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ON A FUNCTIONAL DIFFERENTIAL EQUATION
IN LOCALLY CONVEX SPACES

SADAYUKI YAMAMURO

The notion of accretiveness for multi-valued nonlinear maps is
defined in locally convex spaces and it is used to obtain a
locally convex space version of a result of M.G. Crandal! and

J.A. Nohel.

0. Introduction

The aim of this note is to obtain a locally convex version of a result
of Crandall and Nohel [2] about the existence of a unique solution of an
initial value problem, where the functions involved have their values in a
Banach space. The differential equation in the problem contains a multi-
valued map on this Banach space. We shall replace this Banach space with a
class of locally convex spaces. To carry out this project, we shall use a
method which has been introduced in [6] and developed in [7] and [§]. We

begin with a brief account of this method.

1. T-completions of locally convex spaces

Let E be a vector space and p be a semi-norm of E . A sequence

{z;) in E is said to be p-Cauchy if p(xi—xj) -0 as ©,J *® . Two
p-Cauchy sequences (:z:t) and (ytl are said to be equivalent if
ple;-y,) +0 as >
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let (x,b) be a p-Cauchy sequence and x be the set of all p-Cauchy
sequences in FE which are equivalent to (xt) . Buch a set x 1is called

a p-class on E . The set of all p-classes on E will be denoted by
E[p] and it will be called the p-completion of E . It is a vector space
when ox + By 1is defined to be the p-class which contains the sequence

(Otxi+8yi) for some (xt] € x and [y,[) € y . The zero element of E[p]
is, therefore, the p-class which contains a p-null sequence.
For x € E[p] , we define

p(x) = lim p(x,l) for (:ct) € x .

1 -

Then the value p(é) does not depend on the choice of (xq’) from It

[IE]

is obvious that p is a norm on E[p] and, with this norm, E[p] is a

Banach space.
For each x € E , let Sp(x) be the element of E[p] which contains

the p-Cauchy sequence whose terms are identical to x . Then we have

p(Sp(x)) p(z) for every x € E .

For x € E[p] and (x,b) € x , we have

Lim p(s [xi)-éj =0,

ise P

which shows that Sp(E) is a dense subset of E[p] .

Let E be a locally convex space. A directed set [ of semi-norms
on E which induces the topology of E will be called a calibration for
E . Then, for each p € I' , we have the p-completion E{p] of E . The
family {Z[p] : p € T} of Banach spaces will be called the T-completion

of E . Thus we have a projective system

Sp : E~+E[p] for all p €T .
It is easy to see that the projective topology on FE defined by this
system coincides with the topology of E .

When g 2 p in T , that is, q(x) = p(x) for every =z € E , we have
the natural embedding
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Ib,P : Elq] ~ Elp] ,

which maps every x € E[q] to the p-class which contains elements of x .

Obviously, this map is linear,

p(Z& p(é)) < q(x) for every x € Elq]

T oS S .
q.p q p
Furthermore, it is evident that Zb p(E[q]) is a dense subset of E[p] .
9,
The following fact will be used frequently. For the proof, we refer
to [3], p. 231.

(1.1). Let E be a locally convex space and T be a calibration for
E . Then E <is complete if and only <if the following condition is
satisfied: <if é? € Elp]l forall p €T and
Z&’ptgq] = g? whenever q=2p tn T,

then there exists x € E such that Sp(m) = é? for all p €T .

2. T-extensions of multi-valued maps

Let E and F Ybe locally convex spaces and let I' be a calibration

for (E, F) . 1In other words, each p €' has the E-component pE and

the F-component Pp and
Tp = {pE :p €T} and PF = {pF : p €T}

are calibrations for EF and F respectively. We shall denote the

embeddings S and S by the same S
Pz Pp p

Let A be a multi-valued map of F into F , that is, A4 is a
subset of the product E X F . For p €T and [z, y] € A , we set

Sp([x, y]) = [Sp(x), Sp(y)] .
Then

Sp(A) c E(p] x Flp] ,
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and we set

where the closure is taken in the product E[p] X F{p] of Banach spaces
E{p]l and F[p] . Hence Ap is always closed and it is easy to see that

Ap = (A)p .

