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ON A FUNCTIONAL DIFFERENTIAL EQUATION
IN LOCALLY CONVEX SPACES

SADAYUKI YAMAMURO

The notion of accretiveness for multi-valued nonlinear maps is

defined in locally convex spaces and i t is used to obtain a

locally convex space version of a result of M.G. CrandalI and

J.A. Nohel.

0. Introduction

The aim of this note is to obtain a locally convex version of a result

of CrandalI and Nohel [2] about the existence of a unique solution of an

ini t ia l value problem, where the functions involved have their values in a

Banach space. The differential equation in the problem contains a multi-

valued map on this Banach space. We shall replace this Banach space with a

class of locally convex spaces. To carry out this project, we shall use a

method which has been introduced in [6] and developed in [7] and [8]. We

begin with a brief account of this method.

1. r-completions of local ly convex spaces

Let E be a vector space and p be a semi-norm of E . A sequence

(x.) in E i s said to be p-Canchy i f p[x.-x.) •* 0 as i , j •*• °° . Two

p-Cauchy sequences (x.j and U/.| are said to be equivalent i f

p(x.-y.) ->• 0 a s i •*•<*>.
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Let (x.) be a p-Cauchy sequence and x be the set of a l l p-Cauchy

sequences in E which are equivalent to [x.J . Such a set x is called

a p-class on E . The set of all p-classes on E will be denoted by

E[p] and i t will be called the p-completion of E . I t is a vector space

when ax + 3y_ i s defined to be the p-class which contains the sequence

for some (x.) € _x and Uj •) € y_ . The zero element of E[p]x.

i s , therefore, the p-class which contains a p-null sequence.

For £ € E[p] , we define

p(x) = lim p(x.] for (a;.) € x .
•J.-XXJ

Then the value p(x) does not depend on the choice of [x.) from x . I t

is obvious that p is a norm on E[p] and, with this norm, E[p] is a

Banach space.

For each x € E , l e t S (x) be the element of E[p) which contains

the p-Cauchy sequence whose terms are identical to x . Then we have

p[s (x)) = p(a) for every x 6 E .

For x 6 E[p] and (x.) € x , we have

lim p[S (^)-x) = 0 ,

which shows that S (E) is a dense subset of E[p] .

Let E be a locally convex space. A directed set V of semi-norms

on E which induces the topology of E will be called a calibration for

E . Then, for each p € T , we have the p-completion E[p] of E . The

family iE[p] : p € T} of Banach spaces will be called the Y-completion

of E . Thus we have a projective system

S : E •* E[p] for al l p € T .

I t is easy to see that the projective topology on E defined by this

system coincides with the topology of E .

When q > p in T , that i s , q(x) 2 p(x) for every x € £ , we have

the natural embedding
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Tq,p : E[q] *E[p] '

which maps every _x € E[q] to the p-class which contains elements of x .

Obviously, this map is linear,

p[T (X)) < q{x) for every x € E[q]

and

T o S = S .
q,p q p

Furthermore, it is evident that T (E[q]) is a dense subset of E[p] .

The following fact will be used frequently. For the proof, we refer

to [3], p. 231.

(1.1). Let E be a locally convex space and T be a calibration for

E . Then E is complete if and only if the following condition is

satisfied: if x € E[p] for all p € T and

x ] = x whenever q > p in T ,

then there exists x € E such that S (x) = x for all p € T .

