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Abstract

Directionally convex ordering is a useful tool for comparing the dependence structure of
random vectors, which also takes into account the variability of the marginal distributions.
It can be extended to random fields by comparing all finite-dimensional distributions.
Viewing locally finite measures as nonnegative fields of measure values indexed by the
bounded Borel subsets of the space, in this paper we formulate and study directionally
convex ordering of random measures on locally compact spaces. We show that the
directionally convex order is preserved under some of the natural operations considered
on random measures and point processes, such as deterministic displacement of points,
independent superposition, and thinning, as well as independent, identically distributed
marking. Further operations on Cox point processes such as position-dependent marking
and displacement of points are shown to preserve the order. We also examine the
impact of the directionally convex order on the second moment properties, in particular
on clustering and on Palm distributions. Comparisons of Ripley’s functions and pair
correlation functions, as well as examples, seem to indicate that point processes higher in
the directionally convex order cluster more. In our main result we show that nonnegative
integral shot noise fields with respect to the directionally convex ordered random measures
inherit this ordering from the measures. Numerous applications of this result are shown,
in particular to comparison of various Cox processes and some performance measures of
wireless networks, in both of which shot noise fields appear as key ingredients. We also
mention a few pertinent open questions.
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1. Introduction

Point processes (PPs) have been at the center of various studies in stochastic geometry, both
theoretical and applied. Most of the work involving the quantitative analysis of PPs has dealt
with Poisson PPs. One of the main reasons being that the characteristics of Poisson PPs are
amenable to computations and yield nice closed-form expressions in many cases. Computations
have been difficult in a great number of cases, even for Cox (doubly stochastic Poisson) PPs.
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1.1. Comparison of point processes

To improve upon this situation, qualitative, comparative studies of PPs have emerged as
useful tools. The first method of comparison of PPs has been coupling or stochastic domination
(see [17], [19], and [31]). In our terminology, these are known as the strong ordering of PPs.
When two PPs can be coupled, one turns out to be a subset of the other. This ordering is very
useful for obtaining various bounds and proving limit theorems. However, using it means that
we cannot compare two different PPs with the same mean measure. An obvious example is a
homogeneous Poisson PP and a stationary Cox PP with the same intensity. The question arises
of what ordering is suitable for such PPs. This is an important question since it is expected that
by comparing PPs of the same intensity we should be able to achieve a tighter bound than by
coupling. For some more details on the strong ordering of PPs and the need for other orders,
see the remarks in [28, Sections 5.4 and 7.4.2].

1.2. From the convex to the directionally convex order

Two random variables X and Y with the same mean E(X) = E(Y) can be compared by
how ‘spread out’ their distributions are. This statistical variability (in a statistical ensemble) is
captured to a limited extent by the variance, but more fully by convex ordering, under which X
is less than Y if and only if, for all convex f, E(f(A)) < E(f(B)). In multidimension, besides
different statistical variability of marginal distributions, two random vectors can exhibit different
dependence properties on their coordinates. The most evident example here is the comparison
between a vector composed of several copies of one random variable and a vector composed
of independent copies sampled from the same distribution. A useful tool for comparing the
dependence structure of random vectors with fixed marginals is the supermodular order. The
directionally convex order is another integral order (generated by a class of directionally convex
functions in the same manner as convex functions generate the convex order) that can be seen as
a generalization of the supermodular order, which in addition takes into account the variability
of the marginals (cf. [28, Section 3.12]). It can be naturally extended to random fields by
comparing all finite-dimensional distributions.

1.3. The directionally convex order of random measures

In this paper we make the further obvious extension of viewing the directionally convex
ordering of locally finite measures (to which PPs belong) as nonnegative fields of measure
values on all bounded subsets of the space. We show that the directionally convex order is
preserved under some of the natural operations considered on random measures and PPs, such
as independent superposition and thinning. Also, we examine the impact of the directionally
convex order on the second moment properties, in particular on clustering and Palm distribu-
tions.

1.4. Integral shot noise fields

Many interesting characteristics of random measures, in both theory and applications, have
the form of integrals of some nonnegative kernels. We call them integral shot noise fields. For
example, many classes of Cox PPs, with the most general being Lévy-based Cox PPs (cf. [12]),
have stochastic intensity fields, which are shot noise fields. They are also key ingredients of
the recently proposed, so-called ‘physical’ models for wireless networks, as we shall explain in
what follows (see also [1], [6], and [9]). It is therefore particularly appealing to study the shot
noise fields generated by directionally convex-ordered random measures.

Since integrals are linear operators on the space of measures, and knowing that a linear
function of a vector is trivially directionally convex, it is natural to expect that the integral
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shot noise fields with respect to directionally convex-ordered random measures will inherit
this ordering from the measures. However, this property cannot be concluded immediately
from the finite-dimensional directionally convex ordering of measures. The formal proof of
this fact, which is the main result of this paper, involves some arguments from the theory of
integration combined with the closure property of the directionally convex order under joint
weak convergence and convergence in mean.

1.5. Ordering in queueing theory and wireless communications

The theory of stochastic ordering provides elegant and efficient tools for the comparison of
random objects and is now being used in many fields. In particular, in queueing theory context,
Ross [32] conjectured that replacing a stationary Poisson arrival process in a single-server
queue by a stationary Cox PP with the same intensity should increase the average customer
delay. There have been many variations of this conjecture, which are now known as Ross-type
conjectures. They triggered interest in the comparison of queues with similar inputs (see [4],
[24], and [30]). The notion of a directionally convex function was partially developed and used
in conjunction with the proofs of Ross-type conjectures (see [20], [21], and [33]). Much earlier
to these works, a comparative study of queues motivated by neuron-firing models can be found
in [14] and [15]. Also, the comparison of variances of PPs and fibre processes was studied
in [34] and, hence, [34] can be considered as a precursor to our paper. The applicability of
these results has generated interest in the theory of stochastic ordering, as can be seen from
the diverse results in the book of Miiller and Stoyan [28]. As most works on the ordering
of PPs were motivated by applications to queueing theory, results were primarily focused on
one-dimensional PPs. An attempt to rectify the lack of work in higher dimensions was made
in [23], where comparison results for shot noise fields of spatial stationary Cox PPs were given.
The results of [23] are the starting point of our investigation.

Our interest in the ordering of PPs, and in particular in the shot noise fields they generate,
has roots in the analysis of wireless communications, where these objects are primarily used
to model the so-called interference, that is, the total power received from many emitters
scattered in the plane or space and sharing the common Hertzian medium. According to a
new emerging methodology, the interference-aware stochastic geometry modeling of wireless
communications provides a way of defining and computing macroscopic properties of large
wireless networks by some averaging over all potential random patterns for node locations
in an infinite plane and radio channel characteristics, in the same way as queueing theory
provides average response times or congestion over all potential arrival patterns within a given
parametric class. These macroscopic properties allow one to characterize the key dependencies
of the network performance characteristics in terms of a relatively small number of parameters.

In the above context, the Poisson distribution of emitters/receivers/users is often too sim-
plistic. Statistics show that the real patterns of users exhibit more clustering effects (‘hotspots’)
than observed in a homogeneous Poisson PP. On the other hand, a good packet-collision-
avoidance mechanism scheme should create some ‘repulsion’ in the pattern of nodes allowed
to access simultaneously the channel. This raises questions about the analysis of non-Poisson
models, which could to some extent be tackled on the grounds of stochastic ordering theory.
Interestingly, we shall show that there are certain performance characteristics in wireless
networks that improve with more variability in the input process.

1.6. Outline of the paper

In Section 2 we present the main definitions and state the main results concerning direc-
tionally convex ordering of the integral shot noise fields. In Section 3 we explore the various
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consequences of ordering of random measures. The proofs of the main results are given in
Section 4. Examples illustrating the use and application of the theorems will be presented
in Section 5. In Section 6 we sketch some of the possible applications of the results in the
context of wireless communications. Finally, we conclude with some remarks and questions
in Section 7. Appendix A contains some properties and extensions of stochastic orders that are
used in the paper.

2. Definitions and the main result

The order ‘<’ on R” shall denote the componentwise partial order, i.e. (xq,...,x;) <
1y -+., yn) if x; < y; for every i.

Definition 2.1. 1. We say that a function f: R? — R is directionally convex (dcx) if, for
every x,y, p,q € R?suchthat p <x,y <g,andx +y = p+q,

f@)+ ) = fp)+ f@).

2. A function f is said to be directionally concave (dcv) if the inequality in the above equation
is reversed.

3. A function f is said to be directionally linear (dl) if it is dcx and dcv.

A function f = (fi, ..., fu): R? — R" is said to be dcx or dev if each of its component f;
is dcx or, respectively, dcv. Also, we shall abbreviate increasing and dcx by idcx and decreasing
and dcx by ddcx. Similar abbreviations shall be used for dev and dl functions.

