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MULTIPLE ZETA VALUES,
POLY-BERNOULLI NUMBERS,
AND RELATED ZETA FUNCTIONS

TSUNEO ARAKAWA anD MASANOBU KANEKO

Abstract. We study the function

1
C(kty s kno1;s) = > —

“ e n—1 S
0<my <mg<-<my M1 My Mn

and show that the poly-Bernoulli numbers introduced in our previous paper
are expressed as special values at negative arguments of certain combinations
of these functions. As a consequence of our study, we obtain a series of relations
among multiple zeta values.

§1. Introduction

In recent years, many authors have studied the “multiple zeta values”
(or Euler-Zagier sums)

1
C(kl,kQ,...,kn) = Z k1 ko k‘n’

0<mi<mo<---<mn my Mmgy™---Mnp

where k; are positive integers and k,, > 2, not only in the context of number
theory but also of knot theory, the theory of mixed Tate motives, and
quantum field theory (see e.g. [A], [?], [BBG], [Br], [H], [LM], [Z], [Z2] and
references therein). It seems to be apparent that these numbers are very
interesting and important from various aspects. Don Zagier, in his work [Z]
(in preparation) devoted to an extensive study of the multiple zeta values,
mentions briefly the “multiple zeta functions” as well;

1
C($17827-.-78n): Z W (SZGC),

0<mi<mao<---<mp n

in particular their analytic continuations to meromorphic functions in C™.
However, no further study of ((s1,s2,...,5,) seems to have been made,
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190 T. ARAKAWA AND M. KANEKO

probably because “nice properties like the functional equation of the Rie-
mann zeta function do not seem to extend” to ((s1,sa,...,S,) for n > 2.
In this paper, we study the single variable function

1
C(kh'” 7kn71;5) - Z k1 n )

o —ls
0<m<ma<---<mn ml mn—l my

for the purpose of establishing a connection between the multiple zeta val-
ues and the “poly-Bernoulli numbers” introduced in [Ka]. In seeking an
answer to the natural question whether the poly-Bernoulli numbers appear
as special values of zeta functions of any sort, we were led into the considera-
tion of the functions ((k1, ko, ..., kn—1;s). We show that the poly-Bernoulli
numbers are indeed expressed as special values at negative arguments of
certain combinations of the zeta functions ((k1,ke,...,kn—1;5) (Theorem
6 and Corollary 7 in §3). As a consequence of our study, we also obtain a
series of relations among multiple zeta values, namely;

COROLLARY OF THEOREM 9. For integers m,r > 1 and k > 2, we
have

Z (ak:,’q><(al+1,,ak_1+1,ak+r+1)

aj+ - tap=m
VajZO

ag +m
+(—1)k Z <km >C(al—|—1,...,ak_1—|—1;ak—|—m+1)

ay+ - fap=r

VajZO
k—2
- ———— ————
Jj=0 r—1 m—1

One recalls that, to understand a complete set of relations is one of the
fundamental problems in the theory of multiple zeta values.

After some preliminary discussions on ((k1,ka,...,kn—1;$) in §2, we
state and prove our main result in §3. §4 is devoted to a generalization
of the zeta function introduced in §3, and that leads to some formulas for
multiple zeta values. In the final §5 we discuss some problems.

§2. Single variable multiple zeta functions

As mentioned in the introduction, we study the following zeta function

https://doi.org/10.1017/50027763000006954 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006954

MULTIPLE ZETA VALUES 191

1
C(klak%"'?kn*l;s) = Z k1 ko

kn—l s
0<my <ma<-<mp_1<mn M1 o™ =+ -My 1 My,

which is absolutely convergent for Re(s) > 1. When n = 1, the function
C(k1,ka,...,kn—1;s) is understood to be the Riemann zeta function ((s).
We mention that the function (k1 ko, ..., k,—1; s) is, as a Dirichlet series, a
generating series of “multiple harmonic sums” (finite truncation of multiple
zeta values) recently studied by M. Hoffman and C. Moen:

[e.o]

A (k17k27~..7,1€71)
C(kl’kQ""’kn—l;s) = Z - ms . ’
m=n
where
1
Ap (k1 Koy .o knr) = 3 — .
0<mi<mao<-<Mmp_1<m mitmy® - -myy

We shall give an integral representation and the analytic continuation of
C(k1,ka, ..., kn_1;s), both of which are carried out by a standard method.
Before proceeding to the statement, we introduce the “multi-logarithmic
function” defined by

mn

. 2
Liky g, o (2) 1= > . = (k=12 <),
0<mny <mg<---<my 101 Mg™ "My

and give a lemma and a proposition which will be needed in the proof of
the theorem and also in the later discussion.