2. r-extensions of multi-valued maps

Let E and F be locally convex spaces and le t V be a calibration

for {E, F) . In other words, each p € T has the E-component p_ and

the F-component p_ and

1^ = {pE : p € T} and 1^ = {p^ : p € F}

are calibrations for E and F respectively. We shall denote the
embeddings S and S by the same S

Let 4 be a multi-valued map of E into F , that i s , A is a
subset of the product E * F . For p € T and [x, j/] € A , we set

Then
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and we set

A = S {A) ,
P P

where the closure is taken in the product E[p] x F[p] of Banach spaces

E[p] and F[p] . Hence A is always closed and i t is easy to see that

Proof. Since S (A) c A , we have

S (A) c S (A) = A for a l l p € V .py pK p F

To prove the converse, assume that there exists [x, y] (. S [A ) for a l l

p € F such that [x, y] £ A . Then, since T is directed, there exist

p € F and a > 0 such that

([x, y]+UE{p, a) x up(p, a)) n A = 0 ,

where Up(P, a) and Up(p, a) are open p -ba l l s around zeros with radius

a in the spaces E and F respect ively. However, for t h i s p , since

S {[x, y]) (.A , we can choose [x . , y . ] € A such that
p p ^ t

S (Qc., i/-]) "*• & ( [x> y]) J which i s a contradict ion.

As usual , the domain of A is denoted by

(2.2). a) WA) = n s'1{p\TT
p p'

Proof. Let x € D(A) and choose a net (x.) in £>U) such tha t

x, -*• x . Then 5 {xA € D[A ) and 5 fx.l -» 5 (x) . Hence
A P • A- P P ' "•' P

S (x) € D[A ) , which holds for every p € F . Conversely, assume that
p • p

5 (x) € D[A ) for every p € T and x ^ D(A) . We choose p € T and

a > 0 such that

(p, a)) " 0(4) = 0 .
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For this p , since S (x) (. D[A J , we can find x € D[A ) such that

x •*• S (x) . Since there exist x € D(A) such that=n p n

we can conclude that 5 {x ) -»• S (x) , which is a contradiction. Thus (i)

was proved. The proof of (ii) is similar.

(2.3). Assume that q > p in F . Then, for every x € £>(/! ) .,

Proof. For x € D[A ) , assume that [g , T ] € 4 and choose

s u c h t h a t

p ( - L ^' v%i> q ,p qKL %' 3 v J J

where we used the following notation:

Thus we have (i) and (ii).

3. Surjectivity

Let T be a calibration for (E, F) and A c E x F be a multi-

valued map. The range of A will be denoted by R(A) .

(3.1). Assume that

(i) E is complete,

(ii) A is a single-valued map for every p € T ,

(Hi) R[A ) = F[p] for every p € T .

Then R{J) = F .

Proof. Let y € F . Then, by (Hi), there exists x € D[A ) such

that [jc. 5 (y)~\ € A for every p € T . Assume that q > p in T .

Then, by (2.3),
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and, since S {y) € A x ,
<7 ' T ^

T A x c A T x

« . P O p i,p=

S (y) = T o S {y) i A T x ,
p v i " <7,p q ^ ; p q,p=q

o r Or x , S (w)] € 4 . Then, by (ii) , we have T x = x .
<7 P=̂ 7 P P q P^? =P

Therefore,, by (i) and ( l . l ) , there ex i s t s x € E such tha t 5 (a;) = x

for a l l p e r . Hence, by ( 2 . 1 ) , [x, y] € A, or y 6

The converse of (3.1) i s given by the following.

(3 .2 ) . Assume that

(i) R(A) = F ,

(ii) if [x., y .~\ € A and [y.) is a p-Cauchy sequence for

some p € T , then [x.) is also p-Cauchy.

Then R[A ) = F[p] .

Proof. Let x € F[p] and \u.] € v_ . Then, by ("•£,) , we can choose

x . € 0(A) such tha t [x. , y.] € A . By (ii) , [x.) i s p-Cauchy.

Hence fx.) € x for some x € E[p] . Then i t i s the def ini t ion of Av iJ = = p

t h a t [x, X.] Z A •

4. r-contractions

Let F be a ca l ib ra t ion for E . Then a map f of a subset

of E in to £ i s sa id to be a Y-contraction i f

Sp(x-y)

for a l l p e r and x , y € £>(/) . When / i s a l inea r map, i t i s a

T-contraction i f and only i f p[f(x)) 5 p(x) for a l l p € T and

x € D(/) . In t h i s case , the following theorem of Moore [4] i s of

fundamental importance.