In the following, let § denote some class of functions from R“ to R. The dimension d is
assumed to be clear from the context. Unless mentioned otherwise, when we state E( f (X))
for f € § and a random vector X, we assume that the expectation exists, i.e. for each random
vector X, we consider the subclass of § for which the expectations exist with respect to X.

Definition 2.2. 1. Suppose that X and Y are real-valued random vectors of the same dimension.
Then X is said to be less than Y in the § order if E(f (X)) < E(f(Y)) forall f € § (for which
both expectations are finite). We shall denote this order by X <z Y.

2. Suppose that {X(s)}ses and {Y(s)}ses are real-valued random fields, where S is an
arbitrary index set. We say that {X(s)} <z {Y(s)} if, foreveryn > 1 and s1,...,5, € S,
(X(s1), ..., X(sn)) =5 (Y(s1), ..., Y(sn)).

In the remaining part of the paper, we mainly consider § to be the class of dcx, idcx, and
idcv functions; the negation of these functions gives rise to the dcv, ddcv, and ddcx orders,
respectively. If § is the class of increasing functions, we shall replace § by st (strong) in the
above definitions. Such notation is standardly used in the literature.

As concerns random measures, we shall work in the setup of [16]. Let E be a locally
compact, second countable (LCSC) Hausdorff space. Such spaces are polish, i.e. a complete
and separable metric space. Let B(E) be the Borel o -algebra, and let By (E) be the o-ring of
bounded Borel subsets. Let Ml = M(E) be the space of nonnegative Radon measures on E. The
Borel o-algebra M is generated by the mappings . — w(B) for all bounded Borel subsets B.
A random measure A is a mapping from a probability space (2, ¥, P) to (M, M). We shall
call a random measure ® a PP if ® € N, the subset of counting measures in M. Furthermore,
we shall say that a PP & is simple if, almost surely, ®({x}) < 1 for all x € E. Throughout,
we shall use A for an arbitrary random measure and @ for a PP. A random measure A can be
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viewed as a random field {A(B)}geg, ). With this viewpoint and the previously introduced
notion of ordering of random fields, we define ordering of random measures.

Definition 2.3. Suppose that A{(-) and A,(-) are random measures on E. Then we say that
A1(+) <gex A2() if, for any bounded Borel subsets /1, ..., I, in E,

(A1), -y A1In)) =dex (A2(11), ..., Aa(1p)). 2.1

The definition is similar for the other orders, i.e. when § is the class of idcx, idcv, ddcx,
ddcyv, or st functions.

Definition 2.4. Let S be any set, and let E be an LCSC space. Given arandom measure A on E
and a measurable (in the first variable alone) response function h(x, y): E x § — R*, where
Rt denotes the completion of the positive real line with oo, the (integral) shot noise field is
defined as

VA(y)=/Eh(x,y)A(dX)-

With this brief introduction, we are ready to state our key result, which will be proved in
Section 4.1.

Theorem 2.1. 1. If A1 <igex A2 then {Va,(M}yes <idex {(Va,(V)}yes, and if A1 <idev A2
then {Va, (¥)}yes <idev-

2. Let E(Vp,(y)) < ooforally € S,i = 1,2. If A1 <dacx A2 then {VAl(y)}yeS =dcx
{VAz()’)}yeS'

The first part of the above theorem for the one-dimensional marginals of bounded shot noise
fields generated by lower semicontinuous response functions is proved in [23] for the special
case of spatial stationary Cox PPs. It is conspicuous that we have generalized the earlier
result to a great extent. This more general result will be used in many places in this paper,
in particular to prove ordering of independently, identically marked PPs (Proposition 3.2),
Ripley’s functions (Proposition 3.4), Palm measures (Proposition 3.5), independently marked
Cox processes (Proposition 3.7), and extremal shot noise fields (Proposition 4.1). Apart from
these results, in Sections 5 and 6 we shall provide examples and applications that will amply
demonstrate the use of Theorem 2.1.

3. Ordering of random measures and point processes

We shall now give a sufficient condition for random measures to be ordered, namely that
condition (2.1) in Definition 2.3 needs to be verified only for disjoint, bounded Borel subsets.
The necessity is trivial. This is a much easier condition and will be used many times in the
remaining part of the paper.

Proposition 3.1. Suppose that A1(-) and A(-) are two random measures on E. Then
A1(+) <daex A2(") if and only if condition (2.1) holds for all mutually disjoint, bounded Borel
subsets. The same result holds true for the idcx and idcv orders.

Proof. We only need to prove the ‘if” part. We shall prove the result for the dcx order; the
same argument is valid for f being idcx or idcv. Let condition (2.1) be satisfied for all mutually
disjoint, bounded Borel subsets. Let f: R’j_ — R be a dcx function, and let By, ..., B, be
bounded Borel subsets. We can choose mutually disjoint, bounded Borel subsets Ay, ..., A,
such that B; = | J;,, A foralli. Hence, A(B;) = }_;c;, A(A)). Now define g: R} — R,
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as g(x1, ..., xp) = (Zjejl Xj, oo, ZjeJn x;). Then g is idl and so f o g is dex. Moreover,
f(A(B1), ..., A(By)) = fog(A(Ay), ..., A(Ay)) and, thus, the result for dex follows.

3.1. Simple operations preserving order

PPs are special cases of random measures and as such will be subject to the considered
ordering. It is known that each PP ® on an LCSC space E can be represented as a countable
sum ® = ) ; ey, of Dirac measures (¢,(A) = 1if x € A and 0 otherwise) in such a way that
X; are random elements in [£. We shall now show that all the three orders, dcx, idcx, and idcv,
preserve some simple operations on random measures and PPs, such as deterministic mapping,
independent, identically distributed (i.i.d.) thinning, and independent superposition.

Let ¢: E — E’' be a measurable mapping to some LCSC space E’. By the image of a
(random) measure A by ¢ we mean A'(-) = A((j)‘1 (+)). Note that the image of a PP ® by ¢
consists of a deterministic displacement of all its points by ¢.

Let ® =), &y,. By i.i.d. marking of ®, with marks in some LCSC space E’, we mean a PP
on the product space E x [E/, with the usual product Borel o -algebra, defined by & = D i € Zi)s
where {Z;} are i.i.d. random variables (RVs), so-called marks, on E'. By i.i.d. thinning of ®,
we mean ® = > i Ziey;, where Z; are i.i.d. 0-1 Bernoulli RVs. The probability P(Z = 1) is
called the retention probability. Superposition of PPs is understood as the addition of (counting)
measures. Measures on Cartesian products of LCSC spaces are always considered with their
corresponding product Borel o -algebras.

Proposition 3.2. Suppose that A;, i = 1,2, are random measures and that ®;, i = 1,2, are
PPs. Assume that A1 <dex A2, A1 Sidex A2, A1 Sidev A2, and @1 <gex P2, D1 Sidex P2,
D1 <idev P2

L. Let A} be the image of A;, i = 1,2, by some mapping ¢: E — E'. Then A} <qex A%,
A} Sidex A5, and A| <igev AS. As a special case, the same holds true for the
displacement of the ®; points by ¢.

2. Letthe ®;, i = 1,2, be simple PPs and let the ®;, i = 1,2, be the corresponding i.i.d.
marked PPs with the same distribution of marks. Then D) <dex P2, @ <idex Do, and
cI>] <idev q>2'

3. Let ®; be the i.i.d. thinning of ®;, i = 1,2, with the same retention probability. Then
CI>] <dcx CDZ: CI)] =idex (1)2, and CI>l =idcv CDZ

4. Let A and A}, be two random measures such that A| <qcx A5, A} <igex A5, and
A <idev A. Assume that the Als are independent of the A;s. Then A + A} <dcx
Ao+ A, A1+ A <idex Ao+ A, and A+ A <idev A2+ A, where ‘+’is understood
as the addition of measures.

5. Suppose that the random measures are on the product space B x E/. Then A1 (E x -) <gex
A2(E x ), A(E X ) <idex A2(E X +), and A1(E X -) <igey A2(E x -), provided that
the respective projections are Radon measures.

Proof. 1. The result follows immediately from Definition 2.3.

2. We shall prove that d~>1 <dex d~>2; the proof for the other orders is similar. Since [E is an LCSC
space, there exists a null array of partitions {B, j C E},>1, j>1,1.e. the {B, ;} ;> form a finite
partition of E for every n and max ;>1{| B, j|} = 0asn — oo, where | - | denotes the diameter
in any fixed metric (see [16, p. 11]). For every x € E, let j(n, x) be the unique index such
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thatx € B, j(u,x). Let Z= {Z,,j}n>1,j>1 be a family of E'-valued i.i.d. RVs with distribution
F(-). Define marked PPs by 5)? =D x,cd; E(Xp.Zn jnx,) fOT i = 1,2. We shall now verify

that the &D:' sequences satisfy the assumption of Lemma A.2 with limits ®;s, respectively.

