The Knowledge Engineering Review, Vol. 11:4, 1996, 301
Guest Editorial

NORBERT E. FUCHS

This issue of The Knowledge Engineering Review is dedicated to logic engineering. The phrase ‘logic
engineering’ has two roots: computational logic, the programming paradigm based on an executable
subset of logic, and software engineering, the craft of efficiently and economically developing
software of a high quality. Thus, logic engineering concerns the application of computational logic
to the formulation and solution of problems that arise in software engineering in the broadest sense.

Though its full potential remains to be utilised, the marriage between computational logic and
software engineering is a very fortunate one, since computational logic

e can serve as a high level specification language and as a programming language,
e can be used to develop tools, even complete development environments,
e allows meta-programming and thus self-applicability.

Arguably, computational logic can be applied to most fields of software engineering. The collection
of papers in this issue bears witness to this claim.

In his paper “Declarative Process Modelling using Logic Programming”, Paolo Ciancarini
addresses the complete software development process. He shows how this process can be effectively
formalised by rule-based languages, specifically logic languages, describing the specification,
modelling, enactment and coordination of the process. Process modelling ranges from simple
animation to complex programming environments using project databases.

In their contribution ‘“Declarative Specifications”, Norbert E Fuchs and David Robertson
concentrate on requirements engineering. They introduce application-specific specification lan-
guages as semantically equivalent representations of logic specifications. By doing this they
effectively bridge the conceptual gap between an application domain and the domain of formal
methods, and make formal methods available to application specialists who may not be familiar
with them.

Leon Sterling and Umit Yalginalp show in “Logic Programming and Software Engineering—
Implications for Software Design” how programming experience impacts the design of logic
programs. Programming experience can be abstracted in reusable patterns that allow systematic
program development, design for provability and meta-programming. The use of program
skeletons expressing the basic control flow and of techniques adding functionality to a skeleton
allows program development by step-wise enhancement.

The software development process can be divided into two phases, one problem-oriented and one
efficiency-oriented. Once we have a correct logic specification, we need to derive from it an efficient
program. Computational logic provides a wealth of techniques for doing this, and Alberto
Pettorossi and Maurizio Proietti in “Developing Correct and Efficient Logic Programs by
Transformation” provide a comprehensive overview, describing rule-based program transforma-
tion, schema-based program transformation and partial evaluation.

I would like to thank John Fox and Paul Krause for inviting me to edit this special issue on logic
engineering for The Knowledge Engineering Review, and the authors for their contributions.

https://doi.org/10.1017/50269888900007992 Published online by Cambridge University Press


https://doi.org/10.1017/S0269888900007992