(2.1). Z= n s+(a) .
per PP

Proof. Since Sp(A) c Ap , we have

Sp(Z) c Sp(A) = Ap for all p €T .

To prove the converse, assume that there exists [z, y] € S;l (Ap) for all

p €T such that [x, y] FZ . Then, since T is directed, there exist
p €T and a > 0 such that

(lz, y)+Ug(p, o) x Ulp, a)) nd=¢ ,

where UE(p, o) and UF(p, a) are open p-balls around zeros with radius

o in the spaces E and F respectively. However, for this p , since

Sp([:z:, y]) € Ap , we can choose [xi, yt] € A such that

Sp[[xi’ y_L]) -+ Sp([x, y]) , which is a contradiction.

As usual, the domain of A is denoted by D(4)

(2.2). () DA = n sTEEA]))
p€l 14 14

(iZ) D(A =5 |D(4 .
T = 5,00)
Proof. Let « € D(A) and choose a net (x)\] in D(A) such that
x, *x . Then S |x,] € D[4 and S {z,) » S (x) . Hence
X ) o) ma s(e) >,
Sp(x) € DlApi » which holds for every p € I' . Conversely, assume that
Sp(:l:) € DlApi for every p €T and « § D(A) . We choose p € T and

o > 0 such that

(U5 (P, @)) n D(4) = ¢ .
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For this p , since Sp(x) € Dl.ApI , we can find X € D[Ap] such that

x > S (x) . Since there exist x € D(A) such that
n p n

(5, (5,),) <1/ .

we can conclude that Sp (xn] - Sp(x) , which is a contradiction. Thus (7)
was proved. The proof of (2%7) is similar.
(2.3). Assume that q=p in T . Then, for every 2, € D(Aq] s
()

T x €D(4a),
9,04 P

(ii1) T A x CAT x .
9P 9 P q.p4q

Proof. For ét] € D(Aq) , assume that [:_}gq, Lq € Aq and choose
[:ci, y_l;] € A such that Sq([xi’ y;]) > [g_c_q, lq] . Then
Sp([xi, y,,,]) = Tq,p ° Sq([xi, 97,]) > Tq,p[éq’ %] >

where we used the following notation:

Ty o ¥l = [Ty 2o Ty ] -

Thus we have (Z) and (7).

3. Surjectivity

Let T be a calibration for (E, F} and ACE X F be a multi-
valued map. The range of A will be denoted by R(4) .

(3.1). Assume that
(i) E 1is complete,

(i1) A;l is a single-valued map for every p €T ,

(ii1) R[Ap) = Flp] forevery p €T .
Then R(A) = F .

Proof. lLet y € F. Then, by (iii1), there exists ép € D[Ap) such

that |x , Sp(y)] € Ap for every p € T . Assume that gq=p in T .

Then, by (2.3),
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T Ax CAT X
q,P T4 P q9.p4q

and, since S (y) € 4 x ,
q 7%q

s =T oS8 CAT R
p(y) q(y) X

q.,p P q.r4q
T x,S8(y)] €A . Then, by (ii), h T = .
or [q,p=q py] , v we have q,pz‘q ép
Therefore, by (Z) and (1.1), there exists x € E such that Sp(x) = __)E_p

for all p €T . Hence, by (2.1), [z, y] €4, or y € R(4) .
The converse of (3.1) is given by the following.
(3.2). Assume that
(i) R(4) = F,
(i7) if [xi, y‘L] €4 and (y) 18 a p-Cauchy sequence for

some p €T , then (xt) is also p-Cauchy.
Then R(Ap] = Flp] .

Proof. Let y € Fip]l and (y,b] €y . Then, by (Z), we can choose
x, € D(4) such that [:xi, yz] €A. By (i1), [xt) is p-Cauchy.
Hence (xq’) € x for some x € E[p] . Then it is the definition of 4

that [x, y] € 4
X ¥ D

4. T-contractions

Let T be a calibration for E . Then a map f of a subset D(f)

of E into E 1is said to be a T-contraction if

p(f(=)-f(y)) = pla-y)

for all p €T and z,y € D(f) . When f is a linear map, it is a
I'-contraction if and only if p(f(:c)) <p(x) for all p €T and
x € D(f) . In this case, the following theorem of Moore [4] is of

fundamental importance.