Firstly, let By, ..., B, C E x E’ be bounded Borel subsets and let g: R” — R be a
continuous bounded function. Since the B;s are bounded and the &;s are simple, given
®;, i = 1,2, there almost surely (a.s.) exists an N(®;) € N such that, for n > N(P;),
the indices j(n, Xx) # j(n, X;) f05 Xy = X1, Xk, X; € ~d>,- N (B U - U B,,). Hence,
forn = N(®@;), E(g(®}(B1), ..., P}/ (Bn)) | i) = E(g(Pi(B1), ..., Pi(Bn)) | ¥;) and,
consequently, E(g(®%(B1), ..., ®7(By)) | ®;) — E(g(®;(B1),..., ®;(Bn)) | ®;) as. as
n — oo. Since g is bounded, by the dominated convergence theorem we have

E(g(®!(B1), ..., !(Bn))) — E(g(®i(By), ..., ®i(Bn))).

Thus, (<I>"(Bl) dD”(Bm)) 2 (CD” (B1), . dD”(Bm)) where * —> denotes convergence
in distribution. Secondly, it is easy to check that for By = B’ x B, we have E(CD" (B1)) =
E(<I> (B’ ))F(B ) = E(CID (B1)) and, hence, by an appropriate approximation, E(<I>"(B1)) =
E(®;(B))) for any bounded Borel subset Bj.

Finally, for any bounded Borel subset B C E xE’ and any realization Z = 7 = {zn,jln=1,j=1,
define VZ(B) = fE 1[(x, zn, j(n,x)) € B]®;(dx). Since z,, j(,) is a piecewise constant func-
tion, 1[(x, 24, j(n,x)) € B] is a measurable function in x and so the st are integral shot
noise fields (as per Definition 2.4) indexed by bounded Borel subsets of E x E’. Thus, from
Theorem 2.1 we have, for any dcx function f,

E(f(®(B)), ..., D1 (Bw) | Z=72) =E(f(Vi(B1), ..., Vi(Bw)))
<E(f(V5(B1), ..., V5i(Bn)))
=E(f(®5(B1), ..., P4(Bw)) | Z=172).

Now, taking further expectations we obtain

(D1 (B), ..., B (Bw)) <dex (P5(BY); ..., D5(By)).
Since the approximation satisfies the assumption of Lemma A.2, the proof is complete.

3. We need to prove that E(f(®(A1), ..., ®1(4,))) < E(f(P2(A}), ..., P1(Ay))) for dcx,
idc, and idcv functions f and mutually disjoint Ag, k = 1, ..., n; cf. Proposition 3.1. Note
that, given ®(Ay) = ng, we have ®(Ax) = Y 1%, ZK, where the ZF are i.i.d. copies of the
Bernoulli thinning variable. Thus, the result follows from the first statement of Lemma A.3.

4. Using the following facts from [28]:

X <ixY = X+Z=<4xY+7Z,

X <igxY = X+Z<yxY+Z,

X <idew?Y = X+Z<iywY+Z,
provided that Z is independent of X and Y, we can easily show that A| + A’l <dex Mo + A,
A1+ A} <igex A2+ A, and Ap + A} <idev A2 + A, assuming that A} is independent

of A,. The same argument shows that Ay + A <gex A2 + AS, Ao + A <igex A2+ A}, and
As + A} <idev A2 + A The result follows by the transitivity of the order.

5. This result follows easily from Lemma A.2, using an increasing approximation of E by
bounded Borel subsets.
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3.2. Impact on higher-order properties

We now state some results involving the ordering of moments of random measures and draw
some conclusions concerning the so-called second-order properties. These properties make it
possible to characterize the clustering in PPs.

By the kth power of the random measure A, we mean a random measure AX on the product
space EF given by AR(A] x -+ x Ap) = ]_[];:1 A(Aj). Its expectation, ok () = E(AK("), is
called the kth moment measure. The first moment measure, «(-) = o' (-), is called the mean
measure.

Proposition 3.3. Consider two random measures, A1 and Ay, such that A1 <igex A2. Then
A]f <idex Aé and otll‘(-) < otlz‘(-). Moreover, if A1 <gcx A2 then a1(-) = az(+).

Proof. By the standard arguments, we can approximate any bounded Borel subsets C;, i =
1,...,n,inEX by increasing unions of rectangles. By Lemma A.2 and using a similar argument
as in the proof of Proposition 3.1 about the composition of idcx and idl functions, to prove the
first statement, it is enough to show the respective inequality for the idcx function f: R” — R
taken on the values of the moment measures on n rectangles in E*. In this context, consider
the function g: R"™ — R, given by

g(yl,-u,ym)=f<l_[ Vjswees Hyj>,

jei Y

where Ji, ..., J, are k-element subsets of the set {1,...,m}. Note that, for nonnegative
arguments, if f is idcx then g is idcx.

The second statement follows easily from the first statement by the fact that f(x) = x is
idcx. For the first moment (mean measure), note that both f(x) = x and f(x) = —x are dcx.

We now explore the relation between dcx ordering and clustering of points in a PP. One of
the most popular functions for the analysis of this effect is Ripley’s K function, K (r) (reduced
second moment function); see [35, p. 129]. Assume that @ is a stationary PP on RY with finite
intensity A = a(B), where B is a bounded Borel subset of Lebesgue measure 1. Then

1
K(r):mE( > (@(Bxi(r))—1)>,

X,-e(bﬁG

where B, (r) is the ball centered at x with radius r and |G| denotes the Lebesgue measure of
a bounded Borel subset G; owing to stationarity, the definition does not depend on the choice
of G.

Proposition 3.4. Consider two stationary PPs ®;, i = 1, 2, with the same finite intensity, and
denote by K;(r) their Ripley K functions. If ®1 <gqcx D2 then K1(-) < Kz(+).

Proof. Let I; = E(ijed>,ﬂG(q>i(BXj (r)) — 1)), i =1,2. By the equality of mean mea-
sures (Proposition 3.3), it is enough to prove that I < I;. Note that /; can be written as the
value of some shot noise evaluated with respect to CI>l.2, the second product of the PP:

L= Y 1X;eGI0<|X; — X;| <r].
Xj,XkE(Di

Thus, the result follows from Proposition 3.3 and Theorem 2.1.
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Another useful characteristic is the pair correlation function defined on R? as g(x, y) =
p2(x,y)/p1(x)p1(y), where py is the kth product intensity, equal (outside the diagonals) to the
density of the kth moment measure o* with respect to the Lebesgue measure.

We avoid the discussion of questions relating to existence, etc. Corollary 3.1, below, follows
from Proposition 3.3.

Corollary 3.1. Consider two PPs, ®1 and ®;, such that &1 <qcx 2. Then their respective
pair correlation functions satisfy g1(x, y) < gx(x, y) almost everywhere with respect to the
Lebesgue measure.

3.3. Impact on Palm measures
For the following definitions and results regarding Palm distributions of random measures,

see [16, Section 10].

Definition 3.1. For a fixed measurable f such that 0 < E( f]E f(x)A(dx)) < o0, the f-mixed
Palm version of A, denoted by A y € M, is defined as having the distribution

E(fg f(x)A(dx) 1[A € M])

Py e M) = =g T oA@)

, M e M.

In the case where A (say on the Euclidean space E = R9) has a density {A(x)}, cra, we define,
for each x € RY, the Palm version A » of A by

E(A(x)1[A € M])

P(A, € M) = 5G.00) ., Me M.

Palm versions A, can be defined for a general random measure via some Radon—Nikodym
derivatives. However, we shall state our result for A, as defined above as well as for mixed Palm
versions A ¢ in order to avoid the arbitrariness related to the nonuniqueness of Radon-Nikodym
derivatives.

Proposition 3.5. Suppose that A;, i = 1,2, are random measures.

1. If A1 <dacx A2 then (A1) f <idex (A2) y for any nonnegative measurable function f such
that 0 < flE f(x)a(dx) < oo, where « is the (common) mean measure of Aj, i = 1, 2.

2. Suppose that A; has locally finite mean measure and, a.s., locally Riemann integrable
density Aj, i = 1,2. If (M1 (x)} <dex {A2(x)} then A1 <gcx A2 and, for every x € R4,
(A)x <idex (A2)yx.

Proof. 1. Let I; = fJE f(x)Ai(dx), i =1, 2. By Proposition 3.3, A1 <gcx A implies that
the mean measures are equal and, thus, E(/;) = E(/>). It remains to prove that

E@(A1(B1), ..., A(Bu) 1) < E(g(A2(B1), ..., A2(Bn))12)
for an idcx function g. This follows from Theorem 2.1 and the fact that
h(xp, x) = xog(x): R™ > R

is idcx, for nonnegative argument xg.
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2. The first part follows immediately from the second statement of Lemma A.4. For the second
part, use the same fact about 4 (xg, x) = xog(x) as above.

