Glasgow Math. J. 51 (2009) 669-680. © 2009 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089509990085. Printed in the United Kingdom

ON SUBMANIFOLDS WITH TAMED SECOND
FUNDAMENTAL FORM

G. PACELLI BESSA

Universidade Federal do Ceara, Brazil
e-mail: gpbessa@yahoo.com.br

and M. SILVANA COSTA

Universidade Federal do Ceara, Brazil
e-mail: silvana_math@yahoo.com.br

(Received 16 May 2008; revised 24 October 2008; accepted 15 May 2009)

Abstract. Based on the ideas of Bessa, Jorge and Montenegro (Comm. Anal.
Geom., vol. 15, no. 4, 2007, pp. 725-732) we show that a complete submanifold M
with tamed second fundamental form in a complete Riemannian manifold N with
sectional curvature Ky < « < 0 is proper (compact if N is compact). In addition, if N
is Hadamard, then M has finite topology. We also show that the fundamental tone is an
obstruction for a Riemannian manifold to be realised as submanifold with tamed
second fundamental form of a Hadamard manifold with sectional curvature bounded
below.

1. Introduction. Let ¢ : M < N be an isometric immersion of a complete
Riemannian m-manifold M into a complete Riemannian n-manifold N with sectional
curvature Ky < « < 0.Fixapoint xy € M, and let py,(x) = dist,,(xo, x) be the distance
function on M to xy. Let {C;}2, be an exhaustion sequence of M by compact sets with
xo € Cy. Let {a;} C [0, oo] be a non-increasing sequence of possibly extended numbers
defined by

Se
a; = sup {F(pM(x)) e, x € M\Ci} .
where

1
——sinh(v/—« 1) if « <0,

Sdn=1{ /=% i ()
t if «=0;

Ce(t) = S,.(¢) and |Ja(x)| is the norm of the second fundamental form at ¢(x). The
number a(M) = lim a; does not depend on the exhaustion sequence {C;} nor on the
I— 00

base point xy.

DEeFINITION 1.1. An immersion ¢ : M < N of a complete Riemannian m-
manifold M into an n-manifold N with sectional curvature Ky < « < 0 has tamed
second fundamental form if a(M) < 1.

In[4], Bessa, Jorge and Montenegro showed that a complete submanifold ¢ : M —
R" with tamed second fundamental form is proper and has finite topology, where finite
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topology means that M is C*°-diffeomorphic to a compact smooth manifold M with
boundary. In this paper we show that the ideas of Bessa, Jorge and Montenegro
can be adapted to show that a complete submanifold M < N with tamed second
fundamental form is proper. In addition if N is a Hadamard manifold, then M has
finite topology. We prove the following theorem.

THEOREM 1.2. Let ¢ : M — N be an isometric immersion of a complete m-manifold
M into complete Riemannian n-manifold N with sectional curvature Ky <k <0.
Suppose that M has tamed second fundamental form. Then
(a) M is compact if N is compact,
(b) ¢ is proper if N is non-compact;
(¢) M has finite topology if N is a Hadamard manifold.

REMARK 1.3. Jorge and Meeks [10] showed that any complete m-dimensional
submanifold M of R” homeomorphic to a compact Riemannian manifold M,
punctured at finite number of points {py, ..., p,} and having a well-defined normal
vector at infinity has a(M) = 0. This class of submanifolds includes all the complete
minimal surfaces ¢: M?> < R” with finite total curvature / v |1 K| < oo studied by
Chern and Osserman [7, 14], all the complete surfaces ¢: M? < R” with finite total
scalar curvature [, |a|>’dV < oo and non-positive curvature with respect to every
normal direction studied by White [16] and the m-dimensional minimal submanifolds
¢: M™ — R" with finite total scalar curvature [, |@|”dV < oo studied by Anderson
[1]. In [13], G. Oliveira Filho proved a version of Anderson’s theorem for complete
minimal submanifolds of H” with finite total curvature [, |@|"dV < oco.

Our second result shows that the fundamental tone A*(AM) can be an obstruction
for a Riemannian manifold M to be realised as a submanifold with tamed second
fundamental form in a Hadamard manifold with bounded sectional curvature. The
fundamental tone of a Riemannian manifold M is given by

S |gradf|?
Inf?

where H}(M) is the completion of C§°(M) with respect to the norm |f|* = [, /% +
/ o lgradf |>. We prove the following theorem.