(4.1). Let E be a locally convex space and S be an algebraic
semigroup of continuous linear maps of E into E . Then S 1is equi-

continuwous if and only if there is a calibration T for E such that 8§
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consists of T-contractions.

From this theorem we can immediately obtain a sufficient condition for
a nonlinear map f to be a T'-contraction for some T . We recall that f
is said to be GAteaux-differentiable on D(f) if, for each a € D(f) and
x € F , the limit

1im et (flarex)-f(a)) = f'(a)(x)
€0

exists and f'(a) is a continuous linear map on FE .

(4.2). Let f be a Giteaux-differentiable map on a convex subset
D(f) into E . If the set {f'(x) : = € D(f)} s contained in an
equicontinuous semigroup, there exists a calibration T for E such that

f is a T-contraction.

The proof is an immediate consequence of the mean-value theorem (see

[51, p. 15).
When f is a TI-contraction and p €T , (f(m,b)) is a p-Cauchy

sequence vhenever (x,b] is a p-Cauchy sequence. Hence, for every

x € SplD(f)j , we can set
fplx) = 1in 5 (flz;)) .

P o
Then fp is a contraction of Sp‘D(f)j into E[p] and

oS =5 o .
fp p p f

We shall use the following fact later.
(4.3). Let f be a T-contraction and p € T . If z, € D(f) and

Sp(xi) +x for some x € E[p] , then Sp(f(xi)) > fp(é) .

5. TI-accretive maps

Let T be a calibration for E . We shall also denote by T the
calibration for (E, E) with the identical components.

Amap ACE X E is said to be T-accretive if, for every A > 0O

(l+)\A)—l is a single-valued [-contraction. If, furthermore,
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R(1+)) = E , then A is said to be m-T-aceretive.
(5.1). Forany mp ACE XE and X >0,

() (1+M)p =1+ AAp forall p €T,

(ii) ((1+M)—l)p = (1+Mp)_l forall p €T .
Proof. If [x, y] € (1+M)p , we can choose [xi, y,b] € 1424 such

that Sp([xi’ yt]] + [x, ¥] . Then Eci, )\—l(yi-xi):, € A and

g “}7« A—l(yi'x-;)]] > [ )]

p

Hence Lg_, )\—l(L_é)] € Ap which implies ([x, y] € l+)u4p . The converse
and (1) can be proved similarly.

We are going to express the T-accretiveness of 4 in terms of the
accretiveness of the family {Ap 1 p € I‘} of maps on Banach spaces.

(5.2). A 1is T-aceretive if and only if every Ap 18 aceretive.

Proof. Assume that A 1is TI-accretive and p € ' . Then, for

Jy = (J_+>\A)_l , we have
p(JAx-J)\y) = plx-y) for =z, y € R(1+M) .

Let x, Yy € }?(1+Mp) . Then, by (5.1) (Z), there exist xos Y € R(1+)4)
such that

Sp(xi] + x and Sp(yi) >y .

Then, by (4.3), we have

5,0y} > ), (x) ana 5, (0y,) > (), -

Hence

lin p{Jye,-73y;)

100

p((7) (- (7)), ()

1A

Lim p(z;-y,) = plxy)

1o
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Since (JA]p = (Jb] by (5.1) (i), we have proved that Ap is accretive.
Conversely, assume that every Ap is accretive and x, y € R(1+M) .

Then, for every p €T , Sp(x), Sp(y) € R(1+AAP) .  Therefore,

p[(J?)ASp(x)—(Jb)ASp(y)) = pa-y)

However, we always have J oS5 =85 o dJ . Hence
: v Lpa o5, =5,

p(JAx—JAy) = plx-y) ,

which shows that A 1is T['-accretive.

(5.3). (i) If A is m-T-accretive, every Ap 18 m-aceretive.