Remark 3.1. Compared to earlier results where dcx ordering led to dcx ordering, one might
tend to believe that the loss here (as dcx implies idcx only) is more technical. However,
the following illustrates that it is natural to expect so: consider a Poisson PP & and its
(deterministic) intensity measure «(-) (i.e. its mean measure () = E(®(-))). Using the
complete independence property of the Poisson PP and the fact that each dcx function is
componentwise convex, we can show that, for disjoint, bounded Borel subsets Ay, ..., A, and
any dex function f, f(a(A1),...,a(A,)) < E(f(®(A1),..., P(A))). Thus, ¢ <gx P.
It is easy to see that a(-) = «a(-) (the mixed Palm version of a deterministic measure is
equal to the original measure). Take f(x) = 1[x € A] for some bounded Borel subset A.
Then E(®f(A)) = E((<I>(A))2)/(x(A) = a(A) + 1 since ®(A) is a Poisson RV. Thus,
af(A) < E(Py(A)), disproving af(A) <dex Ps(A). Another counterexample involving
Poisson-Poisson cluster PPs will be given in Remark 5.2, below.

3.4. Cox point processes

We now consider Cox PPs (see, e.g. [35, Chapter 5.2]), also known as doubly stochastic
Poisson PPs, which constitute a rich class often used to model patterns that exhibit more
clustering than in Poisson PPs.

Recall that a Cox(A) PP ® 4 on E generated by the random intensity measure A(-) on E is
defined as having the property that ® 5 conditioned on A (-) is a Poisson PP with intensity A(-).
Note that Cox PPs may arise as a result of a transformation of a random measure.

We can easily show that this operation preserves our orders.

Proposition 3.6. Consider two ordered random measures, A1 and Ay, such that A1 <gex A2,
A1 <idex A2, and A1 <igev A2. Then ®p; <dex Pay Pa; Sidex Pa,, and Pp, <idev Pa,-

Proof. Taking a dcx, idcx, or idcv function ¢, assuming (by Proposition 3.1) mutually
disjoint, bounded Borel subsets Ay, k = 1, ..., n, and using the definition of Cox PPs and the
second statement of Lemma A.3, we show that, for i = 1, 2, the conditional expectation

E(@(®4; (A1), ..., Pa; (An)) | Ai),

given the intensity measure A;, is a dcx, idcx, or, respectively, idcv function of (A; (A1), ...,
Ai(Ay)). The result then follows from the assumption of the measures A; being dcx-ordered.

‘We now show, using Theorem 2.1, that dcx, idcx, and idcv ordering of Cox intensity measures
is preserved by independent (not necessarily identically distributed) marking and thinning, as
well as independent displacement of points of the PP.

By independent marking of the PP @ on E with marks on some LCSC space E' we mean a PP
o= Zi &(x;,Z;) such that, given ® = Zi &x;, Z; are independent random elements in E’, with
distribution P(Z; € - | ® = }_; €y,) = Fy, (-) given by some probability (mark) kernel Fy(-)
from E to E/. The fact that F (-) may depend on x (in contrast to i.i.d. marking) is sometimes
emphasized by calling ® a ‘position-dependent’ marking. Independent thinning can be seen
as the projection on [E of the subset ®(-, {1}) of the independently marked PP ®, where the
marks Z; € {0,1} = E’ are independent Bernoulli thinning variables Z; = Z;(x), whose
distributions may be dependent on x;. Similarly, the projection of an independently marked
PP ® = 3, &(x;.z;) on the space of marks I/, i.e. the ®(E x -) = 3, £z, can be seen as the
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independent displacement of points of ® to the space E'. Special examples are i.i.d. shifts of
points in the Euclidean space, when Z; = x; + Y;, where the Y; are i.i.d.

Proposition 3.7. Suppose that ®;, i = 1,2, are two Cox(A;) PPs. Assume that their intensity
measures are ordered A1 <gex A2, A1 <idex A2, and A1 <igeyv Ap. Let CiJ,-, i =1,2, be the
c~orrespom~iing independentl)imarked PPs with the same mark kernel F\ (-). Then o 1 <dex &32,
D1 <igex D2, and ®1 <igey Do.

From Proposition 3.7, and using the last statement of Proposition 3.2, Corollary 3.2, below,
follows immediately.

Corollary 3.2. Independent thinning and displacement of points preserves the dcx, idcx, and
idcv orders of the intensities of Cox PPs.

Proof of Proposition 3.7. Let ®; be Cox(A;), i = 1, 2. Assumethat A1 <gcx A2, Al <idex
Aj, and Ay <jgey Ap. It is known that mdependent marking of a Cox(A;) PP is a Cox(A )
PP with intensity measure A;onE x E given by Ai() = fE fE/ 1[(x, y) € -] Fx(dy)A;(dx);
cf. [35, Sections 4.2 and 5.2]. Let S be the family of bounded Borel subsets in E x E’; forx € E
and bounded Borel subsets C C E x E’, consider h(x, C) = f]E’ 1[(x, y) € C] Fx(dy). Then
the integral shot noise V, (C) = fEh(x C) A; (dx) satisfies V, (C) A; (C) for all bounded
Borel subsets C. Thus, by Theorem 2.1, A1 <dxe Az, Al <idxe Az, and A <igxy 1~\2, and the
result follows from Proposition 3.6.

If A() € M(R?) as. has a density {A(x)},cgre With respect to the Lebesgue measure then
the density is referred to as the intensity field of the Cox PP, which in this case will be called
the Cox()) PP and denoted by ©,,.

Itis known that the Cox PP is over-dispersed with respect to the Poisson PP, i.e. var(® (B)) <
var(®;(B)), where ®; and &, are respectively Poisson and Cox PPs with the same mean
measure. Hence, it is clear that a Cox PP can only be greater than a Poisson PP with the
same mean measure in the dcx order. Indeed, in Section 5 we show several examples where
this stronger result holds, namely Cox PPs that are dcx-ordered (larger) with respect to the
corresponding Poisson PPs, as well as Cox PPs dcx-ordered with respect to each other.

3.5. Alternative definition of the dcx order

We viewed a random measure as a random field and defined ordering from this viewpoint.
Alternatively, we can consider a random measure as an element of the space of Radon measures
M and define ordering between two M-valued random elements. This can be done once we
define what is a dcx function on M. The dcx order can be defined on more general spaces;
Meester and Shanthikumar [21] extended the notion of dcx ordering to lattice-ordered Abelian
semigroups with some compatibility conditions between the lattice structure and the Abelian
structure (LOAS™). The space M can be equipped with the following lattice and algebraic
structure. Consider the following partial order and addition operation on M: for u,v € M,
we say that 4 < v if u(B) < v(B) for all bounded Borel subsets B in E and (u 4+ v)(B) =
w(B) 4+ v(B). Under this definition, the space M forms an LOAS™, as required by [21]. Then
we can define a dex function on M as in Definition 2.1. Call it a dex! function. This gives rise
to the dex! order of random measures, analogously to the first part of Definition 2.2.

Now we have two reasonable definitions for the ordering of random measures. It is easy to
see that dex! ordering implies dex ordering. In light of Example 5.1.7 of [28], existence of a
counterexample to the converse looks plausible, though we failed in our attempts to construct
one. However, the result of [3] proves that convex ordering of real-valued stochastic processes
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{Xn}nen implies continuous, convex ordering of the corresponding elements of the infinite-
dimensional Euclidean spaces RY. This suggests that the dcx order of random measures may
imply a dex'™* order induced by some subclass of dex! functionals of random measures, which
are regular in some sense. Leaving this general question as an open problem, we only remark
that the integral shot noise fields studied in the next section can be seen as some particular
class of functionals of random measures, which are dex! (in fact, linear on M) and regular
enough for their means to satisfy the required inequality, provided that the random measures
are dex-ordered. It is thus natural to have them in the suggested dex'* class.

Recall also that, for the strong order of PPs, there is full equivalence between these two
definitions, and both imply the possibility of a coupling of the ordered PPs such that the smaller
one is a.s. a subset of the larger one; cf. [31].

4. Ordering of shot noise fields

In this section we prove Theorem 2.1, which concerns the dcx ordering of integral shot noise
fields and is the main result of this paper. We also consider the so-called extremal shot noise
fields.