(M) = inf{ S e Hé(M)\{O}} : )

THEOREM 1.4. Let ¢ : M — N be an isometric immersion of a complete m-manifold
M with a(M) < 1 into a Hadamard n-manifold N with sectional curvature u < Ky <
0. Given ¢, a(M) < ¢ < 1, there exists | = I(m, ¢) € Z and a positive constant C =
C(m, ¢, ) such that

M M) < CX(N(w) = C- (I = 1 /4, 3
where N(1) is the [-dimensional simply connected space form of sectional curvature .

REMARK 1.5. As corollary of Theorem (1.4) we have that A*(M) = 0 for any
submanifold M mentioned in this list above.

Question 1.5. It is known [3, 5] that the fundamental tones of the Nadirashvilli
bounded minimal surfaces [12] and the Martin—Morales cylindrically bounded minimal
surfaces [11] are positive. We ask if there is a complete properly immersed (minimal)
submanifold of the R" with positive fundamental tone A* > 0.
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2. Preliminaries. Let ¢ : M < N be an isometric immersion, where M and N
are complete Riemannian manifolds. Consider a smooth function g : N — R and the
composition f = go ¢ : M — R. Identifying X with de(X) we have at ¢ € M and for
every X € T,M that

(gradf, X) = df (X) = dg(X) = (gradg, X).
Hence we write
gradg = gradf + (gradg)",

where (gradg)* is perpendicular to 7,M. Let V and V be the Riemannian connections
on M and N respectively, and let a(x)(X, Y) and Hessf(x)(X, X) be respectively the
second fundamental form of the immersion ¢ and the Hessian of f at x with X, Y €
T, M. Using the Gauss equation we have that

Hessf(x)(X, Y) = Hessg(p(x))(X, Y) + (gradg, a(X, Y))y). “)

Taking the trace in (4), with respect to an orthonormal basis {ey, ..., ¢,} for T, M, we
have that

Af(x) =) Hessf(q)(e;, e)

i=1
m

= Y Hessg(p(x)(e, ) + (gradg, Y ale;, €))). (5)

i=1 i=1

We should mention that formulas (4) and (5) first appeared in [9]. If g = /i o py, Where
h: R — Ris a smooth function and py is the distance function to a fixed point in N,
then equation (4) becomes

Hess/ (x)(X, X) = h'(pn)(gradpy, X)* + K (oy)[Hesspn (X, X) + (gradpy, a(X, X))].
(6)

Another important tool in this paper the Hessian comparison theorem (see [9] or [15]).

THEOREM 2.1 Hessian comparison theorem. Let N be a complete Riemannian n-
manifold and yy, y € N. Let y : [0, py(»)] = N be a minimising geodesic joining yy and
v, where py is the distance function to yo on N. Let K, be the sectional curvatures of N
along y. Denote by p = inf K, and k = sup K,,. Then for all X € T,N, X L y'(pn(»))
the Hessian of py at y = y(pn(»)), satisfies

%(chy))an2 > Hess py(y)(X, X) > %(pN(y))nXuz, (7)

where Hesspy(y)(v', y") = 0.

Observation 2.2. If y € cuty(yy), inequality (7) has to be understood in the
following sense:

C, . C,
ks,—‘(xw(y))llz\’ll2 = lim Hesspy(7)(X}. X)) = S_(:ON(V))”an'
nw K

For a sequence (y;, X;) — (v, X) € TN, y; ¢ cuty(yo).
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3. Proof of Theorem 1.2.

3.1. Proof of items (a) and (b). Since a(M) < 1, we have that for each a(M) <
¢ < 1, there is i such that a; € (a(M), ¢). This means that there exists a geodesic ball
By (ro) € M, with C; C By (rg), centred at x, with radius o > 0 such that

%(,oM(x))- la(x)|l <c <1, forall x e M\By(ro). ®)

To fix the notation, let xg € M, yo = ¢(xg) and py(x) = distys(xp, x) and py(y) =
disty (1o, y). Suppose first that x = 0. Letting A(7) = 1> we have that f(x) = px(¢(x))>.
By equation (6) the Hessian of /" at x € M in the direction X is given by