LEMmA 1. (i)

1.

_lelvk%---aknfl,kn_l(Z)’ for k, >1
7o Lk (2) 1

1-— leLkl?k%”'vkn—l(Z)? fOT kp = 1.

(i) Li11,..1(2) = %(—bg(l —2))".

n

https://doi.org/10.1017/50027763000006954 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006954

T. ARAKAWA AND M. KANEKO

192
Proof. (i) is straightforward, and (ii) is derived from (i) and Li;(z) =
—log(1 — z) by integrating repeatedly. 0
PROPOSITION 2. (i) For Re(s) > 1, we have
1 00 tsfl .
(1) C(kla Koy kn_1; 5) = F(S) /0 et — 1 ’ szlyk%mykn—l(e )dt-
(ii) For Re(s) > 0 and integers n > 2,j > 0, we have
S .
/ ts“*lLikhk%._.,knfl(eit)dt =T(s+75)C(k1,...,kn—2;8+ 7+ kn-1).
0
Proof. To obtain (i), write the sum in the definition of ((ki,ke,...,
kn—1;s) as
1 f: 1
ki, k Kon— ms’
O<mi<--<mp—1 m11m22 T 7n71—11 Mp=mMp_1+1 m%
: 1 1 >~ —ntys—1
and use the standard expression — = e "t* 7 dt to convert
n® I(s) Jo

the inner sum into the integral. As for (ii), we only need to replace

Liky ko kon_, (€7") by its defining series

e_mnflt

Z ki, ka2 ...mkn—l

0<my <ma<--<mn_1 M1 Mg n—1

I'(s+37)

o0
and use the same formula / e~ Mn—1tysti—lgy o
0 mi

as above. []

Now we state the basic

THEOREM 3. (i)  For Re(s) > 1, we have

1 o0 o0
K Fige o Fo1s8) = oo dwy - dwy oy de,
o b = e ),y e
1 1 1

ki—1 kn-1—1_ s—1
xl xn_l Tn e$1+"'+l’n —1 e$2+"'+$n —1 ern — ] ’

(ii) The zeta function ((k1,ka, ..., kn—1;s) can be analytically continued to

a meromorphic function of s in the whole complex plane.
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Proof. Writing the sum in the definition of ((k1,ko,...,kn—1;$) as

o0
Z Z e Z , we can prove (i) by the repetition of the same
mi1=1mo=m1+1 Mp=mMnp_1+1

calculation as in the proof of Proposition 2 (i). We prove (ii) by induction
on n. The case of n = 1 is the analytic continuation of the Riemann zeta
function. Let N be an arbitrary non-negative integer. Write

1 B;
_ I 451
pr— Zjlt + Ry (t)
7=0
with
o0
B
Byt)= >, 7"
j=N+1 7

where Bj are the classical Bernoulli numbers defined by this expansion. By
Proposition 2 (ii), we have

e’} N B
/ t371Lik1,k27---,kn71(eit) E T{tjildt
O .

J=0

B
_]F(S +J - 1)C(k17 s 7kn—2;s +J + kn—l - 1)7

I
.MZ

|
=0 I
and thus
@) D)k huotis) = / 7 Ly g s (€ R ()t
0
N
ZJ—J (s+35—1)C(kt, . kn—2i 5+ + k1 — 1).
=0

The second term in the right-hand side of (2) can be analytically continued
to a meromorphic function in the whole s-plane by the induction assump-
tion. Write the integral in (2) as a sum of two integrals:

1 0
/ ts1Lik1,k2,...,kn_1(€t)RN(t)dtJr/ " Liy k. n s (€7 Ry (t)dt.
0 1
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The second integral converges absolutely for any s € C and represents an
entire function of s. Using the estimates

Ligy kog,don 1 (1) = C(k1, k2, oo Ene1),

for k,_1 > 1,
. _ 1
Liky ey, en 1 (€7) <% Ligg,_1(et) = (—log(1 — e t))n !
Nl (n—1)!
n—1
for k‘n,1 = 1,

and
Ry(t) =0(t|™) (|t < 1),

we see that the first integral converges absolutely for Re(s + N) > 0 and
hence holomorphic as a function of s in the same region. Since we can choose
N arbitrary large, this shows via (2) that the function ((k1, ke, ..., kn—1;$)
has a meromorphic continuation to the whole s-plane. 0

By means of the inductive relation (2), we can, in principle, detect the
location and the order of poles of ((k1, k2, ..., kn—1;s), which are in general
quite complicated to describe. Possible poles lie at the integers < 1. Here
we only state results at s = 1 as a proposition.