(4.1). Let E be a locally convex space and S be an algebraic

semigroup of continuous linear maps of E into E . Then S is equi-

continuous if and only if there is a calibration T for E such that S
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consists of Y-contractions.

From this theorem we can immediately obtain a sufficient condition for

a nonlinear map f to be a F-contraction for some V . We recall that f

is said to be Gateaux-differentiable on D(f) if, for each a € D{f) and

x € E , the limit

lim e^Cfta+Ex)-/^)) = f'(a)(x)
£-K)

exists and f'(a) is a continuous linear map on E .

(4.2). Let f be a Gateaux-differentiable map on a convex subset

D(f) into E . If the set if'(x) : x € D(f)} is contained in an

equicontinuous semigroup, there exists a calibration Y for E such that

f is a Y-contraction.

The proof i s an immediate consequence of the mean-value theorem (see

[ 5 ] , p. 15).

When f i s a F-eontraction and p € F , [/(a:-)l i s a p-Cauchy

sequence whenever fx.J i s a p-Cauchy sequence. Hence, for every

x € S [D{f)) , we can set

f(x) = lim S[f{x)) .

Then / is a contraction of S [D(f)} into E[p] and

f o S = S of.
JP V P

We shall use the following fact later.

(4 .3) . Let f be a Y-contraction and p € F . If x. € D(f) and

Spixj) + x for some x € E[p] , then 5 p ( f ( x i ) ) •*• / (x) .

5. F-accretive maps

Let F be a calibration for E . We shall also denote by F the

calibration for {E, E) with the identical components.

A map A c E x E is said to be Y-accretive if, for every X > 0 ,

(l+X/1) is a single-valued F-contraction. If, furthermore,
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R(l+\A) = E , then A is said to be m-Y-accretive.

(5.1) . For any map A c E * E and X > 0 3

(i) {1+XA) = 1 + XA for all p € T >

(U) {(l+XA)'1) = {l+U ) ~ l for all p € T .

Proof. If [x, i ] € (l+A/4) , we can choose [x., y.] € 1+M such
P 1*1'

that Sp{[xv y^\) •* [x, £ ] . Then ^ , X"1 (^-x^jj € >5 and

Hence [^, X (xri)] € A which implies [x, x] € 1 + ^ p •
 T'le converse

and ("ii^ can be proved similarly.

We are going to express the F-accretiveness of A in terms of the

accretiveness of the family {A : p € F} of maps on Banach spaces.

(5.2). A -is Y-accretive if and only if every A is accretive.

Proof. Assume that A is F-accretive and p € F . Then, for

J-, = (1+XA) , we have
A

p [j^-J^y] < p(x-y) for x, y (. i?(l+X4) .

Let x̂, x e R[l+XA ) . Then, by (5-1) d) , there exist x^, y. € i?(l+X-4)

such that

S ^ ) - x and S^i/J + x •

Then, by (U.3), we have

Hence

5 lim p(x.-J/.) = p(x-x)
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Since («/,) = [j ) , by (5.1) (ii) , we have proved that A is accretive.

Conversely, assume that every A is accretive and x, y € /?(l+A/l) .

Then, for every p € F , S (x), S (z/) € i?(l+X4 } . Therefore,

H o w e v e r , w e a l w a y s h a v e { j } \ ° S = & ° J • H e n c e

p [jyX-Jyjj) < p(x-y) ,

which shows that A is F-accretive.

(5.3). (i) If A is m-T-accretive, every A is m-accretive.

(ii) If E is complete, A is closed and every A is

m-accretive3 then A is m-V-accretive.

