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Abstract

In 1981 two notions of effective presentation of countable connected graphs were formulated by
J. C. E. Dekker—namely, edge recognition algorithm graphs and minimal path algorithm graphs. In
this paper we show that every planar graph has a minimal path algorithm presentation but that some
graphs have no minimal path algorithm presentations. We introduce the notion of a shortest distance
algorithm graph, show that it lies strictly between the two notions of Dekker, and show that every
graph has a shortest distance algorithm presentation. Finally, in contrast to Dekker's result about
minimal path algorithm graphs, we produce a shortest distance algorithm graph which has no
spanning tree which is an edge recognition algorithm graph.

1980 Mathematics subject classification (Amer. Math. Soc): 03 D 45.
Keywords and phrases: recursion theory, effectively presented structures, graph theory.

In [1] J. C. E. Dekker introduced the notions of an edge recognition algorithm
graph and a minimal path algorithm graph. In this paper, all graphs will be
countable, connected, have no loops or multiple edges, and have a vertex set
contained in the natural numbers N = {0,1,2,...}. In [1] Dekker showed that

(i) every graph has a presentation as an edge recognition algorithm graph with
an isolated vertex set,

(ii) there are graphs which have a presentation as a minimal path algorithm
graph but have no presentation as a minimal path algorithm graph with an
isolated vertex set, and

(iii) every minimal path algorithm graph has a spanning tree which is a minimal
path algorithm graph.

In addition, he gave a characterization of all graphs which have a presentation as
a minimal path algorithm graph with an isolated vertex set.
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132 Alfred B. Manaster, Jeffrey B. Remind and James H. Schmerl [2 ]

In this paper, we answer a number of questions which seem to arise naturally
from the notions and results above. First, we show that every planar graph has a
presentation as a minimal path algorithm graph with an isolated vertex set. Next
we show that there are graphs which have no presentations as minimal path
algorithm graphs even if we do not require the vertex set to be isolated. Also we
introduce the notion of a shortest distance algorithm graph and prove that this
notion lies strictly between those of edge recognition algorithm graph and
minimal path algorithm graph. We show that every graph has a presentation as a
shortest distance algorithm graph with an isolated vertex set and produce a
shortest distance algorithm graph, and hence an edge recognition algorithm
graph, which has no spanning tree which is an edge recognition algorithm graph.

0. Definitions and conventions

We shall often refer to two (classically) isomorphic graphs as different " presen-
tations" of the same graph. Given a graph G = (V, E) with vertex set Fand edge
set E, we say that Gx = (VY, Ex) is a subgraph of G if Vl c V and E1 = {{x, y)
c Vx\{x, y) ^ E). A spanning tree of a connected graph G = (V, E) is a
connected tree T = {V, E') where V = V and E' c E. Note that according to
our definitions a spanning tree of G is not necessarily a subgraph of G. A planar
graph is a graph which has a presentation with the vertex set consisting of points
in the plane, and in which adjacent vertices are connected by curves in the plane
which do not intersect each other except at common vertices.

Given a graph G = (V, E), and given [x, y) c V, we say that a sequence of
vertices (x0, xx,... ,xn) is a path of length n from x to y in G if xQ = x, xn = y,
and {xt, xi+l) e E for i = 0,...,« - 1. (x0, x^...,.*„) is called a minimal path
from x to y in G if the length of any other path from x to j> in G is at least n.

The following two definitions are due to Dekker [1], who referred to these
notions as a-graphs and w-graphs, respectively.

DEFINITION 1. A graph G = (V, E) is an edge recognition algorithm graph
(ERA) if there is a partial recursive function e such that for all {x, y} c V,

U{x,y}*E.

Such an e is called an ERA function for G.
Let A^" denote the set of all finite sequences of N and let ( >: N<u -> JV be

some fixed one to one and onto recursive function.

https://doi.org/10.1017/S1446788700026550 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026550


[ 31 Planarity and minimal path algorithms 133

DEFINITION 2. A graph G = {V, E) is a minimal path algorithm graph (MPA) if
there is a partial recursive function /x such that for every [x, y) c V, fi(x, y) =
(x0,.. .,xn), where x = x0, y — xn, and (x0,... ,xn) is some minimal path from
x to y in G. (Recall that we are assuming all graphs to be connected.) Such a ju is
called an MPA function for G.