4.1. Integral shot noise fields

Usually shot noise fields are defined for PPs by the following sum (thus, they are sometimes
called additive shot noise fields): Ve (y) = Zx,lab h(X,,y), where ® =) ¢ex, and his a
nonnegative response function. In Definition 2.4 we made a significant but natural generaliza-
tion of this definition. Itis fairly clear as to why we call this generalization an integral shot noise
field. The extension to unbounded response functions is not just a mathematical generalization.
It will provide us with a simple proof of the ordering of extremal shot noise fields for PPs.

The following proof of Theorem 2.1 is inspired by [23].

Proof of Theorem 2.1. We prove the second statement first. The necessary modifications
for the proof of the first statement will be indicated later on.

We need to show that (VI(y1),..., Vi(m)) <dex (VZO01), ..., VZ(ym)) for yi € S,
1 <i <mand V/I() = VAj (-), j = 1,2. The proof relies on the construction of two
sequences of random vectors (Vk] 1)y v ij m)), k =1,2,...,j = 1,2, satisfying the
assumptions of Lemma A.2.

Choose an increasing sequence of compact sets Ky, k > 1, in E such that K; ' E. Since
h is measurable in its first argument, we know that there exists a sequence of simple functions
hi (-, yi), k € N, such that, as k — oo, hi (-, yi) 1 h(-, y;) for 1 <i < m. They can be written
down explicitly as follows:

hi (-, yi) = v 1{x € Ki: h(x, y;) = oo}]
%o _q
+Y 5 1Hx € Ki: " < hix. ) < zr’—k”(o
n=1

for 1 < i < m, where yx = k2%, Set I}, = {x € Kx: (n — 1)/2% < h(x, y;) <n/2*} and

= {x € Kip: h(x,y;)) = oo} for1 <i <mand1 < n < y. Note that all the
I;,,n =1,...,00, are bounded Borel subsets and the sequence of random vectors we are
looking for is

i : “n—1 i
VLo = [ et 308, @0 = v (1) + 30 "5 A )
n=1
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for j = 1,2. By the definition of the integral, it is clear that, for j = 1,2, as k — oo,
V0., VI m) + (VI(3), ..., V/(ym)) as. and, hence, in distribution. By the
monotone convergence theorem, the expectations, which are finite by the assumption, also
converge. What remains to prove is that, for each k € N, the vectors are dcx-ordered.

Fix k € N. Now observe that, for_j =1,2andi =1,...,m, the V,é’ (y;) are increasing
linear functions of the vectors (Aj(Ilin): n=1,...,v%,00), j = 1,2. The latter are dcx-
ordered by the assumptions. Also, since composition of dcx with increasing linear functions is
dex, it follows that (V! (y1), - .., VL (m)) <dex (VDD - . VEm)).

We now prove the first statement. For vectors (Vk/ 1)y e-es Vk/ ym)), k = 1,2,...,
j = 1,2, defined as above, f(V/(31), ..., V/Gm)) + F(VIO1), ..., VI(ym)) as. for idex
and idev functions f, and, hence, E(f (V! (v1), ..., V{ m)) 2 EGF(VI(1), ..., VIGm))),
j = 1,2. The proof is complete by noting that

ECF(VL 51, VEGm) <EFVEGD, -y VEOm)))

for all £ > 1 and idcx and idcv functions f.

4.2. Extremal shot noise fields

‘We now recall the definition of the extremal shot noise, first introduced in [11].

Definition 4.1. Let S be any set, and let E be an LCSC space. Given a PP ® on E and a
measurable (in the first variable alone) response function i(x, y): E x § — R, the extremal
shot noise field is defined as
Uo(y) = sup {h(X;, y)}.
Xied

In order to state our result for extremal shot noise fields, we shall use the lower orthant (10)
order.

Definition 4.2. Let X and Y be random RY vectors. We say that X <o Y if P(X < 1) >
P(Y < 1) forevery t € RY.

On the real line, this is the same as the st order (i.e. when § consists of increasing functions),
butin higher dimensions itis different. Obviously, the st order implies the lo order, and examples
of random vectors which are lo-ordered but not st-ordered are known; see [28, Chapter 3]. Thus,
itis clear that the following proposition is a generalization of the corresponding one-dimensional
result in [23], where the proof method was similar to the proof of the ordering of integral shot
noise fields. We shall give a much simpler proof using the already proved result.

Proposition 4.1. Let 1 <ijgcy ©2. Then {Usp, (¥)}yes <io {Us,(¥)}yes-

Proof. The probability distribution function of the extremal shot noise can be expressed in
terms of the Laplace transform of some additive shot noise field. Let {x{,...,x,;} C S and
(ai,...,ay) € R™. Then

PUG) <ai, 1 <i<m)= E(H 1[sup{h (X, i) = m}])
E(]‘[]"[l[h(xn,y» < a,~1>
E(]‘[ [ [exptlog 1A (X,, yi) < am)

1 n
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= E(H exp(— Y —log1[h(X,, yi) < a,~1>>
i n

= E(exp(— Z 0(yi>)),

where U i) = Zn —log 1[h (X, yi) < a;] is an additive shot noise with response function
taking values in [0, oo]. The response function is clearly nonnegative and measurable. The
function f(xi, ..., x,) = exp(—Y_; x;) is a ddcx function on (—o0, co]. The result follows
by the first statement of Theorem 2.1.

The extremal shot noise field can be used to define the Boolean model. Given a (generic)
random closed set (see [35, Chapter 6]) G, let h((x, G), y) = 1[y € x + G].

Definition 4.3. For a PP of germs ¢ and a typical grain G, the random set C(®,G) =
{y: Uz(y) > 0} is called a Boolean model, where ® = > ex;.G;) is the ii.d. marking of
@ with mark distribution equal to that of G.

We call G a fixed grain if there exists a closed set B such that G = B a.s. We shall
demonstrate in Section 6.1 how to obtain comparison results for the Boolean model using the
results of this section.

5. Examples of dcx-ordered measures and point processes

In this section we provide some examples of dcx-ordered measures and PPs on the Euclidean
space E = R?. The examples are intended to be illustrative and not encyclopaedic. The
purpose of the examples is to show that there are dcx-ordered PPs, as well as to demonstrate
some methods to prove that two PPs are dcx-ordered. Many of the examples seem to indicate
that PPs higher in dcx order cluster more, at least for Cox PPs.

5.1. Ising—Poisson cluster point processes

Let {A(s)};cre be a stationary random intensity field. Define two new fields, one which is
random but constant in space {A,,(s) = A(0)} and another one which is deterministic constant
{An(s) = E(A(0))}. Cox(Ap) is known as a mixed Poisson PP, and Cox(Aj) is just the well-
known homogeneous Poisson PP. Denote the random intensity measures of the Cox, mixed,
and homogeneous Poisson PPs, by A, A,,, and A, respectively (i.e. A(dx) = A(x) dx, etc.).
It was proved in [23] that A <gcx A, and, when {A(s)} is a conditionally increasing field,
that A, <gex A. Recall that a random field {X (s)} is a conditionally increasing field if, for
any k and sy, ..., 8, € R, the expectation E(f (X (s1)) | X(s;) = aj forall2 < j < k) is
increasing in a; for all increasing f. However, no example of a conditionally increasing field
was given in [23]. Now we construct one.

Consider the d-dimensional lattice Z¢. Let {X (2)},ez¢ be iid. RVs taking values in
{+1, —1}. Call {X(z)} a (random) configuration of spins. In order to obtain a stationary
field, consider a random shift of the origin of 74 to U with uniform distribution on [0, l]d
(U independent of {X (z)}). Let the lattice shifted by U be denoted by Z‘,f. Pick two numbers
s < 1. Fors € RY, define A(s) = puy 1[X (§) = 114 ua 1[X (§) = —1], where § represents
the unique ‘lower-left’ point in ng nearest to s. The intensity field is clearly stationary. We
now show that {A(s)} is conditionally increasing. Note that

S () =1[x(s) = 1(f (n1) — f(m2)) + f(pn2).
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From Theorem 1.2.15 of [28], it is sufficient to show the conditional increasing property
conditioned on U, the random origin of the lattice Zf. Hence, it is enough for the Ising
model to possess the following property:

PX(z) =11 X(z) =1, X(zj)) =aj, j =3,...,k)
<PXG)=1|X@) =1, X@))=a;, j=3,...,k),

where a; € {+1,—1}and z; € Z%, i = 1,...,k. This follows easily from the fact that the
spins are i.i.d.

We call the Cox PP generated by the above conditionally increasing field {A(s)} the Ising—
Poisson cluster PP. By the arguments presented in [23], it is dcx larger than the homogeneous
Poisson PP with the same intensity. Note that intuitively the Ising—Poisson cluster PP ‘clusters’
its points more than a homogeneous Poisson PP. In what follows, we shall see more examples
of cluster (Cox) PPs which are dcx larger than the corresponding homogeneous Poisson PPs.