Proof. (i) By the assumption, R(l+XA) = E . To prove tha t the

condition (3.2) (ii) i s s a t i s f i e d for 1 + AJ4 , assume tha t

[x . , j / . l d 1+XA and [y.) i s p-Cauchy. Then, since x. = J,y. and J\

i s a F-contraction, (x.) i s also p-Cauchy. Hence, by (3 .2 ) , we have

R[l+U) = E[p] .

(ii) We prove that the conditions (i) , (ii) and (Hi) in (3-1) are

satisfied for 1 + XA . However (i) is a part of our assumptions and (ii)

is included in the definition of A being accretive. Finally, (Hi) is

satisfied by (l+XA) . Thus we have R(l+\A) = E . However,

1 + \A = 1 + \A and, since A is closed, we arrive at i?(l+A/l) = E .

The following facts are immediate consequences of the definition of

w-F-accretiveness and the fact that m-F-accretive maps are "maximal"

F-accretive.

(5.4). (i) A m-I'-accretive subset is closed in E * E .

(ii) If A is m-l'-accretive and x (. D(A) , then Ax is closed.

6. Some function spaces

Let E be a locally convex space equipped with a calibration F .
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For a positive number T , we shall denote the closed interval [0, T] by

I , and le t C(I, E) be the set of al l continuous functions of I into

E . Then, for each p € T and u € C{I, E) , p ° u is a real-valued

continuous function defined on the compact subset J . Therefore, we can

set

pt(u) = sup{p(w(s)) : 0 5 s 5 t]

for t i l , and we set p^iu) = p^(u) for u € C(J, £) . Then the set

00 00

r = {P : P e r}

defines a locally convex topology on C{I, E) and i t is complete if E is

complete.

Let A be a multi-valued map on E and we denote by C[l, D(A)j the

set of a l l continuous functions of I into D{A) . Then i t is a closed

subset of C(J, E) .

We shall denote the p-completion of C{I, E) by C{I, E)[p] . Then

we have the natural embedding

Sp : C(I, E) + C(I, E)[p] .

We now s e t

(6.1). If D{A) is convex, C[l, D{A))[p] = c(l, D{A )) .

Proof. By (2.2) (ii) , we have

and C[l, VIA )) is closed. Hence we only need to show that

C(l, D[A J) c C{l, D(A)) [p] . Now l e t v € C{l, D(A )) and we set

TJ rp „ y. YI -f- f 1* 1 ^ 7 1 Z''71

/ i \ t\.±—Tl u ft u . _ \ t — J . } 1 . /C J
V \*s) — —^ 3- + "̂  3- II _ C _

for k = 1 , 2 , . . . , n , where

^ = v{kT/n) for fc = 0 , 1 , . . . , n .
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Then, since D[A } is convex, v € C[l, D[A 1I and lim v = v in the(. pJ =„ < i. pJJ ^ =„ =

Banach space C(I, E[p]) . Since s* € D[A ) , we can choose a, . (. D{A)
TV " P rC -^

such that 5 (a7 .) -> â , for k = 0, 1, ..., « , and we define functions

v . : I •+ E by

kT-nt nt ._

Then, since

that

is convex, u . € fff-Z", 0(i4)) and it is easy to see

v . - v ) 0 asp (s v v )

p n,i =n-

This means that [v .) i s a p-Cauchy sequence in c(l, D(A)} and

(w y) « v . Hence v € c ( j , O(X)|[p] . Since c[l, D(A))[p] i s

closed, v € C[l, D{A)\[p] .

We note t h a t , when A i s an m-accretive map on a Banach space which,

together with i t s dual, i s uniformly convex, then D(A) i s conves. (See

Barbu [ J ] , p. 77, Proposition 3-6.) We sha l l c a l l a ca l ibra t ion Y dually

uniformly convex i f , for every p € T , E[p] and i t s dual are uniformly
convex. Obviously Ui (if) admits such a ca l ibra t ion i f l < p < ° ° . I t

i s also known that every nuclear space admits a Hilbert ca l ibra t ion which

i s obviously dually uniformly convex.