Finally, a related definition which we shall also consider is the following.

DEFINITION 3. A graph G = (V, E) is a shortest distance algorithm graph (SDA)
if there is a partial recursive function a such that for every {x, y} c V, a(x, y) =
n, where n is the length of a minimal path between x and y in G. Such a a is called
an SDA function for G.

It is clear that given any MPA function for G, one can construct an SDA
function for G, and given any SDA function for G, one can construct an ERA
function for G. Thus the following implications hold:

MPA =» SDA => ERA.
We shall see later that none of the converse implications hold in general.

DEFINITION 4. A subgraph Gl = (F1; Ex) of a graph G is called minimal path
closed if Gx is connected, and if, for all {x, y} c Vv any minimal path between x
and y in Gx is also a minimal path between x and y in G.

DEFINITION 5. A graph G is called locally finite if every finite subgraph Gx of G
is contained in a minimal path closed subgraph G2 of G, where G2 is also finite.

1. MPA presentations of planar graphs

The main result of this section is that every planar graph has an MPA
presentation. For completeness, we include a direct proof of the following result
of [1], which is one of the two keys to the main result of this section.

THEOREM 1.1. Every locally finite graph has an MPA presentation with an
isolated vertex set.

PROOF. We shall construct an MPA U having a minimal path function n with
the property that every locally finite graph G is isomorphic to a subgraph G' of U
such that, for all vertices x and y in G', the path n(x, y) also lies in G'. The
isomorphism between G and G' will not in general be effective.
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Let Go, G 1 ; . . . be an effective list of all finite graphs. We shall construct Uin

stages so that at the end of each stage s > 0, we will have specified a recursive

vertex set Vs such that N — Vs is infinite, and we will have defined /u on Vs X Vs so

that, for all x, y e Vs, the path n(x, y) also lies in Vs. At the end of each stage

s > 0, we will have specified infinitely many distinguished finite subgraphs i/o
s,

U(,..., such that for each /' and for all vertices x, y in Uf, the path n(x, y) also

lies in U'. At stage 0, we will have one distinguished subgraph t/0° which consists

of a single vertex. To go from stage 5 to stage s + 1, we consider each dis-

tinguished subgraph U' = (Vf, £ / ) . For each finite graph Gp we see if there is a

way to extend Uf to a graph G'y5, isomorphic to Gp by adding new edges and

vertices to 17/ in such a way that we can extend our minimal path function ju, on

U* to a minimal path function on G'y'. If there is such an extension, we introduce

new vertices and edges for G'j-S, we extend our definition of ju to a minimal path

function, and we make Gj's a distinguished subgraph for stage s + I. We

emphasize that if / ¥= k, then the only vertices which the edges of GjtS and G'^s

have in common will be U'. Similarly, if /' =£ j , the new vertices and edges of any

extensions of U* and UJ will be pairwise disjoint. It is not difficult to see that this

construction can be carried out in an effective manner in such a way that the final

graph U is an MPA with vertex set equal to N. Moreover, by construction,

H(x, y) will be the index of a minimal path in U between x and y, since once

/x(x, y) is defined at some stage s, we never allow new vertices and edges to be

introduced at later stages which would violate the fact that n(x, y) = (x0,... ,yn)

is a minimal pa th between x and y in U. Thus U is an MPA with MPA function

N o w suppose G = (V, E) is a locally finite graph, where V c N. Clearly, if G is

finite, then at stage / some £// is isomorphic to G. If G is infinite, then there exists

a sequence G, c G2 c G3 c • • • (not necessari\y effective) of finite minimal path

closed subgraphs of G such that if G, = (Vt, £ , ) , then UG, = (U^,U£,-) = G.