Hess/(x)(X, X) = 2[onx Hesspy(X, X) + py (gradpy, a(X, X)) + (gradpy, X)21(»),
)

where y = ¢(x). By the Hessian comparison theorem, we have that

Hesspy(»)(X, X) > ;IIXLII% (10)
on ()

where (X, gradpy) = 0. Therefore for every x € M\ By (ro),
Hess/(x)(X, X) = 2[py Hesspy (X, X) + (gradpy, X)
+ pn(gradpy, a(X, X)](»)
1
>2 [pN p—NuXﬂF +1XTI? + py(gradpy, a(X, X)>}(y)
> 2[1X 1 + 1X 17 — o lleell - X117
> 2(1 = o)l X% (11

In the third and fourth lines of (11) we have used py(¢(x)) < pp(x). If € < 0, we let
h(t) = cosh(y/—« ?); then f(x) = cosh(v/—k pn)(¢(x)). By equation (6) the Hessian of
£ is given by
Hessf (x)(X, X) = [—/c cosh(v/—k py)(gradpy, X)? + /=« sinh(v/—« py)
x Hesspn(X, X) + /=i sinh(v/—k py)(gradoy, a(X, X))] (p(x)).
(12)

By Hessian comparison theorem we have that

- = Sosh(v=rpy) cosh(v/—« pn)

Hesspy(y)(X, X) = Sinh(v/—x o)

X1, (13)

Since a(M) < 1, we have

cosh(y/—« pr) cosh(v/ =k py)
la(x)] < C«/_ nh(v o M)( x) < ok ———— S/ 7 N( @(x)) (14)

for every x € M\ By (r¢) and some ¢ € (0, 1). The last inequality follows from the
fact that py(@(x)) < pa(x) and that the function /—« coth(y/—« ?) is non-increasing.
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Substituting in equation (12), we obtain

Hess/(x)(X, X) > —« cosh(v/—« pn)[| X [I* — k cosh(v/=k py) | X T||?
+k - ¢ - cosh(v/—k py) | X |I?
> —k - cosh(py)(1 — o)1 X2
> —k-(1—0)- | X% (15)

Let o : [0, papr(x)] = M be a minimal geodesic joining xy to x. For all # > ry we have
that (f o 0)"(f) = Hessf(c(1))(c’,0") = 2(1 —¢)ifk =0and (f 0 6)"(¢) = —«(l — ¢) if

k < 0.
For t <ry we have that (f oo)’(¢) > b = inf{Hessf(x)(v, v), x € By (r9), |v| = 1}.
Hence (x = 0),

(foa)(s) =(f00)/(0)+/0‘(foﬂ)”(f)df
> (foa)’(0)+/‘r0bdt+/y2(1 — o)dr
0 ”

o

> (fooa)(0)+bro+2(1 — c)s — ro). (16)

Now, pn(e(xp)) = disty(yo, yo) = 0; then (f 0 6)'(0) = 0 and f(xy) = 0; therefore
Py (xX)
| = ‘oo ! d
1@ = [ ooyes

Py (x)
> f {bro+2(1 —o)(s —ro)tds
0

> bro () +2(1 - 0 (@ ~ o)
> (1= ¢) pi () + (b= 2(1 = ) ro pyr(X). (17)
Thus
Pr(@() = (1= 0) py(x) + (b = 2(1 = ))ro par(x) (18)

for all x € M. Similarly, for x < 0 we obtain that

cosh(v/=k pn)(@(x)) = V=K (1 = )pi (x) + (b// = — /= (1 = Dropu(x) + 1.
(19)
If N is compact, the left-hand sides of the inequalities (18) and (19) are bounded above.
That implies that M must be compact. In fact, we can find u = u(diam(N), ¢, k) so
that diam(M) < u. Otherwise (if N is complete non-compact) if pp/(x) — oo, then
pn(@) — oo and ¢ is proper.

3.2. Proof of item (c). Recall that we have by hypothesis that ¢ : M <— N is a
complete m-dimensional submanifold with tamed second fundamental form immersed
in complete n-dimensional Hadamard manifold N with Ky < « < 0. We can assume
that M is non-compact. Moreover, by item (a), proved in the last subsection, ¢ is a
proper immersion. Let By(ry) be the geodesic ball of N centred at yy with radius rg
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and S,, = 9By(ry). Since ¢ is proper and a(M) < 1 we can take ry so that