(i1) If E <s complete, A 1is closed and every Ap 18
m-aceretive, then A 1is m-I'-accretive.

Proof. (i) By the assumption, R(1+M) = E . To prove that the
condition (3.2) (ZZ) is satisfied for 1 + M , assume that

Exi, yi] € 1+M and (yi) is p-Cauchy. Then, since &; = J,y, and J,
is a [-contraction, (xi) is also p-Cauchy. Hence, by (3.2), we have
R(l+)u4p] = Elp] .

(i1) We prove that the conditions (%), (ZZ) and (i4Z) in (3.1) are

satisfied for 1 + M . However (Z) is a part of our assumptions and (ZZ)

is included in the definition of Ap being accretive. Finally, (i%%) is
satisfied by (l+AA)p . Thus we have FE(1+M) = E . However,
1+ M=1+M and, since A 1is closed, we arrive at R(1+M) = F .

The following facts are immediate consequences of the definition of
m-T-accretiveness and the fact that m-T-accretive maps are "maximal"

l-accretive.
(5.4). (i) 4 m-T-aceretive subset is closed in E X E .

(it) If A is m-T-accretive and =x € D(A) , then Ax 1is closed.

6. Some function spaces

let E be a locally convex space equipped with a calibration T .
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For a positive number 7T , we shall denote the closed interval [0, T] by
I , and let C(I, E) be the set of all continuous functions of I into

E . Then, for each p €T and u € C(I, E) , p o u is a real-valued
continuous function defined on the compact subset I . Therefore, we can
set

py(u) = sup{p(u(s)) : 0 =5 =t}

for t € I , and we set pw(u) p;(u) for u € C(I, E) . Then the set

00

r

o
{p :p €T}
defines a locally convex topology on C(I, E) and it is complete if E is
complete.

Let 4 bYe a multi-valued map on E and we denote by CLI, D(A)} the
set of all continuous functions of I into D(4) . Then it is a closed

subset of C(I, E)

We shall denote the p-completion of C(I, E) by C(I, E)[p] . Then

we have the natural embedding

Sp : O(I, E) » C(I, E)[p) -

We now set

ez, p(a))(p] = 5,(c(z, D(A)) .
(6.1). If D(A) is comvex, c{I, D(A))I[p] = c(I, EIZ;T)
Proof. By (2.2) (iZ), we have
s,(c(z, D(A)) < c(z, (A ])
and (I, 5[@) is closed. Hence we only need to show that
c(r, F[;Tp‘)j c ¢(z, p(4))[p) . Now let v € C(I, EIA—pﬂ and we set

kT-nt nt ip (V)T _ kT

() =9 & tir & o Py

for k=1,2, ..., n , where

T v(kT/n) for k=0,1, ..., n .
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Then, since D‘Ap' is convex, v, € C(I, DIAPII and 1lim vy, =X in the

7100

Banach space C(I, E[p]) . Since =) € DlApi , we can choose a . € D(4)

such that S sz i) = for k=0,1, ..., n , and we define functions
3
.o I
vn,l +F by
_ kT-nt nt o (k=))T _, _ kT
v {8 = TG i ke %, T a o SEE
Then, since D(4) is convex, L) € C[I, D(A)j and it is easy to see
E]

that

w(s ]"O . >

o . - .
p “p vn,z Ly as t

This means that (vn i) is a p-Cauchy sequence in C(I, D(A)) and
(vn i] € Hence ¥, € C(I, D{A))[p]l . sSince C(I, D(4)) [p] is
closed, y € C[I, p(4))lpl .

;ﬂ'<

We note that, when A 1is an m-accretive map on a Banach space which,
together with its dual, is uniformly convex, then D(4) is conves. {See
Barbu [1]1, p. 77, Proposition 3.6.) We shall call a calibration I dually

wniformly convex if, for every p €T , Elp] and its dual are uniformly
convex. Obviously Lﬁoc(R) admits such a calibration if 1 <p <o, Tt

is also known that every nuclear space admits a Hilbert calibration which
is obviously dually uniformly convex.