Let, as before, E be a loca l ly convex space equipped with a

cal ibrat ion F , and l e t L ( J , E) be the se t of a l l in tegrable functions

of J into E . Then, for each p € T and u t L {I, E) , we can set

rt
Pt(u) = j p{u{s))ds for t € J ,

and we also set p (u) = pJ.u) . Then the set

r1 = : P
defines a locally convex topology on L (J, S) and it is complete if E

is complete. In the same manner as in the case of c{l, D(A)) , we can
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prove that

LX(I, E)[p] = LX{I, E[p]) for every p € V .

In the proof of L (X, E[p]) c L (I, E)[p] we can approximate elements of

L (J , fffp]) by step functions which are, as can be proved easily,

contained in L^J , E)[p] .

7. A result of Crandall and Nohel

Let J be a Banach space and A c E X E be an m-accretive map. For

a € D(A) , l e t us consider the following ini t ia l value problem:

4r u{t) + Au{t) ? Gu(t) (t € I) ,(*) P
,w(0) = a ,

where

G : C[l, D{A)) -> ^ ( J , E) .

It has been proved in [2] that the problem (*) has a unique solution in

C[l, D{A)) if there exists Y € Ll(I, R) such that

pl[G(u)-G(v)) < y(s)pC°(u-v)ds
t ' • ' 0 s

for a l l u, v (. c[l, D(A)J and t (. I , where p denotes the norm of E .

(7 .1) . Let E be a complete locally convex space equipped with a

dually uniformly convex calibration T . if A c E x E is an m-T-

accretive map and the map G satisfies the condition (**) for every

p 6 F 3 then, for each a € D(A) , the initial value problem (*) has a

unique solution in c{l, D{A)) .

Proof. The condition (**) implies

' (T
pX{G(u)-G(v)) 5 f y(s)ds P (U-V)

for u, v € C[l, D(A)} . Hence (G(H.]) is p -Cauchy whenever {u.) is

00

p -Cauchy. Therefore, by ( 6 . 1 ) , we can define a map
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, E[p))

such that

G [S o u) = S o G{u) for every u i c[l, D(A)) ,

and, if q > p in I" ,

7 (G (u = G [T O U )(t)
P ; <7,P =*?J

for all u € C(j, 2?^ JJ and til. Furthermore, G satisfies the

condition (**). Hence, for each p € T , the initial value problem

3Tu(*) + A

u(0) = SM

(t € J)

has a unique solution u in C"(j, D(i4 JJ . Then, if q > p in F ,

2" u (0) = S (a)] = S (a) ,

and

which, by ( 2 . 3 ) , implies

4z T u (t) + A T u (t) 1 G
d* <7p=qx p qp=q p

O U )(t) (t € J) .

Hence, by the unlcity of the solution,

T u (t) = u (t) for all t € J .
HP^H T

Since 27 i s comple te , we can apply ( l . l ) t o f ind w( t ) € 2? such t h a t

u ( t ) = 5 (w( t ) ) fo r a l l p € T and t i l .

Then u(t) is continuous with respect to t and, by (2.2),

n
piT

Hence u € c ( j , Z?(̂ 4)j and, furthermore,

s \ 4 r u { t ) + A u { t ) \ 3 S [ G ( u ) ( t ) ) f o r a l l t i l a n d p i T .
P \al' j P
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Then, by the lemma which w i l l be proved below, we have

-gj: u ( t ) + A u { t ) 3 G { u ) ( t ) f o r a l l t i l .

The lemma referred to in the above is the following.

(7.2). Assume that B is a closed subset of E and

S (x) € S (B) for every p € V .

Then x € B .

Proof. For each p € T we choose b € B such tha t S (x) = S [b ) ,

which means t ha t p[x-b ) = 0 . Then the net [b ) converges to x .

Since B i s closed, we have x € B .
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