Sk

= (pu(le < c <1, forall xe M\g¢ ™' (Bx(ro)), (20)

and by Sard’s theorem (see [8], p. 79), ro can be chosen so that I';, = o(M)NS,, # D is
a submanifold of dimI',, = m — 1. For each y € ', let us denote by T,I";, C T,¢(M)
the tangent spaces of I',, and ¢(M), respectively, at y. Since the dimension dim 7, T, =
m — 1 and dim T} ¢(M) = m, there exist only one unit vector v(y) € T,¢(M) such that
Typ(M) = T,T;, @ [[v(p)]], with (v(»), gradpn(y)) > 0. This defines a smooth vector
field v on a neighborhood ¥ of ¢~ (T',,). Here [[v(»)]] is the vector space generated by
v(y). Consider the function on ¢(V) defined by

¥ (y) = (v, gradpy)(y) = (v, gradR)(y) = v(y)(R), y = (). e2))

Then ¥(y) = 0 if and only if every x = ¢~!(y) € V is a critical point of the extrinsic
distance function R. Now for each y € I';, fixed, let us consider the solution £(¢, y) of
the following Cauchy problem on ¢(M):

1
§i(t.y) = v ), (22)
£0,y) =y.

We will prove that along the integral curve ¢ — &(t, y) there are no critical points
for R = py o ¢. For this, consider the function (¥ o £)(¢, y) and observe that

¥, = &(gradpy, v)
= (Vg gradpy, v) + (gradpy, Ve,v)

1 _ 1
= E(Wgradpzv, v) + E(gradpzv, Vv + a(v, v))
1 1
= JHesspN(v, V) + E [(gradpy, V,v) + (gradpy, a(v, v))]

_ % [Hesspy(v, v) + (gradpy. Vov) + (gradpy, a(v, v))]. 23)

Thus
Y = Hesspy (v, v) + (gradpy, V,v) + (gradpy, a(v, v)). (24)
Since (v, v) = 1, we have at once that (V,v, v) = 0. As V,v € T, M, we have that
(gradpy, V,v) = (gradR, V,v).

By equation (21), we can write gradR(x) = ¥(¢(x)) - v(¢(x)), since gradR(x) L
Too)L py)s (Coyy = 9(M) N 0By (pn(p))). Then

(gradpy, V,v) = (gradR, V,v) = ¥ (v, V,u) = 0.
Writing

v(y) = cos B(y) gradpy + sin B(y) w (25)
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and
gradpy(y) = cos 8 v(y) + sin 8 v*, (26)
where (w, gradpy) = 0 and (v, v*) = 0, equation (24) becomes
Y = sin? B Hesspy(w, w) + sin B (v*, a(v, v)). 27

From (25) we have that ¥(y) = cos 8(»),

Y =+/1 —¥2y/1 —y2Hesspy(w, o) + /1 — 20", a(v, v)). (28)

Hence
1//1‘1// _ \/lizH .
m = — Y?Hesspy(w, w) + (v*, a(v, v)). (29)

Thus we arrive at the following differential equation:

—(/1 =92, = /1 — ¥ Hesspy(w, 0) + (v*, a(v, v)). (30)

The Hessian comparison theorem implies that

Hesspy (@, ) > %(w(s(z, ). 31)

Substituting it in equation (30) the following inequality is obtained:

Ce
~(WT=92) = V1= 92 SonEn ) + 07, e, v), (32)
Denoting by R(t, y) the restriction of R = py o ¢ to ¢~ (£(¢, y)) we have

R(1,y) = Rl ' (£(1, ) = pn(E(, p)).

On the other hand we have that

R, = <gradR, %v> = <1pv, %v> =1; (33)
then
R(t,y) =t +ry. (34)

Writing $-(on(£(1, ) = §=(t + ro) in (32) we have

C .
—(/1T=92), = /1 —y? S—(t+ ro) + (v*, a(v, v)). (35)
Multiplying (35) by S, (¢ + r9), the following is obtained:

—[Sct+ rOWT=92) + Cult+ W T=92] = St + 1) (" v, v).
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The last inequality can be written as