PROPOSITION 4. (i) Let the index set (ki,ka, ..., kn—1) be of the form
(ki,... ki, 1,1,...,1) withm > 0,4 > 1, and k; > 1. Then, the order of
—_————

pole of ((ki,ka, ..., kn—1;8) at s=11is m+ 1 and the leading coefficient is
C(kl,kg,... ,k‘z) (Z =n-—-m — 1), i.€.

ki, ko, ..., k; _
Gl ai) = OB 0o -1y,
(ii) For (k1,ko,...,kn—1) = (1,1,...,1), we have
1

Proof. (i) The integral in (2) is holomorphic at s = 1 even when N = 0,
in which case the relation (2) divided by I'(s) reads

1 e _
) / t? 1sz17k27~~~7kn—l(e t)RO(t)dt
0

Clk1,kay oo kpo158) = )

1
gy ks + Ky — 1),
+8—1<( 1 ) 28+ 1 )
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By our definition of m, the function ((ki,...,kn—m—2;8 + kp—m—1 — 1) is
holomorphic at s = 1 with the value ((k1, k2, ..., kn—m—1). From this the
case of m = 0 follows, and we can easily obtain the proposition by induction
on the number of indices k;, starting with
1
=——+4+0().
() = —=+0(1)

(ii) By Proposition 2 (i) and Lemma 1 (ii), we have

_1\n—1 oo gs—1
L(s)¢(1,1,...,1;8) = (=1) /0 ! (log (1 — e_t))nfl dt.

—— —— (n—1)! et —1
n—1
Let ¢*(1,1,...,1;s) be defined by
N——
n—1
(_1)1171 /oo tsfl 1— eft n—1
I(s)¢*(1,1,...,1;8) = 1 dt.
(L L) = o [ (e (5
n—1
By the standard method already used to prove the analytic continuation of
C(k1, ko, ..., kn—1;5), we see that the function (*(1,1,...,1;s) is continued
1
e

to an entire function in the whole s-plane. Now we claim that the following
relation holds:

_1\n—1 n—1
(@) TG L) = o o (T(G(s)
n—1
Yy @ .
+j:0 J' . @ F(S)C (1, ,'178)

This can be seen by using

(log(1 - ™))" = nZl (n ; 1) (log t)? (1og (1 _te_t>>nlj

J=0

oo s , 1 emt\\ 17
/ i 1(log t)’ <log ( te >> dt
o €~
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Using (4) and the formula

D(s)C(s) = — + O(s — 1)

S —

which is equivalent to the more familiar (“Kronecker limit formula for ((s)”,
see e.g. Siegel [9])

1
C(s) = p—] +94+0(s—1) (v = Euler’s constant),
we conclude that
1
T'(s)¢(1, ..., 1;8) = ——— 4+ 0O(1).
(5) )= G oW

Let c(()n) be the constant term on the right-hand side. From the relation
(obtained from (2) by putting N = 0 and Vk; = 1)

D 1, ..., 1;s
(5) ¢( )
n—1
! /Oo B Ly (e Ro(B)dt + ——C(1, ... 1:s)
= i e . S
F(S) 0 1,1,...,1 0 s—1 ) s L9 9)y
n—1 n—2
we obtain
(n—1)
Mo —1) = L % o1
(3—1)”+CO +O0(s—1) (3—1)”+s—1+ (1),
hence we necessarily have c(()nfl) = (. Since n is arbitrary, this completes
the proof of the Proposition. 0
Remarks. 1. The values of the holomorphic function (*(1,1,...,1,s)
——

M
at non-positive integers are evaluated in terms of Bernoulli numbers:

_1\r+m—1 (r)
g*(1,1,...,1,1—m):( 1)' . Dm (m>1),
——— r! m

r

where D%) is defined by

.,
1 1—et > tm—1

. — ().

et —1 {log( t >} _mZ:le m!’

https://doi.org/10.1017/50027763000006954 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006954

MULTIPLE ZETA VALUES 197

(note that D) =0forl<m<r— 1). It is easy to see that (noting

(105 (45)) = -

and that

for r > 1 and m > r + 1. Hence Dr(,:) is the sum of (r + 1)-fold products of
Bernoulli numbers.