Using the fact that all of the G, are minimal path closed, it is easy to show by

induction that at each stage s > 0, there is a distinguished subgraph U,* isomor-

phic to Gs, and that, moreover, one of the distinguished extensions of U^, Gj*-S, is

isomorphic to Gs + 1. Thus, if U' = UL^, then U' is isomorphic to G, and since for

all /, and for all vertices x, y in U', the path with index n(x, y) also lies in Ut*, it

follows that ju is a MPA function for £/', and hence that G is isomorphic to an

MPA. By the same argument, it follows that for any strictly increasing function / :

N -» N, there is a sequencet/,1 c U^ c U? c . . . of distinguished subgraphs

such that U" is isomorphic to Gf(n) for all n, and such that Uf =\JnUt ^ is an

M P A isomorphic to G with MPA function ju. Now i f / a n d g are strictly increasing

functions from N into N and if, for some « , / ( « ) =* g(n), then clearly Uif^ ¥= Ut ,

and since all extensions of distinguished subgraphs in our construction are
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pairwise disjoint, it follows that U{ n Ug c Ui (MJl , and hence that Uf n Ug

is finite. Thus, since there are 2 ° strictly increasing functions from N into N and
only countably many infinite r.e sets, it follows that 2S° strictly increasing
functions f: N -+ N the vertex set of Uf contains no infinite r.e set, i.e., Uf is an
MPA presentation of G with an isolated vertex set.

Of course, as Dekker points out, if G is an MPA with MPA function ju, and if G
is not locally finite, then we can use \i and some finite subgraph G' of G which is
not contained in any minimal path closed finite subgraph of G to generate an
infinite r.e subset of the vertices of G. Thus, if G has an MPA presentation with
an isolated vertex set, G must be locally finite.

THEOREM 1.2. Every planar graph is locally finite.

PROOF. Let Ao be any finite subset of a planar graph G. If Ao is not minimal
path closed, then there must exist two vertices x0, y0 in Ao between which there
exists a shorter path in G such that all vertices of that path except x0 and y0 are
not in Ao. Let Ax be the subgraph of G whose vertices are those of Ao together
with the vertices on the shorter path between x0 and y0. Since there are at least
two disjoint paths in A1 between x0 and y0, Ax partitions the plane into finitely
many regions. Each of these regions is bounded by a cycle of Ax, and each edge of
A1 is counted twice in counting the edges of all the regions bounded by Av Figure
1 gives an example of the meaning of the length of boundaries of regions
determined by a finite planar graph.

Figure 1
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If Ax is not minimal path closed in G, then we may find xx, yY in A1 with a

shorter pa th in G disjoint from Av Let A2 be the subgraph of G whose vertex set

is that of Ax together with the vertices of a shortest path between xr and yv Since

A 2 is planar, the new path lies entirely within one of the regions determined by

Av Thus the regions determined by A2 are those of Au except that the region of

the new pa th is now subdivided into at least two new subregions. Each of these

new A2 regions has a length which is strictly less than the Ax region of which it is

a par t . To see this, consider first the graph whose vertex set is that of A2, and

whose edges consist only of those Al and those on the new path between xx and

y1. The former region /?, is now split into two regions, Ri a and R^h. Since the

new path between xx and yx is shorter than any path in Ax, the lengths of both of

the regions Ri a and R{ b are less than the length of /?,-. As edges are introduced

to further divide the regions, the new regions always each have a shorter length

than the divided region because there are no multiple edges.

Since each addition of a new and shorter path between two vertices leads to a

finer part i t ion of the plane into regions with shorter lengths, we see that the

process cannot continue indefinitely. Within each region determined by Ax, we

can successively find at most as many new minimal paths as the length of that

region. Each such new path leads to finitely many more regions, but since the

depth is bounded and the partition of a region is always into only finitely many

new regions, there are only finitely many regions which can be added before a

minimal pa th closed subgraph of G is obtained.

T H E O R E M 1.3. Every planar graph has an MPA presentation with an isolated

vertex set.

Theorem 1.3 follows immediately from Theorems 1.1 and 1.2. As Dekker [1]
points out, by a modification of the proof of Theorem 1.1 we can strengthen
Theorem 1.3 to assert that the vertex set of the MPA presentation is isolated and
also regressive.

2. Some graphs which are not locally finite

We shall examine some ways to construct graphs which are not locally finite,
thereby obtaining examples both of graphs which have MPA presentations, but
not with isolated vertex sets, and of graphs which have no MPA presentations. In
view of the previous section, we know that these examples cannot be planar
graphs. Dekker [1] has an example of a not locally finite graph which has an MPA
presentation. The example described here is different from his, and it is easier to
use to construct a graph with no MPA presentation.
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[7 ] Planarity and minimal path algorithms 137

THEOREM 2.1. There is a graph G which is not locally finite.