5.2. Lévy-based Cox point processes (LCPPs)

This class of PPs is introduced in [12]. One can find many examples of LCPPs in the above-
mentioned paper. In simple terms, an LCPP is a PP whose intensity field is an integral shot
noise field of a Lévy basis. A random measure L € M(R?) is said to be a nonnegative Lévy
basis if

o for any sequence {A,} of disjoint, bounded Borel subsets of R4, L(A,) are independent
RVs (complete independence ) and L(UA,) = Y L(A,) a.s., provided that UA,, is also
a bounded Borel subset of RY,

e for every bounded Borel subset A of R?, L(A) is infinitely divisible.

We shall consider only nonnegative Lévy bases, even though there exist signed Lévy bases too
(see [12]). Hence, we shall omit the reference to nonnegativity in what follows.
A Cox PP & is said to be an LCPP if its intensity field is of the form

uw=/kwwumx
]Rd

where L is a Lévy basis, and the kernel k is a nonnegative function such that k(x, y) is a.s.
integrable with respect to L and k(-, y) is integrable with respect to the Lebesgue measure.
In [12] the response function k and the Lévy basis L are chosen such that || pA(y)dy < ocoas.
for all bounded Borel subsets B, for which a sufficient condition is f g EA())dy < oco. Inour
considerations, in order to be able to use Lemma A.4, we shall require that A(y) is a.s. locally
Riemann integrable.

Remark 5.1. Note that a sufficient condition for A(y) to be a.s. locally Riemann integrable is
that A(y) is a.s. continuous, for which, in turn, it is enough to assume that k is continuous
in its second argument and that, for all x € R4, there exist B, (¢y), €, > 0, such that
-/]Rd SUP,ep. (e,) kK(2, Y)a(dx) < oo for all y, where a(B) = E(L(B)), the mean measures of
the Lévy bases (cf. [1]).

Lemma 5.1. Let L| and L, be Lévy bases with mean measure o;. Let ®;, i = 1,2, be LCPPs
with Lévy bases L;i, i = 1,2, respectively.

1. Ly <dex L2, L1 <idex L2, and Ly <igey Lo if and only if L1(A) <cx L2(A), L1(A) <icx

L>(A), and L1(A) <icy L2(A), respectively, for all bounded Borel subsets A of R,
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where cx, icx, and icv respectively stand for convex, increasing convex, and increasing
concave.

2. If L1 <dex L2, L1 <idex L2, and Ly Sidev Lo, then @1 <gcx @2, 1 <idex P2, and
Q1 <igev D2, respectively, provided that the intensity fields Ai(y) of the ®; are a.s.
locally Riemann integrable with these integrals, in the dcx case, having finite means.

3. o <gex Li.

Proof. The first part is due to Proposition 3.1 and the complete independence property of
Lévy bases. As for the second part, it is a simple consequence of Theorem 2.1, Lemma A .4, and
Proposition 3.6. The third part follows from complete independence and Jensen’s inequality.

We now give some examples of dcx-ordered Lévy bases.

Example 5.1. Let {x;} be a locally finite deterministic configuration of points in RY. Let
{X;’}izl, j = 1,2, be an i.i.d. sequence of infinitely divisible RVs such that X} <cx X% (For
example, X f can be the sum of two independent exponential RVs with mean % and X % can be
an exponential RV with mean 1.) Define the Lévy bases as follows:

LjA) =3 X/,

Xi€A

where A is a bounded Borel subset of R? and j = 1,2. By Lemma 5.1 and the fact that
X% <cx X%, it follows that L| <gex L.

Example 5.2. Let® = Y, &(,,.z,) be ahomogeneous Poisson PP on R¢ independently marked
by RVs {Z;} with mean Xy. Consider two random measures, A| = Z(x,-, Zed Ao€y; and
Ay = Z(x,-,zi)eé Ziey;. Note that the L;, i = 1,2, are Lévy bases. By Lemma 5.1 and the
fact that Lo <¢x Z;, conditioning on the number of points and using the same argument as in

the proof of the second statement of Proposition 3.2, we can prove that A1 <qcx Az.

5.3. Poisson-Poisson cluster point processes

By a Poisson-Poisson cluster PP we mean an LCPP whose Lévy basis is a Poisson PP. This
class deserves a separate mention due to the generality of the ordering results that are possible.
For the rest of the section, assume that 4(x) is a nonnegative measurable function such that
Jra h(x)dx =2 < 0.

We now give an example of a parametric family of dcx-ordered Poisson-Poisson cluster PPs.
Fix A > 0. Let ®., ¢ > 0, be a family of homogeneous Poisson PPs on R? of intensity cA. Let
a nonnegative function /2: R? x R? — R be given, and consider a family of shot noise fields
rAe(y) = fRd (h(x,y)/c) ®.(dx), which are assumed to be a.s. locally Riemann integrable with
fB E(A:(y)) dy < oo for bounded Borel subsets B.

Proposition 5.1. The family of shot noise fields {A:(y)},cgra is decreasing in the dcx order,
i.e. for 0 < c1 < ¢, we have {Ae, (¥)} Zdex {Ahe; ()} Consequently, Cox(A¢y) <dex Cox(A¢)).

Proof. Notethat {A.(x)}canbe seen as a shot noise field generated by the response function i
and the Lévy basis L. = (1/c)®;,.. By Lemma 5.1 and Theorem 2.1, it is enough to prove that
L., (A) <cx L¢ (A) for bounded Borel subsets A and ¢; > ¢; > 0.

Since X <. Y implies that aX <. aY for all scalars a > 0, it suffices to prove that
Lcq(A) <cx Ly(A) for bounded Borel subsets A, ¢ > 1,and a > 0. This essentially boils down
to proving that Ny <cx ¢Ng, ¢ > 1,a > 0, where N, stands for a Poisson RV with mean a.
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Let {X!}1<i<n and {¥]'}1<i<u, n > 1, be i.i.d. sequences of Bernoulli RVs with probabilities
of success ca/n and a/n, respectively, withn > ca. Let X" = Y7 X' and Y" = Y7, Y.
It is well known that X" and Y” converge weakly to N, and N, respectively, as n — co. As
the convex order preserves weak convergence, we need only prove that X" <. c¢Y". By the
independence of summands, it is enough to prove that X l" <cx ch.", which we shall do in what
follows. Let f be a convex and differentiable function. Define

g(e) :=E(f(X})) —E(f(cY}") = Z{C(f(l) — f(0) = fo) + f(O)}.

Note that g(1) = 0. Hence, our proof is complete if we show that g is decreasing in ¢ > 1.

Indeed,
g'(c) = Z{(f(l) — £(0) — (o)}
= 2(f'®) = ')
<0, b<ec,

where b € (0, 1) by the mean value theorem and f” is increasing due to convexity.

A Poisson-Poisson cluster PP can also be dcx compared to a homogeneous Poisson PP. Let
® and @’ be homogeneous Poisson PPs with intensities A < 0o and A x Ag, respectively. Define
uy) = ZX,-ed) h(X; —y). Let ®” be Cox(u(x)).

Proposition 5.2. Let @, &/, and {u(y)} be as above. Assume that p(y) is a.s. locally Riemann
integrable and that E(u(y)) = E(u(0)) < 0o. Then @' <gex @

Proof. By the last statement of Lemma 5.1 we have A(dx) <gcx ©(dx). Note that A x Ao =
fRd h(x — y)A(dx) and, thus, by the second statement of Theorem 2.1 (note the assumption
E(u(y)) < 00), {A x Ao} <dex {1 (y)}, where the dcx smaller field is a deterministic constant.
The result now follows from the second statement of Lemma A.4, by the assumption that 1 (y)
is a.s. Riemann integrable, and by observing that E(fA w(y)dy) = E(u(0)) fA dy < oo forall
bounded Borel subsets A.

Remark 5.2. Consider a Poisson PP &’ and Cox(u) as in Proposition 5.2. It is known that
the Palm version (given a point at the origin) of @ can be constructed taking ®" + g9. By [25,
Proposition 2], analogously, the Palm version of Cox(u) can be taken as Cox(u) + g9 + @”,
where ®” is an independent Cox (i) Poisson PP with intensity 2(y — &), where & is sampled
from the distribution /(dx)/ f h(y)dy. This shows that we cannot expect dcx ordering of the
Palm versions of ®" and Cox(u).

5.4. Log Cox point processes

This class of PPs is defined by the logarithm of their intensity fields.
An extension of an LCPP studied in [12] is a log Lévy-driven Cox process (LLCPP). Under
the notation of the previous subsection, a PP @ is said to be an LLCPP if its intensity field is

given by
Ay) = exp(/R{ k(x, y)L(dx)).