[Sct+r)VT=97] < =Sut+ )0, a@, ). (36)
Integrating (36) from 0 to ¢ the resulting inequality is as follows:
Se(t+ro)sin B(§(1, ) = Si(ro) sin B(y) + f —=Sk(s + ro)(v*, (v, v))ds
0
Thus
S BE( ) = o in )+t [ Sl -0 e, s (37)
= Si(t+ro) Sc(t+r)Jo ¢ T
Since a(M) < 1,
C
— (" a(, )ECs p) < Nl I < g (pu(§(s.y))
< (e ) = S+ )

for every s > 0. Substituting in (37), we have

. =S _ Si(ro)
sin B(&(z, y)) < S, (H— . sin B(y) + 5. (t+ 0)/ Ce(s+ ro)ds
_ K( 0) _
= S S B+ g s (S, ) = S,(r0)
S,
=3 (t(—i-O) )(sm,B(y) —c)+c<l1 (38)

for all t > 0. Therefore, along the integral curve ¢ — £(¢, y), there are no critical points
for the function R(x) = py(¢(x)) outside the geodesic ball By(rg). The flow & maps
9 By(r) diffeomorphically into d By(rg + ?), for all # > 0. This shows that M has finite
topology (see also [6]). This concludes the proof of Theorem 1.2. For the sake of clarity

we show that SS( g_ol))(sm B(y)—c)+c < 1.Leth(r) = SS(”t(j;Or)o )(sin B(y) — ¢) + c. We have

that 4(0) =sinB < 1 and /' (¥) = W(smﬂ ¢). If sinB > ¢, then #'(t) <0

and A(¢) < h(0). If sin 8 < ¢, suppose by contradiction that there exists a 7" > 0 such
that #(T) > 1. This implies that 0 > S, (ro)(sin 8 — ¢) > (1 — ¢)S, (T + r9) > 0.

4. Proof of Theorem 1.4. The first ingredient for the proof of Theorem 1.4 is the
well-known Barta’s theorem [2] stated here for the sake of completeness.

THEOREM 4.1 (Barta). Let Q be a bounded open of a Riemannian manifold with
piecewise smooth boundary. Let f € C*(Q2) N CY(Q) with f1Q > 0 and £1dQ = 0. The
first Dirichlet eigenvalue A\(2) has the following bounds:

sup (=5 ) = @ = int (). (39)

with equality in (4) if and only if f is the first eigenfunction of Q.
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Let ¢ : M < N be an isometric immersion with tamed second fundamental form of
a complete m-manifold M into a Hadamard n-manifold N with sectional curvature
uw =<Ky =<0.Letxy € M,y = ¢(x9) € N, and let py(y) = disty ()9, y) be the distance
function on N and py o ¢ the extrinsic distance on M. By the proof of Theorem
(1.2) there is an ry > 0 such that there is no critical point x € M \ ¢~ (By(ro)) for
on © @, where By(rg) is the geodesic ball in N centred at yy with radius ry. Let R > g,
and let Q C ¢~ !(By(R)) be a connected component. Since ¢ is proper we have that
Q is bounded with boundary 92 that we may suppose to be piecewise smooth. Let
v : By (R) — R be a positive first eigenfunction of the geodesic ball of radius R in
the /-dimensional simply connected space form N/(1) of constant sectional curvature
u, where / is to be determined. The function v is radial, i.e. v(x) = v(]x]), and satisfies
the following differential equation:

VO +(I—1) %(l) V(1) + Ai(Bniy(R)v(1) = 0, Vi €0, R, (40)

with initial data v(0) = 1, v'(0) = 0. Moreover, v'(f) < 0 for all # € (0, R]; S, and C,,
are defined in (1) and A;(Bpi,)(R)) is the first Dirichlet eigenvalue of the geodesic
ball Byy(,(R) C N/() with radius R. Define ¥ : By(R) — R by 9(y) = v o py(y) and
f 12— Rbyf(x) = o ¢(x). By Barta’s theorem we have 1,(2) < sup,(—Af/f). The
Laplacian Af at a point x € M is given by

Apyf(x) = |:Z Hess v(e;, ¢;) + (gradyd, IZI):| (p(x))

i=1
= > [V"(ow){gradpy, e)* + v'(on) Hess (e, e)] + v'(p) (gradpy, H),

i=1

where Hess v is the Hessian of v in the metric of N and {e;}7, is an orthonormal basis
for T'.M at which we made the identification ¢,e; = ¢;. We are going to give an upper
bound for (—=Af/f) on ¢~ (By(R)). Let x € ¢~ (By(R)), and choose an orthonormal
basis {e, ..., e,,} for T, M such that {e, ..., e,} are tangent to the distance sphere
dBy(r(x)) of radius r(x) = pn(¢(x)) and e; = (e;, gradyp)gradyp + (e1, 3/960)d/90,
where [0/00| = 1,0/90 L grad,p. To simplify the notation set t = py(¢(x)), Ay = A.
Then