P R O O F . For each n, let Rn = {an, bn,...,hn) be a set of eight vertices, and let

En = {(a,, bn),(bn,cn),...,(gn, hn){hn,an)} be the set of 8 edges so that Gn =
(Rn, En) is a cycle. The sets Rn will be pairwise disjoint. The vertex set of G will
be the union of all the sets Rn. Let

A n = { ( < * „ > a n + 1 ) , ( c n , e n + 1 ) , ( e n , b n + 1 ) , ( g n , fn + l ) } .

The edges of G will be the union of all the edge sets En U An. Figure 2, which
shows all the edges in Rn U Rn + i, will be useful in analyzing G.

Examination of Figure 2 reveals that there is a unique minimal path in G between
each pair of points in Rn, except for the pairs (dn, hn) and (bn, /„). It is now easy
to see that any minimal path closed subgraph H of G which contains Rn must also
contain Rn + i. Indeed, since Rn c H, we may successively use the following pairs
to obtain all of the points in Rn + 1:

8 i v e s

l>n + i,en+1) gives en + i,dn + l\ and

Thus G is the only minimal path closed subgraph of G which contains Ro.
We note that G can easily be presented as an MPA. Moreover, in any MPA

presentation of G the vertex set must be recursively enumerable, since we can
effectively enumerate it from Ro by using the minimal path algorithm. Indeed, in
any MPA presentation, each of the functions of n called an, bn,...,hn is a
recursive function of n.

https://doi.org/10.1017/S1446788700026550 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026550


138 Alfred B. Manaster, Jeffrey B. Remmel and James H. Schmerl [81

THEOREM 2.2. There is a graph G' which has no MPA presentation. Moreover,
there is such a graph that has an ERA presentation with a recursive vertex set.

PROOF. The desired graph G' will be a modification of the graph G constructed
in Theorem 2.1: that is, to construct G' from G, we shall, for certain n, simply
add new vertices xn and^n and new edges (dn, xn), (xn, yn), {yn, hn) between dn

and hn so that the length of a minimal path between dn and hn becomes 3 instead
of 4. Thus, let Rn, En, and An be as in the proof of Theorem 2.1. Let R° = Rn,
E° = En, R\ = Rn U {xn, yn}, and E\ = EH U {(dn, xn),(xn, /„),(>-„, *„)} for
all n. For each subset X c N, let Gx = QJHeXR], U Ua*xR°n, UneXEJi U UneA-
£ ° U UnAn). Thus the graph G used in the previous theorem is G0.

To see that any minimal path closed subgraph of Gx which contains R% must
also contain Un/?°, we may use the same argument as in the previous proof, since
the vertices xn, yn, xn + 1, and j>n + 1, if present, do not give shorter paths between
any of the points used to obtain R°n + l from R°n. Using dn and hn, we see that any
minimal path closed subgraph of Gx which contains R°n must also contain R\ if
n e X. Thus, for each Gx, we see that the only minimal path closed subgraph of
Gx containing Ro is Gx.

Suppose that Gx has an MPA presentation. As in the proof of Theorem 2.1, we
see that each of dn and hn is a recursive function of n. Thus, for each n, we may
apply the minimal path algorithm to dn and hn to determine whether a minimal
path between dn and hn has 3 edges or 4 edges. In the former case, n e X, while
in the latter, n £ X. Since the process of determining whether or not « G l i s
effective, we have shown that if Gx has an MPA presentation, then X is recursive.
To prove the first assertion of this theorem, we may use Gx for any non-recursive
set X

To prove the second assertion of the theorem, let X be any recursively
enumerable set which is not recursive. Let / be a recursive enumeration of X
without repetitions. Present Gx with an = lOn, bn = 10M + \,...,hn = 10 + 7,
x/(n)~ 10" + 8, and >y(n) = 10/i + 0 for each n. The vertex set of this presen-
tation is the set of all natural numbers. The previous description of Gx shows that
this is an ERA presentation. Since X is not recursive, Gx has no MPA presen-
tation, and our proof is complete.