2. As mentioned in the proof, Proposition 4 (ii) above can be regarded as
a generalization of the “Kronecker limit formula for ((s)”. Moreover, we
can obtain from the assertion (3) and the relation (5) the following formula

giving the coefficients of the expansion at s = 1 of I'(s)((s):
COROLLARY 5. Let ¢, be defined by

P(s)C(s) = —= + > enls — )"
n=1

1 o0 t " 1 1
n = — logt)” — (1 — — | dt.
¢ n! Jo {(og) <Og1—et> }<et—1 t)

Proof. Near s = 1, we can write

Then

1 o'}
F(S)C(l, ,1;8) = W‘F zjla%‘)(s—l)m

n

(we put a(()n) = 0 for later use) and

/ " Liy,.1(e ) Ro(t)dt = > bl (s — 1)™,
0 SN——" m—0
where
n 1 > m —E\\ 1 1
b = —/0 (logt)™ (—log(1 —e™")) (et—l —;) dt

nlm!
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(recall that Liy 1 1(e7") = % (—log(l —e1))" and Ro(t) = ﬁ - %) By
——

(5) (multiplied b} I'(s), and n replaced by n + 1),

1 = n m 1 - n n—1 m
(s — 1)n+l + Z af (s = 1)" = (s —1)n+1 + Z(bgn) + a£n+1))(5 -1)
m=1 m=0

Comparing the coefficients of (s — 1)™, we obtain
al™) = p{m) 4 a;:f_:ll) for m > 0.

From this we have

n) = Z bm+z + am+n

(n)

In particular, putting m = 0 and using a; ~ = 0, we finally have
n—1 )

en=ald = — 3
i=0

_ _gﬁ /Ooo(logt)i (—log(1— eit))n_i (et 1_ 1 %) di
_ _% /OOO ((logt —log(1 —e™"))" — (logt)") <€t 1_ 1 %) dt

1 o0 t " 1 1
= = logt)™” — | 1 — — 2 ) dt.
n! Jo <(og) (Ogl—et) )<et—1 t)

Conversely, one can prove (3) starting from this formula by tracing
backwards the above argument.

O

§3. Poly-Bernoulli numbers and zeta functions

In [Ka], we introduced and studied “poly-Bernoulli numbers” which

)
with k € Z and n € N, are by definition given by the following generatlng
series:

Lip(1—e ) & n
(6) M:ZB(HQU_’

1—e*

generalize the classical Bernoulli numbers. Poly-Bernoulli numbers B(
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where, for any integer k, Lix(z) denotes the formal power series (for the
o0

k-th polylogarithm if £ > 1 and a rational function if k£ < 0) Z 2™ /mk.

m=1

When k£ = 1, BYY is the usual Bernoulli number (Bfl) = 3), and when
k > 1, the left-hand side of (6) can be written in the form of “iterated

integrals”:

1 S| r 1 r
(7) e’ - / / / Y drdr - do
et —1 06‘”—1 0 et —1 0 et —1

(k—1)—times

o0 2"
= ZB@“H.

n=0

In addition, we define the numbers C’r(lk) by

(8) Lip(1—e™) _ ic(k)x_"'

et —1 "ol
n=0

Since the left hand sides of (6) and (8) differs by a factor e, the numbers
B,(lk) and Cr(lk) are related by

(k) — ~ (n (k) (k) — - _yn-m (V) gk
m=0 m=0
Also, using

Liz(1—e®) Lig(1—e)  Liz(1—e®)

= Lig(l—e"
1—e% € et —1 et —1 + zk( € )
Lip(l—e% T Lip_1(1 —e™ 2
_ Lig(l—e )+/ ol — ) g
e‘t—l 0 ea’,—l
we have
k—1
(9) B = + Y.