Hellmund et al. [12] allowed for negative kernels and signed Lévy measures, but these do not
fit into our framework. Suppose that L1 <jgex L. Then @ <ijgex ©2, where ®;, i =1, 2, are
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the respective LLCPPs of L;, i = 1, 2, with kernel k(-, -). These are simple consequences of
Theorem 2.1 and the exponential function being icx.

Another class is the log Gaussian Cox process (LGCP) (see [27]). A PP & is said to be
an LGCP if its intensity field is A(y) = exp(X(y)), where {X(y)} is a Gaussian random
field. Suppose that {X;(y)}, i = 1,2, are two Gaussian random fields. Then {X{(y)} <idcx
{X2(y)} if and only if E(X(y)) < E(X2(y)) for all y € R? and cov(X;(y1), X1(y2)) <
cov(X2(y1), Xa2(y)) forall yy, yp € R4. From the composition rules of the idcx order, it is clear
that idcx ordering of Gaussian random fields implies idcx ordering of the corresponding LGCPs.
An example of a parametric dcx-ordered Gaussian random field is given in [23, Section 4].

5.5. Generalized shot noise Cox processes (GSNCPs)

This class of Cox PPs was first introduced, and its various statistics studied, in [26]. In simple
terms, these processes are Cox PPs whose random intensity fields are shot noise fields of PPs.
We say that a Cox PP is a GSNCP if the random intensity field {A(y)},cpe driving the Cox PP
is of the form A(y) = Z Yikp;(cj, y), where (cj, bj, y;) € P, aPPoan x (0, 00) x (0, 00).
Also, we impose the followmg condition on the kernel k: kp;(cj, y) = ki(cj/bj, y/bj /b4,
where k1(cj, -) is a density with respect to the Lebesgue measure on R?. We shall denote the
GSNCP driven by ® as ®C. This class includes various known PPs, such as Neyman—Scott
PPs, Thomas PPs, Matérn cluster PPs, among others. The case where the b j$ are constants
and {(c;, yj)} is a Poisson PP is called the shot noise Cox process (see [25]). Shot noise Cox
processes are also LCPPs. Consider two PPs, & and ®;, such that & <dCX <I>2, D <idex D2,
and ®; <jgcy 2. Then, from Theorem 2.1, we infer that <I> <dex <I> <I> <idex CDg, and
q) <idev q)G-

5.6. Ginibre-radii-like point processes

Let {®;};>0 be an i.i.d. family of PPs on R™. So, the points of each PP ®; can be sequenced,
based on their distance from the origin. Let ® be the PP formed by picking the ith point of
®; for i > 1. From now on we shall abbreviate ® ([0, b]) to ®(b) for b > 0; we similarly
abbreviate the other PPs used. Note the following representations for ® (b) and ®(b):

O(b) =) 1UD(b) = kl,  Do(b) = Y _1[Do(b) > kI.

k=1 k=1

Let
m m
O (b) =Y UGed) =k, DY) =Y 1[o(bd) = k.

k>1 k>1
By Lorentz’s inequality (see [28, Theorem 3.9.8]), it follows that (®1(b), ..., P (D)) <sm
(Do(b), ..., Do(b)), where sm stands for supermodular (see [28, Section 3.9]). Define the
function f: N™ — R as follows: f(ny,...,nm) =Y ;- 1ng > k]. It is easy to verify that
both f and — f are sm and that f(n A m) < f(n), f(m) < f(n v m). Consequently, g o f is
sm, provided g is cx and

E(g(®" (b)) =E(go f(®1(D), ..., P (b))
<E(go f(®o(b), ..., Po(D)))
= E(g(25 (D).
Hence, ®"(b) < CDg’ (b), and using Lemma A.2, we obtain ®(b) <.x ®o(b). To complete

the proof, that is, to prove that ® <g.x ®o, we would require a multivariate generalization of
Lorentz’s inequality, which we have been unable to prove.
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We now explain the reasons for considering the above PP ®. If we assume that the ®;
above are Poisson then @ is known to be a representation of the PP of the squared radii
|<I>G|2 = {|X, |2 : Xn € g} of the Ginibre process g (see [13] and [18]). It has been observed
in simulations that this determinental PP exhibits less clustering than the homogeneous Poisson
PP. Our result can be seen as a first step towards a formal statement of this property.

6. Applications to wireless communication networks

From the point of view of applications of our main result, it remains to provide examples
of interesting dcx functions. In what follows, we provide such functions arising in the context
of wireless networks. In many of the models we have assumed ordered PPs with i.i.d. marks.
However, owing to Proposition 3.7, the results hold for independently marked Cox PPs, provided
the respective intensity measures are ordered.

6.1. Coverage process with independent grains

The Boolean model C(®, G) defined earlier (see Definition 4.3) is the main object of
analysis in the theory of coverage processes (see [10]). The percolation properties of the
Boolean model have been studied in [22], while the connectivity properties of the Boolean
model have been studied in [29]. For ® as in the Definition 4.3 of the Boolean model, denote
by V(y) = Z(X,-,G,-)eé 1[y € X; + G;] the number of grains covering y € R¢. Denote by

¥ (s, ..., Sp) the joint probability generating functionalv PGF) of the number of grains covering
locations yi, ..., y» € R?, ¥ (s, . o Sp) = E(]_[’;Zl 5 y’)), s; >0, j=1,...,n. Note that
the function g(vy, ..., v,) = ]_[;’ sj" is idex when s; > 1 forall j = 1,...,n and is ddcx

when 0 < s; < 1 for all j. Thus, the following result follows immediately from Theorem 2.1,
Proposition 3.2, and Proposition 3.7.

Corollary 6.1. Let ®;, i = 1,2, be simple PPs (of germs) on R%. Consider the corresponding
Boolean models with the typical grain G and, as above, denote the respective coverage number
fields by {V;(y)} and their PGFs by ;. If &1 <gcx P2, ®1 <igex D2, and ®| <igev P2, then
(Vi) Zdex (V2L AVIOD)} Sidex (V2(0)), and {Vi(y)} Sidev {Va(y)}, respectively, with
the result for the dcx order holding provided that E(V;(y)) < oo for all y. In particular, if
P <igex P2 then E(Vi(0)P) < EVa(0)P) forall B = 1. If @1 <igex P2 and @1 <gdex P2

then Y1(s1, ..., 8n) < Y2(s1,...,8,) for s; > 1 and, respectively, s; <1, j=1,...,n.
Note that 1 — (0, ..., 0) represents the expected coverage measure, i.e. the probability of
whether locations yy, . .., y, are covered by at least one grain. It was shown in [10, Section 3.8]

that the expected one-point coverage (or volume fraction in the case of stationary PPs) for a
stationary Cox PP and some clustered PPs is lower than that of a stationary, homogeneous
Poisson PP.

Coverage processes arise in various applications. In particular, in wireless communications
the points of the PP (germs) usually represent locations of antennas and their grains the respective
communication regions. In this context, V (y) is the number of antennas covering the point y
and the coverage measure is the indicator that at least one of them is able to reach y. The
application of the Boolean model to the modeling of wireless communications dates back to
Gilbert [8] in 1961.

6.2. Random geometric graphs (RGGs)

This class of graphs has increasingly found applications in spatial networks. For a detailed
study of these graphs, see [29]. A random geometric graph is defined as a graph with vertex
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set & and edge set E = {{X;, X;}: |X; — X;| < r}. Clearly, this is related to the Boolean
model defined in the previous subsection. One of the objects of interest in an RGG is the
typical degree. Under the notation of the previous subsection, the typical degree (denoted by
deg(®, G)) for an RGG formed by a stationary PP @ and grain distribution G is

deg(®, G) = > X € AILLX; # X;110(X; 4+ G) N (X; +G) # 2],
klAlX X€<I>

where A is a bounded Borel subset. If G = By(r), r > 0, then E(deg(®, G)) = K(r)
is Ripley’s K function defined in Section 3.2. Corollary 6.2, below, follows easily from
Theorem 2.1, Proposition 3.3, and Proposition 3.7.

Corollary 6.2. Consider two simple PPs, ®1 and ®», such that ®1 <gcx P2. Then
deg(®1, G) <idex deg(®2, G).

6.3. Interference in wireless communications

The Boolean model is not sufficient for analyzing wireless networks, as it ignores the fact
that in radio communications signals received from one particular transmitter are jammed by
the signals received from the other transmitters. According to information theory, as well
as existing technology, the quality of a given radio communication link is determined by the
so-called signal-to-interference-and-noise ratio (SINR) at the receiver of this link. From a
mathematical point of view, the interference in the above considerations is just the sum of the
powers of the signals received from all transmitters (except perhaps own transmitter(s)). It is
then the shot noise field of received powers that plays an important role in determining the
connectivity and the capacity of the network in a broad sense. The foundations of the theory of
SINR coverage processes are quite recent (see [1], [2], [6], and [9]). In what follows, we study
the impact of the structure of the PPs of interferers on given radio links.