3. Shortest distance algorithm graphs

In this section we shall show that there are SDA presentations of graphs which
fail to be MPA presentations, and ERA presentations of graphs which fail to be
SDA presentations. Thus the notion of shortest distance algorithm graph lies
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strictly between Dekker's notions of edge recognition graphs and minimal path
algorithm graphs. First we shall show that every graph has an SDA presentation.
This fact combined with the fact that there are graphs with no MPA presentations
will immediately establish the first result mentioned above. Next we will give a
direct construction of an ERA presentation which is not an SDA presentation.
Finally, we establish another difference between MPA's and SDA's by showing
that, in contrast to result (iii) mentioned in the introduction, there is a graph G
which is an SDA, but for which no spanning tree of G is an ERA, much less an
SDA.

THEOREM 3.1. Every graph has an SDA presentation with an isolated vertex set.

PROOF. We shall construct an ERA graph U and a partial recursive function a.
It will not be the case that a is a shortest distance algorithm on all of U, but we
will construct a so that for any graph G, there exists a subgraph U' of U such that
U' is isomorphic to G and a is an SDA function for U'.

Much as in our construction of Theorem 1.1, we shall construct U in stages. Us

will denote the finite subgraph of U constructed by the end of stage s, and within
Us we will specify finitely many connected distinguished subgraphs U{,..., U£.
Moreover, for each index / and vertices x, y in Uf, a(x, y) will be defined, and
o(x, y) will be less than or equal to the actual minimal path length between x and
y in Uf. At stage 0, U° = f/0° consists of a single vertex. At stage s + 1, we shall
construct extensions of each distinguished subgraph Uf = (Vf, Ef) as follows.
For each subset S c Vf, we determine if it is possible to introduce a new vertex x
and edges {(x, v)\v e S) and still maintain the fact that, for all u, v in Vf,
a(u, v) < the length of a minimal path between u and v in the graph ({x} U Vf,
Ef U {(x, v)\v G S}). If so, then for each of the possible ways of defining
{a(x, v)\v G Vf} such that a(x, v) < the length of a minimal path between x
and v in the graph ({x} U Vf, Ef u {(x, v)\v e S}), we introduce a new vertex
x' together with new edges (x\ v) for D £ S , we define a(x', v) for v G Vf
accordingly, and we declare the graph ({*'} U Vf, Ef u {(x', V)\v e 5}) to be a
distinguished subgraph at stage s + 1. Us+1 will consist of the union of all these
extensions of the distinguished subgraphs U{, ...,Uf,. Note that unless x and y lie
in the same distinguished subgraph Usi at some stage s, there is no edge between
x and y, and so a{x, y) is not even defined. It is easy to see that this construction
can be carried out effectively so that the vertex set of U equals N, and so that a is
partial recursive.

Let us call a graph isomorphism/: G -» U distance preserving if, for all vertices
x, y in G, o(f(x), f(y)) is the length of a minimal path from x to y in G. To see
that every graph G is isomorphic to a subgraph of U via a distance preserving
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isomorphism, let g0 , glt g2, • •. be an enumeration of the vertex set of G such that,

for each n, the subgraph of G whose vertex set is {go> • • - ,£„} ' s connected.

Assume by induction that we can define / ( g 0 ) , - • • , / ( g,,) so that { / ( g 0 ) , . . . , f(gn)}

is the vertex set of a distinguished subgraph U" = (V", £,") at stage n, where, for

all / and j , a ( / ( g , ) , f{gj)) = length of a minimal path between g, and gj in G.

Then it is clear that one of the extensions constructed for U" at stage n + 1 will

be of the form ({x'} U Vt
n, E," U {(* ' , v)\v e S}) where 5 = {f(gt)\i < n, and

( g ; , gn + 1) is an edge in G}, and where a(x', / ( g , ) ) equals the length of a minimal

pa th between g, and gn+1 in G. Then we let / ( g n + 1 ) = x'. It now easily follows

that / defines an isomorphism between G and a subgraph U' oi U which is

distance preserving. Thus a is an SDA function for U', and G has an SDA

presentation.