In paricular, specializing £ = 2 and using the fact that Cr(ll) = 0 for odd
n > 3, we have

Bff) = Cc® for even n > 4.
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Now, we define the function &(s) for k£ > 1 by

oo 4s—1
(10) Euls) = — /0 ei_lLik(l—e_t)dt.

The integral converges for Re(s) > 0. When k = 1, & (s) is equal to
sC(s+1).

THEOREM 6. (i) The function &k (s) continues to an entire function of
s, and the special values at non-positive integers are given by

&(—m) = (-1)"CH) = i ( >B(’“) (m=0,1,2,...).
/=0

(i) The function &(s) can be written in terms of the zeta functions

C(k1,kay ... kp_1;5s) as

gk(s):(_l)k_l{4(271ﬂ"'a ; )+<(17271ﬂ71ﬂ8)++<(1771ﬂ278)
S——— S——— S———
k—1 k—1 k—1
k—2 '
+s- C( ) ; '1' ) 1§3 + 1)} + ]go(_l)JC(k - J) : C(L 17 < 1; S)'
- J

Proof. (i) Write the integral in (10) as the sum of two integrals:

1 1 5~ 1 . 1 00 ps— 1
Ek(s) = m/o et—lLZk(l )dt + F(S)/l o 1L2k(1—6 )Clt.

The second integral converges absolutely for any s € C and hence the second
term on the right-hand side vanishes at non-positive integers because I'(s) ™
so does. Then substituting the Taylor expansion (8) of Lix(1—e")/(ef —1)
into the first integral, we obtain, by a standard method (cf. [Z3, §4 of

Part 1]), the analytic continuation to an entire function and the desired
expression for the special value & (—m).

(ii) Consider the integral

s 1 x| + - +CCk 1 1
/ / Tt FTK — | ePattmk — ] ewk_ldxl'“dxk'
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By Theorem 3, we have

(11) J(S) ( ){C( ’ 7 178)—1_((17277178)+<(177172a8)}
k—1 k—1 k—1
+I'(s+1)¢(1,1,...,1;s+1).
———

)
k—1

On the other hand, integrating directly we can show

k—2
12 )¢k — HT(s)C(L,1,...,1; ).
(12) JZ:;( )"k = )T (s)¢( ' )
J
In fact, since
Ty 4+ Xk

L.

0z er1ttor — 17

we have

B R —

1 1
ertet+Tr 1 Heivk_l

- <<2>r<s><<1 / / LoD Lig(1 - e,

1

eTsttTE _ 1 emk ]

diL'Q ce dxk.

Continuing in the same manner, we obtain (12). Hence, together with (11),
we have proved (ii). []

Combining the above theorem (i) and the formula (9) preceding the
theorem, we obtain

k)

COROLLARY 7. The poly-Bernoulli number B7(1 s expressed as

BR) — (=)™ (&(—n) — &_1(—n+1))  forn > 1.

In particular,
2 = &(—n) for even n > 4.
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Remarks. (i) Using the integral expressions (10) and Proposition 2
(i), we can derive from the above theorem (ii) a kind of functional equation
relating polylogarithm Lig(1 — z) to multilogarithms:

Lig(1 — 2)
= (—1)F* Lisa, 1(2) + Lizgq,..1(2) + -+ Li1__12(2)
e - ——
k-2 .
+j:0 W(log(l — Z))j — ﬁ 10g(z)(]0g(1 _ Z))k—l

0<z<1).

When k = 2, this is nothing but the well-known functional equation for the
di-logarithm function (see e.g. Levin [L] p.5 (1.11)):

Lig(2) + Lia(1 — 2z) = ((2) — log zlog(1 — z).

Conversely, starting from this functional equation for Lis, we can easily
derive by induction the above equation for Lix, and thus obtain another
proof of Theorem 6 (ii).

k)

(ii) As a further generalization of B
nglyk%mvkm) by

, we may define the number

33
Ligy o, k(1 — € ZB(kl,kg, g
(1—e-x)m

nl

Note that this also generalizes the “higher order Bernoulli numbers” (cf.
e.g. [C]) because by Lemma 1 (ii), the case of k1 = ko = -+ =k, =
becomes

00 m
O LA (N b
— " n! m!\e?®-1

(We inadvertently committed an offence in [Ka] of using the same notation
B as in [C] for another series of numbers. Since we never discuss the
higher order Bernoulli numbers in the present paper, we adopted the same
notation in order not to cause further confusion.)
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84. Values at positive arguments and multiple zeta values

In this section, we introduce a generalization of our zeta function (10)
for multiple index set (ki, ... ,k;). We derive formulas for the values
at positive arguments, as well as a series of relations among multiple zeta
values.