Af(x) =) [v"(D){gradpy, e)” + v'(1) Hess px(e;, )] + v/ (1) (grad oy, H)
i=1

v"(t)(gradpy, e1)? + v'(1){er, 3/360)> Hess py(9/36, 8/06)

m

+ Z V(1) Hess py(e;, e) + v'(t)(gradpy, H). 41
i=2
Thus from (41)
Af v// s v/ s
—T(X) = —7(1)(grad,oN, el — ;(l)(el, 9/00)" Hess py(3/36, 0/06)
=3 Lo Hess pxler ) — 2 (1(eradpw, ). @)
v v

i=2
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Equation (40) says that

= (= D () 4 a(Bu(R).
v Sy v

By the Hessian comparison theorem and the fact v'/v < 0 we have from equation (42)
the following inequality:

_i;'f(x) < (BRI — (e1, 9/06)°]

—&(t)v—,(t) [m—l+l(el,3/89)2+&|lﬁl||} . (43)
S, v C

m

On the other hand the mean curvature vector H at ¢(x) has the norm

IH[(9(x) < llell(@(x)) < ¢ - (Ce /SN pu(x)) < ¢ - (Ce /S pn(p(x))).

We have that for any given a(M) < ¢ < 1 there exist ro = ro(c) > 0 such that
there is no critical point x € M\ ¢~ '(By(r9)) for pyog. A critical point x
satisfies (eq, 3/00)(¢(x)) = 1 (see equation (25), where (e, 3/960)(p(x)) = sin B(p(x))).
Inequality (38) shows that for any x € M \ ¢! (By(ry)) we have (k = 0 in our case)

(e1,0/00)(p(x)) < S — ( sup  sinB(p(2))) — C> +c

PN(@(X)) + 70 \ zep-1(9Bx ()
<" -0+
ro+ro
1+c¢
= . 44
) (44)

We have then from (43) and (44) the following inequality:
A c, v /
_Tf(x) < A.](BNI(M)(R)) — S—;(l);(l) |:m — Z+ Z(l —+ C)2 + C:| .

Choose the least / € Z., such that m — [ + I(1 + ¢)?/4 + ¢ < 0. With this choice of / we
have for all x € ¢~ (By(R) \ Bn(ro)) that

—ATf(x) < M(Buiu(R)). 4s)

Now let x € ¢ ' (By(rg)). Since 1 — (e;,d/30)> <1 and —I+1(ey,d/30)> <0 we
obtain from (43) the following inequality (r = py(¢(x))):

A C, S, -
—Tf(x) < M (B (R)] — S_M(t)%(l) |:m + C_M”H”} . (46)

We need the following technical lemma.

LEMMA 4.2. Let v be the function satisfying (40). Then —v'(£)/t < k(B (R)) for
all t € [0, R].
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Proof. Consider the function 4 :[0, R] > R given by h(t) =A-t+v'(¢), A =
M (Bni(R)). We know that v(0) =1, v'(0) =0 and v'(z) < 0; besides v satisfies
equation (40). Observe that

0=v"(H+(—-1 +rv <V +A.

Thus v’ > —x and #(t) = > + v” > 0. Since 4(0) = 0 we have i(r) = 1t + v/(¢) > 0.
This proves the lemma. g

Since v is a non-increasing positive function we have v(¢) > v(ry). Applying Lemma

(4.2) we obtain
Af t-Cut) ( V(1) 1
—T(X) < M (Bniy(R) + S, (— p ) 200) [m+c] 47)
< xl(BN/w)(R))[ n Vog—(i’o) Sl c]} (48)

Thus for all x € ¢~ '(By(R)) we have

—(Af/f)(x)smax{ [1+roc—(ro) %[mw]]}-xlww(k»

1
|:1 + JOS—(rO) ﬁ [m + c]:| - M (B (R)).

Then by Barta’s theorem

() < |: + Vo—( 0) - ﬁ [m+ C]:| - M(Bniguy(R)).

Observe that C = [1 +ro S“ (ro) -
oo we have A*(M) < C)»*(Nl(ﬂ)).

[m+ c]] does not depend on R. So letting R —

v(ro)

COROLLARY 4.3 (From the proof). Givenc, a(M) < ¢ < 1, there exists ry = ro(c) >
0,/ =1Im,c)eZ, and C = C(m, u, ¢) > 0 such that for any R > ro and any connected
component Q of ¢~ (By(r)), then

V() < C - M(Bnigw)(R)).
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