N o w to ensure that G has an SDA presentation with an isolated vertex set, we

need only modify the construction of U given above so that each time we

construct an extension ({x'} U Vf, Ef U {(x',v)\v e S}) of a distinguished

graph U* as above, we construct another extension ({x"} U Fjs, £ / U {(x", v)\v

G 5 } ) , where x ' # JC", but where o ( x ' , u) = a ( x " , u) for all v e FjJ. In this way,

with G and g0 , g 1 ; . . . as in the previous paragraph, we will have two disjoint ways

to define f(gn + 1) at each stage n + 1 > 0. It will follow that there are 2*° SDA

presentat ions of G within U, so that any two such presentations have only finitely

many vertices in common. As in Theorem 1.1, it then follows that since there are

only countably many infinite r.e sets, there are in fact 2K° SDA presentations of G

with an isolated vertex set.

Our next two results use techniques very similar to those developed in [2].

T H E O R E M 3.2. There is an ERA presentation of a graph which is not an SDA

presentation.

PROOF. G will be a subgraph of the ERA graph H which we define now and
represent in Figure 3. Let Dn= {5n,5n + l,5n + 2,5n + 3,5n + 4}, Cn =
{{5n,5n + 1),(5« + l,5n + 2),(5n + 2,5n + 3), (5« + 3,5/J + 4),(5« + 4,5«)},
and Bn = {(5n + 3,5(/i + 1))} for all n.

Let H = 0JnDn, Un(Cn U £„)). Then G is a subgraph of H which contains
(5«,5« + l,5/i + 2,5« + 3} for each n. To make sure that cpe is not a shortest
distance algorithm for G, we include 5e + 4 in the vertex set of G whenever
<pe(5e, 5e + 3) = 3, and for no other e. It is easy to see that G is an ERA
presentation which is not an SDA presentation.

THEOREM 3.3. There is an SDA presented graph with no ERA presented spanning
subtree.
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5n+4

5n+1

5n+2

5n+3

Figure 3

PROOF. The proof is quite similar to the proof of Theorem 3.2; G will be a
subgraph of the SDA graph H which we define now and represent in Figure 4.
LetDn = {AnAn + 1,4« + 2,4M + 3}, Cn = {(An, An + l),(An + I, An + 2),(4w
+ 2,An + 3), (4n + 3,4n)}, and £„ = {(4/i + 2,4(« + 1))} for all n.

4n

4n+3 4n+1

4n+2

Figure 4

Let H be the graph (UnZ>n, Un(Cn U £„)). Clearly, if a(jc, >>) = the length of a
minimal path between x and _y in H, then a is a recursive function, and hence H is
a SDA. Let G be a subgraph of H which contains {An, An + 2} and at least one of
An + 1 and An + 3 for every n. Now any such G will be a SDA since a will be a
SDA function for G.

Note that if T is a spanning tree for G, then T must exclude exactly one of the
edges in Cn if both An + 1 and 4« + 3 are in G, while if 4« + 1 is in G but
4« + 3 is not in G, then 7" must contain both the edges (An, An + 1) and
(An + 1, An + 2); similarly, if An + 1 is not in G and 4« + 3 is in G, then 7 must
contain both the edges (An, An + 3) and (An + 2, An + 3). Now to ensure that the
e th partial recursive function <pe is not an ERA function for a spanning tree T of
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G, we construct G as follows. Consider <pe(4e, 4e + 1), <pe(4e + l ,4e + 2),
<pe(4e + 2, 4e + 3) and <pe(4e + 3,4e). If it is not the case that all these values are
defined, and that exactly three of the values are 1 and one of the values is 0, then
we include both the vertices 4e + 1 and 4e + 3 in G. Otherwise, if one of
tpe(4e,4e + 1) or <pe(4e + \,4e + 2) equals 0, we put 4e + 1 into G and exclude
4e + 3 from G; and if one of <pe(4e, 4e + 3) or q>e(4e + 2,4e + 3) is 0, we put
4e + 3 into G and exclude 4e + 1 from G. In any case, it is easy to see that <pe

cannot be an ERA function for a spanning tree T of G.
We close this paper with some related questions which we have not answered.

Is there a planar MPA U such that every planar graph is isomorphic to a
subgraph of Ul Are there interesting characterizations of the recursive equiva-
lence types of vertex sets of ERA presentations of specific graphs?
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