Let (ki, ... ,kr) be any r-tuple of positive integers. Define

1 00 48 1
ki, ko, ... ke s) = - Li 1—e ")t
5( 1,2, ) 75) F(S)/O et 1 Zkhkg,...,k‘r( € )

This is absolutely convergent for Re(s) > 0. Note that {(k;s) = &k(s) in
our previous notation. First we generalize Theorem 6 (ii) to the function
(1, ... ,1,k;s) forany r > 1 and k > 1.
————
r—1

THEOREM 8. Forr,k > 1, we have

€1, ..., 1,k;s)
———

r—1

. +ap—1
:(—1)k 1 Z <8 @ )C(al—f—l,...,ak_l—i—l;ak—i—s)

a
aj+ - tap=r k

VajZO
k—2

+ (=1P¢, ... k= )¢, ..., 1),
§0< Yl : N b9)

r— J
Proof. Consider the integral
/ / dxy -+ dzp, 2 1,
xl + -+ xk.) 1 1
R e v r E e e - IR T

Successive integration using the identities

(-Tl + e+ xk)r = T!Li17...71(1 — e_(m1+"'+xk)) (Lemma 1 (11))
Lo

and

1

o (@uttay)
et toe _ | 1yl —e “)

IR Eat]

Ly

T
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)

= L’il 1 1 1—e"
8$V N (

T

leads, as in the proof of Theorem 6, to the expression

J(s) —T!F(s){g(l, e, 1,2)C(L L 1s) = ¢, L, 1, 3)0(, Ll 1 s)
r—1 k—2 r—1 k—3
+ - (=DFC, L E)C(s) + (—D)Re@, L ,1,k;s)}.
r—1 r—1

On the other hand, expanding (z1 + --- + x})" into the sum of monomials
and using Theorem 3 (i), we have

rIT(s + ag)
J(s) = _— 1,... _ 1; .
(S) Z B F(ak+1) C(al—i_ ) , A 1+ 7ak+8)
a1+ - fap=r
VajZO

Comparing the two expressions of J(s), we obtain the desired identity. []

Now we state and prove the result on the special values at positive
arguments.

THEOREM 9. (i) Let m > 0,r > 1, and k > 1 be integers. Then

(13) &1, ..o L, km+1)
——

r—1

= Z (ak:—T) Clar+1,...,a5—1+ Lyap + 7+ 1).

aj+ - tap=m
VajZO

(ii) Let m, r > 1, k> 2 be integers. Then,

(14) €1, ... Lksm+ 1)+ (=DFe, ... Lk +1)
—1 -1
k—2 ‘
=) (—1Y¢a, ..., 1,k—j)Q, 1,24 79).
j=0 r—1 m—1
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Proof. First we prove (ii). Using the identity Liy, 1(1 —e™ ") = —
N~ m

we have "
(L, ., Lksm+1)
r—1
0o
_/ Lis,  ax(1—e™)Liy_1(1—e™) —— dt
0 ’ L ag] El I et — 1
r—1 m
0o
= Lil’ ,1,k(1 — eit)—L’L'l _____ 1 2(1 — €7t) dt
0 ~—~— e
r—1 m—1
= <(17 A 717k)<-(17 7172)
r—1 m—1
00
—/ dtLll . 717]§(1 - eit)Lil’. 7172(1 - eit) dt
0
r—1 m—1
= <(17 A 717k)<-(17 7172)
——
r—1 m—1
00
—/ LZ'L“_717]§_1(1 — € t)d Lll7._,7173(1 € t) dt
0 r—1 m—1
=C(1, ... LE)C(L, ..., 1,2) = C(L, ... Lk —1)¢(1,...,1,3)
—— ——
r—1 m—1 r—1 m—1
e d
+/ LZ'L ,1,k—2(1 — e_t)—LZ'L._,’lA(l — e_t) dt
0 ~— dt =
r—1 m—1
a k—2
= (=1)7¢(1, ... ,1,k—35)C(1, ... , 1,2+ 7)
- ——r ——
J=0 r—1 m—1
k1 > =t T ot dt
—|—( 1) L’Ll’“_71(1 e )L’Ll7._,’1’k(1 e ) 7
0 N—— N~ et —1
T m—1
k—2 '
=Y (=1Y¢@, ..., 1,k—j5)CA, ... ,1,24+7)
- ——r ————’
3=0 r—1 m—1
_(_1)k£(17 ,1,k‘;’l”+ 1)7
————
m—1
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thus obtain the identity (14). To deduce (i), put s = m + 1 in Theorem 8.
Then we have