Consider a set of n emitters {x;} and n receivers {y;}. Suppose that the signal received by y;
from xj is Sk;. These {S;x} are assumed to be independent. The assumption of independence
is due to the phenomenon of fading. Let the set of additional interferers be modeled by an i.i.d.
zm)> independent of {S;;}, where Z" is the power received by the

receiver y; from the mterferer located at X ;. Denote the background noise RV by W.

We say that the signal from x; is successfully received by y; if S;;/(W+ 1L +V;)) > T,
where I; = ) ki Sii is the interference received at y; from the set of other emitters {xz : k # i},
the V; = Z Zj are the interferers in ®, and T > 0 is some required SINR threshold (assumed
to be constant) Let p denote the probability of successful reception of signals from each x; to
vi. Then

p=P(Sii > (W1 + V)T foralli = 1,...,n) =E(H Fi(T(W + I; + Vi))), (6.1)
i

where Fj;(s) = P(S;; > s) and the second equality is due to independence. Given {I;: i =
1,...,n} and W, the expression under the expectation in (6.1) can be viewed as a function of
the value of the shot noise vector (V1, ..., V,) evaluated with respect to ®. Theorem 2.1 and
Proposition 3.7 imply the following result concerning the impact of the structure of the set of
interferers on p.
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Corollary 6.3. Consider emitters {x;}, receivers {y};, and powers {Si;} as above. Let &, u=
1,2, be two simple marked PPs of interferers. Denote by p,, u = 1,2, the probability of
successful reception given by (6.1) in the model with the set of interferers ®,. Assume that
the product of the tail distribution functions of the received powers, [;_, Fji(s;), are dex. If
D1 <ddex P2 then p1 < p.

It is quite natural to assume that ]_[?: 1 Fii(si) is ddcx. For example, the constant emitted
power P, omni-directional path-loss function /(r), and Rayleigh fading in the radio channel
implies that Sx; = P Hy;/l(|xx — yi|), where | Hg;| are i.i.d. exponential RVs with mean 1. In
this case, ]_[;7=1 Fi; (s;) is ddcx. Recently, in [7], under the assumption of Rayleigh fading, direct
analytical methods have been used to compare the probability of successful reception in Poisson
PPs and a class of Poisson-Poisson cluster PPs, known as Neyman—Scott PPs, for both stationary
and Palm versions. These results rely on explicit expressions for this probability to be known in
the considered cases. Furthermore, it is shown that, for a certain choice of parameters, the Palm
version of the Poisson-Poisson cluster PP has a worse probability of successful reception than
the Poisson PP. In our terminology, this simply means that the corresponding Palm versions
are not ddcx-ordered, as the connectivity probability is a ddcx function (6.1) of the integral shot
noise fields of the corresponding Palm versions. This strengthens Remark 5.2 by showing that
idcx ordering of Palm versions is the best we can obtain in full generality.

7. Conclusions and open questions

To the best of the authors’ knowledge, this is the first study of dcx ordering of random
measures and PPs. We have defined the dcx order and characterized it using finite-dimensional
distributions of the measure values on disjoint, bounded Borel subsets of the space. In our main
result we proved that the integrals of some nonnegative kernels with respect to dcx-ordered
random measures inherit this ordering from the measures. This was shown to be a very useful
tool in the study of many particular characteristics of random measures, and in the construction
and analysis of stochastic models.

In this paper we have left several open questions. Here we briefly summarize them.

e Our dcx order is defined via finite-dimensional distributions of random measures. This
makes the verification of the dcx order easier, but requires additional work when studying
functionals, which cannot be explicitly expressed in terms of the values of the measure
on some finite collection of bounded Borel subsets as, for example, an integral of the
measure. Considering a dex'* order on the space of measures could facilitate the former
task. However, the precise regularity conditions of the dex'* functional on the space of
measures which would guarantee the equivalence between these two approaches are not
known (cf. Section 3.5).

e Comparisons of Ripley’s functions (see Proposition 3.4) and pair correlation functions
(Corollary 3.1) seem to indicate that PPs higher in the dcx order cluster more. We have
shown examples of PPs which are larger than Poisson PPs, namely Cox PPs, which indeed
exhibit more clustering than Poisson PPs. It would be interesting to show examples of
PPs which are dcx smaller than Poisson PPs, and which exhibit less clustering. Matérn
‘hard core’ PPs and Ginibre PPs are some natural candidates for this.

e We have studied dcx orders that take into account the dependence structure and the
variability of the marginals or random measures. It seems plausible to study in a similar
manner other orders such as the convex order, the componentwise convex order, etc. Note,
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however, that the supermodular order does not seem to be a reasonable one in the context
of random measures. The reason being that it allows us to compare only measures with
the same finite-dimensional distributions, and, thus, a Poisson PP can only be (trivially)
compared in this order to itself. Indeed, Poisson finite-dimensional distributions imply
the total independence property and, thus, uniquely characterize Poisson PPs (cf. [5,
Lemma 2.3.1]).

Appendix A

In order to make the paper more self-contained, we now recall some basic results on stochastic
orders used in the main stream of the paper.

Lemma A.1. ([28, Chapter 3].) 1. A twice differentiable function f is directionally convex if

and only if for all x,
2

E)xi ax]'

fx) =0, 1<i,j<n.

2. The stochastic order relation ‘<ycx ' is generated by infinitely differentiable dcx functions.

Owing to the above lemma, in some places we only prove that two random vectors are ordered
with respect to twice differentiable dcx functions and conclude that they are dcx-ordered.
D . . . .
We denote by ‘—’ convergence in distribution (weak convergence).

Lemma A.2. ([28, Chapter 3].) Let (X®: k=1,..)and Y®: k = 1,...) be sequences of
random vectors. Suppose that X® <qx Y® forallk e N. If X% = X and Y® S ¥, and
if, moreover, E(X®) — E(X) and E(Y®) — E(Y), then X <qcx Y.

Lemma A.3. ([20, Lemmas 2.17 and 2.18].) 1. Fori = 1,...,m, let (S;: j=1,...) be
independent sequences of i.i.d. nonnegative RVs. If f isdcx, idcx, oridcv, then g(ny, ..., ny,) =
E(f(X:';':1 Sjl., e Z’;il S;?’)) is also dcx, idcx, or idcv, respectively.

2. Let Ni, i = 1,...,k, denote k mutually independent Poisson RVs, where the mean of Nj is
ri. If ¢ Nk — R is dex, idex, or idcv, then g1, ..., Ax) = E(@(Ny, ..., Ny)) is also dcx,
idcx, or idcv, respectively.

The first part of the following lemma is an easy extension of the one-dimensional version
in [20]. The second part, which we prove in what follows, is a further extension of it.

Lemma A.4. Suppose that {X (s)},cra and {Y (s)}scra are two nonnegative, real-valued, and
a.s. locally Riemann integrable random fields. For some n > 1 and disjoint, bounded Borel
subsets 11, ..., I, define J; = f[i X(s)ds and J}, = fli Y (s)ds.

L IF{X()} <idex (Y($)} or {X(9)} <idev {Y(5)}, then (J, ..., J2) <idex (Jy, ...\ T

or (J1 e, J)’}) <idev (J}, e, J)’}), respectively, for any n and any disjoint, bounded
Borel subsets 1, . . ., I,.

2. Suppose further that E( [ 4 X (x)dx) < oo for all bounded Borel subsets A in R?, and
similarly for {Y (X)}. If {X (x)} <dex {Y (x)} then (J 3y, ..., J%) <dex (Ji, ..oy ).

Proof. We prove part 2 for d = 1, and, as can be seen from the proof, the generalization is
fairly straightforward.

We need to prove that (fll X(s)ds, ..., fln X (s)ds) <gex (f]l Y(s)ds, ..., f,ﬂ Y (s) ds) for
I;, i = 1,...,n, disjoint bounded Borel subsets. We give an approximation satisfying the
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assumptions of LemmaA.2. Let I; = [a;, bi], a;, b e R,i =1,...,n. Let{(t;inj)lfjfkm’ i =
1, ..., n} be the sequences of the mth nested partition of each interval. The middle Riemann

sum can be given as X" ([;) = Zj X(tjnj)(tjn(j+l) - trinj), i=1,...,n,k €N, and similarly
for Y (x). These are the variables satistying the approximation in Lemma A.2. As X(s) is

Riemann integrable,
X", .. XM(L) = (Jyo oo IR as.

and, hence, in distribution. It is also clear that the middle Riemann sums of X () and Y () are
ordered. What remains to prove is that E X" (/;) — E J)"(. In the last term, by Fubini, we
can interchange the expectation and integral and, hence, it suffices to prove that E(X" ([;)) —
f I E(X (s)) ds. Our assumption implies that this is true.
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