Let, as before, E Dbe a locally convex space equipped with a
calibration T , and let Ll(I, E) ©be the set of all integrable functions
X

of I into E . Then, for each p €T and u € L' (I, E) , we can set

1 t
pp(u) = ( plu(s))ds for ¢ eI,
0

and we also set pl(u) = p;(u) . Then the set

1

1
r=1p

:p € r}

) 1 .
defines a locally convex topology on L (I, E) and it is complete if E
is complete. In the same manner as in the case of C(I, D(4)) , we can
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prove that
1 1
L(I, E)lp]l = L'(I, E[p]) for every p €T .

1 }
In the proof of L (I, E[p]) < Ll(I, E)(p] we can approximate elements of
Ll(I, E[p]) by step functions which are, as can be proved easily,

contained in Ll(I, E)lpl .

7. A result of Crandall and Nohel

let E be a Banach space and 4 € F X F be an m-accretive map. For

a € D(A) , let us consider the following initial value problem:

dét-u(t) + Au(t) 3 Gu(t) (t €I),
(*)
u(O) =a ,

where
¢ : c{z, D(@)) ~ I*(z, B) .
It has been proved in [2] that the problem (*) has a unique solution in

c(z, D(A)) if there exists Y € L*(I, R) such that
1 4 w
(**) Pt(G(u)-G(v)) = J Y(s)p (u-v)ds
0

for all u, v € C[I, D(A)) and@ t € I , wvhere p denotes the norm of E .

(7.1). Let E be a complete locally convex space equipped with a
dually wniformly convex calibration I' . If ACEXE is an m-I-

aceretive map and the map G satisfies the condition (**) for every

p €T, then, for each a € D(A) , the initial value problem (*) has a
unique solution in C(I, p(4a)) .
Proof. The condition (*¥) implies
T

Pt (6(w)=6()) < f v(8)ds |p™(u=0)
0

for u, v € C(I, D(A)_l . Hence (G(ui]) is pl—Cauchy whenever (uﬁ] is

pm-Cauchy. Therefore, by (6.1), we can define a map
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G, : c(r, D(ApJI > X1, Elp))

such that

cp(sp ou) = S, © G(u) for every u € C(I, D(4)) ,

and, if g=2p in T ,

Tq,p(Gq(gq)(t)) - Gp(Tq,p ° gq)(t)

for all u, € c(z, DIAp_H and t € I . Furthermore, G, satisfies the

condition (#*). Hence, for each p € I' , the initial value problem

d
gz w(®) + 4u(8) 3 G (w(e) (¢ €D

0) =5 (a

u(0) p( )

has a unique solution gp in C(I, DLAPI) . Then, if g=p in T ,
T 0) =T (s =5 ,
a0 = T p(55(@) = 8,(@)

and

4
Tq,p[dt Eq(t)] + Tq,p(Ang(t)) > Tq,p(Gq[gq)(t)) ,

which, by (2.3), implies

d u(t) + AT ul(t)>aG (|

—-— T t t €I) .
dt “q.p%q P 4.0 p ° 1)) )

T
qsp
Hence, by the unicity of the solution,

Zb,qu(t) = gp(t) for all ¢t €I .

Since E is complete, we can apply (1.1) to find wu(t) € E such that

n(t) = Sp(u(t)) for all p €T and ¢ €1 .

Then u(t) is continuous with respect to ¢ and, by (2.2),

u(t) € n sH(DA]) = D(A
per p p

Hence u € C(I, D(A)) and, furthermore,

Sp{ﬁ% u(t)+Au(t)] ) Sp[G(u)(t)) for all ¢ €I and p €T .
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Then, by the lemma which will be proved below, we have

j—tu(t) + Au(t) 3 G(u)(t) for all ¢ €I .

The lemma referred to in the above is the following.
(7.2). Assume that B 4is a closed subset of E and

Sp(x) € Sp(B) for every p €T .

Then x €B.
Proof. For each p € ' we choose bp € B such that Sp(m) = Sp(bp),
which means that p(ﬁkbp) = 0 . Then the net (bp] converges to x .

Since B 1is closed, we have x € B .
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