€1, ..., 1L, kkm+1)
——
r—1
:(—1)’7‘3_1 Z (ak—l—m) Clar+1,...;ap-1+ L;ap +m+1)
a1+ - tap=r m
VajZO

k—2 '

S Lk (L . Lm o 1).
= H,l_/ ~——

r— J

Comparing this with the identity (14) just proved, and using the duality
(cf. [22])
C(L, ..., ,m+1)=((1, ... ,1;5+2),
——— ———
i m—1

we obtain the formula (13) for m > 1. When m = 0, (13) is a direct
consequence from the definition and the above mentioned duality. 0

Putting r =1 in (13) and m =r =1 in (14), we have respectively
CoOROLLARY 10. (i)' For k> 1 and m >0,

fk(m—l—l): Z (ak—l—l)g(al—i—l,...,ak,l—i—l;ak—|—2).

a1+ - tap=m
VajZO

(ii) If k£ is even and k > 2, then

e
[\

(—1)°¢(i +2)¢(k — ).

N =

§(2) =

I
o

%

We note here that (1) = ((k+1) by the definition (10). Combination
of the two formulas in Theorem 9 yields many relations among multiple
zeta values:

'Recently, Y. Ohno [O] obtained an another expression of £x(m+1) as a by-product of
his simultaneous generalization of “duality” and “sum formula” for multiple zeta values.
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COROLLARY 11. For integers m,r > 1 and k > 2, we have

Z (ak?:l—r> Clar+1,...,a5-1+ Lyap +7r+1)

aj+ - tap=m
Va]-ZO

ap +m
-+(—1ﬁ E: < knl )<ga1+—L.”,ak_1+]4ak+—nL+1)

aj+ - tap=r

VajZO
k—2 '
= (—1)]C(1,...,1,k‘—j)§(1,...,1,2—|—j).
- ~——— ———
J=0 r—1 m—1

In particular, the case of k = 2 yields (the formula appeared in [HWN]

(1.8))

m

3 (T—;i)g(m-i—l—i,r-i—l-i-i)

=0
+Y (m;_j)q(r—i—l—j,m—l—l—i-j)
=0
= C(m+ 1)C(T + 1)7

and further specialization m = r gives
m .
m+1 . N
Z( . ><<m+1—z,m+1+z> = S¢m+ 1)
i=0 !
§5. Some problems

In conclusion, we discuss some further problems.
(i) For a general index set (kq,...,k;), is the function &(kq,...,k.;s) also
expressed by multiple zeta functions as in Theorem 87 One may deduce as
a consequence further relations among multiple zeta values.

(ii) The above problem (i) will be affirmatively answered if one can give a
suitable functional equation for the multi-logarithm functions Lig, , . . (2)
under the substitution z — 1 — z. What can one expect about functional
equations of Lig, k, k. (2)7 We illustrate one example of the functional
equation satisfied by the multi-logarithm function and its consequence.
Namely, we have

Lig (1 — z) = 2Li3(2) —log z - Lia(2) — ¢(2)log z — 2¢(3).
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Differentiating both sides, this reduces to the functional equation between
Liy(z) and Lig(1—z) which was recalled at the end of §3. From this identity,
we obtain

§(2,1;5) = 2¢(3;8) + 5C(2;5 +1) + C(2)s¢(s + 1) — 2¢(3)¢(s)-

(iii) May the values at positive integers &(kq,...,k,;m) enjoy a certain
kind of “duality” like the one in Theorem 9 (ii)?

(iv) Determine the principal part of the arbitrary multi-zeta functions
C(k1,...,kn—1;s) at the pole s = 1 (or more generally at each possible
pole). This would lead, together with Theorem 8, to certain non-trivial
relations, perhaps including the “sum conjecture” ([Z]), among the multiple
zeta values.
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