse subsemigroup of
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TijxE', where [ J x £ is endowed with the natural pre-order, such that the
mapping TJ : (u, e)—» e is S(p-compatible and <p-q * is the Munn representation.

PROOF. By Theorem 3.1, S can be embedded as a full inverse subsemi-
group of Ts, where S has an appropriate pre-order and the semilattice of S, as
a presemilattice, is isomorphic to £. Denote this embedding by p and let £ £*
be as in Theorem 3.1. But for the assertion regarding 17 the result would now
follow from the fact that the semilattice of S, as a pre-ordered set, is E by
invoking Lemma 1.7 and Lemma 1.8. However, to establish the assertion
regarding 17 we must follow this process in more detail.

As in Lemma 1.8 let Y = Z x S under the pre-order induced from S. If
z0GZ, let a be the embedding s—*(zo,s) of S in Y and let a* be the
embedding of Ts in Ty where, for a 6 Ts, the domain of aa* is {(a, s): 5 £
A(a)} and, for (z, s) in the domain of aa*, (z, s)aa* = (z, 5a). Let £, be the
mapping (z, a)—> a~'a, of Y onto E. Then £
and so is a TV-congruence. It is evident that

7' is the mpo-congruence on Y
= £ and also that cr*$* = £*.

UxE

Let y be the mpo-congruence on Y, y0GY and [/"= Vô . for each
yv G Y/i> let /„„ be a bijection of yv onto yoK Define T: Y—» (7 x E as
follows: for y = (z, a) G Y

{z,a)r = (zfyv,a ' a ) .

This is entirely similar to Lemma 1.7 and it is straightforward to show that T is
an isomorphism of Y onto UxE under the naturally induced pre-order
inducing an isomorphism r*: TY —> TUXE- Let 17: U x £ —» £ be the mapping
such that (u, e)—* e. Then 17 ° 17 ' is the mpo-congruence on U x £ and so 17 is
TuxE-compatible. Also T17 = £, and T*TJ* = |T. Let <p = pa*T*. Since each of
the embeddings p, a* and T* embeds its domain as a full inverse subsemi-
group of its image, <p embeds S as a full inverse subsemigroup of TUxE.
Finally, <prj* = pa*T*-q* = pa*^* = p£* = 6, the Munn representation.
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4. An application

In the two results of this section we answer the following questions that
were raised with the author by T. E. Hall while the author was a visitor at
Monash University in 1971 and answered by the author at that time using
wreath product techniques. Since then Hall (1975) and Howie (1975) have
shown how to embed inverse semigroup amalgams and semigroup amalgams
over inverse semigroup cores. T. E. Hall (letter to the author) has pointed out
how the amalgamation theory can also be applied to yield the results in this
section.

PROPOSITION 4.1. Let S be an inverse semigroup with semilattice E. Then
there exists an inverse semigroup T and a monomorphism ip of S onto a full
inverse subsemigroup of T such that

(1) for e,fGE, (etp, f<p)E. 3) if and only if Ee is isomorphic to Ef;
(2) T is bisimple if and only if E is uniform.

PROOF. Let U and the embedding <p of S into TUxE be as in Corollary
3.2. Let e,f&E, u £ ( / , x = (u,e) and y = («,/). Then etp is the identity
mapping on (x), that is, etp = ex. Similarly fcp = ey. Now U x E is locally
uniform. Hence, by Lemma 1.6, (ex,ey)E3) if and only if there is an
isomorphism {xv) —> (yv) in TF, where v is the mpo-congruence on U x E and
F = (U x E)lv. But (u, e)v—> e is an isomorphism of F = (U x E)/v onto E.
Hence (xv) is isomorphic to (yv) if and only if Ee is isomorphic to Ef. Thus
(e<p,f(p) = (ex, ey)6 3) if and only if Ee is isomorphic to Ef.

The second statement is an immediate consequence of the first.
The next result is really a special case of the more general amalgamation

results of Hall (1975) and Howie (1975). However since the object constructed
to obtain the result is much simpler than those introduced by Hall and Howie,
we feel that it is worthy of separate consideration.

PROPOSITION 4.2. Let E be a semilattice, R and S inverse semigroups. Let
0,: E —» R and 62: E —» S be monomorphisms of E onto the semilattices of R
and S, respectively. Then there exists an inverse semigroup T and monomor-
phisms ij/i'. R —* T, i//2: S —* T of R and S onto full inverse subsemigroups of T
such that Bxtyi = 62I]J2.

PROOF. Let F denote the semilattice of R. By Corollary 3.2 there is a set
U and a monomorphism <pt: R —* TUxF where U x F is given the natural
pre-order. Now («,/)—»(u, e) where ed\ = f is an isomorphism of U x F onto
U x E with the natural pre-order and induces an isomorphism
Xi- TUxF-+ TUXE- Further tp[ = <p,Xi is such that ed,<p[ = e(u,e), for any u £ [ / .
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Similarly there is a set V and a monomorphism <p '2 of S onto a full inverse
subsemigroup of TVxE where V x E is endowed with the natural pre-order
and where e62<p'i = e(u,,>, for any v 6 V.

Now let < be the natural pre-order on (U x V)x E and let
f>: TUxE -» T(UJ<V)XE be denned by

(1) A(af,) = {((K, «),*):(«, e ) E A ( a ) } ,

(2) for ( (u ,o) , t )6A(^ l ) , ( (M, i ) ) , e ) (^ l )=( (M' ,D) ,e r ) where (u,e)a =

Then clearly £, embeds rt.xf:- as a full inverse subsemigroup of T{UXV,XE- Let
£2: Tv.xt —» T(Uxv)xE be defined in an analogous manner. Let ^ = <p!£
(/ = 1,2). Then I/MCI/̂ ) embeds R(S) as a full inverse subsemigroup of
7*<LIXV)XH. For e G £ ,

e ,̂</>, = 0i<p!£, = c(u.,)fi = c«u.u).o» I o r a n y u E. U, v £ V.

similarly,

T h u s 0|(//, = f?2iA:, as required .
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