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1. Introduction

Let {a;,} [t = 0, ± 1 , ± 2 • • •) be a stationary non-deterministic time
series with E{x\) < oo, E(xt) = 0, and let its spectrum be continuous
(strictly absolutely continuous) so that the spectral distribution function
F(co) = J"n/(A)dA (—n :£ o> 5S it), where /(w) is the spectral density
function. It is well known that {xt} then has a unique one-sided moving-
average representation

00

X1-/ •t< — ji. Subt—a

with g0 = 1,
OO

~ " < oo,
u=0

and
E(et) = 0, E(eteu) = 0 {t # u), El/t) = a2 > 0

where

(2) ^ = 2n exp (i- J" log /(a)d«) .

(See, for example, Hannan, [7], pp. 21—2, Grenander and Rosenblatt,
[6], pp. 67—76). The coefficients gu are determined from /(a>) by

OO

(3) 2^u =
where

(3) defining a function of the complex variable z which is analytic and
never zero in the interior of the unit circle \z\ < 1. Conversely (1) gives

(4) /(„) = (oi/fcr)
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364 A. M. Walker [2]

Suppose now that the spectral density is a specified function of a
number of unknown parameters, and that we wish to obtain estimates
of these from data consisting of part of a realisation of the series, which,
as usual, will be assumed to be n consecutive observations, denoted by
*i. X2>''"« xn- We shall take the gu to be functions of p independent para-
meters, 8lf 62, •••,&„, which may be called structural parameters, the set
of parameters being completed by the addition of a2. Thus, writing
0 = (0i, 02. • • •- 0») . we have |2£o gu eim\* = f K ©). where g is a specified
function, and then, from (4), the spectral density / = (o2/2n)g(a>, 6). The
term "structural parameter" is used because in most applications the
series is defined by a linear model which can be put in the form (1), with
e, representing the effect of a disturbance at time t, for example, a linear
autoregressive process of order p given by the stationary solution of the
set of difference equations xt-\-'^_1daxt_u = et, where the et are indepen-
dently and identically distributed and the roots of the equation
z*+2£_i zp-"Qu = 0 have moduli less than unity. The parameter a2, on
the other hand, can be thought of as a scale factor, being proportional to
the variance of xt (that is, to the total power F(JI) in the whole frequency
range of the spectrum); it is also equal to the minimum mean square
error that can be achieved when xt+1 is predicted by a linear combination
of observations xu (u ts* t). Clearly if we wish to estimate the standardised
spectral density /(to)//** /(A)dA giving the relative distribution of power over
[—n, n\, we require only estimates of the structural parameters.

Let us first assume that {xt} is a normal process, namely that the
joint distribution of any finite set of the xt is normal; this is equivalent
to taking the e, to be independently and identically distributed as N(0, a2).
The logarithm of the likelihood of the data x = (as1( x2, • • •, xn)' can
then be written

(5) Ln(0, o-2) = - | l o g \Vn{6)\-\n log itoo*-

where, if

»„(©) = E{xrx,)]o* =

Vn(0) = (»„(©)) ( l ^ f . J g n), and

Qn(x, 0) = x'{

It would be natural to consider estimation of 6 and a2 by the method
of maximum likelihood, but this is awkward because of the term
—£log|FB(0)|. However, Whittle ([12], Chapter 7; [13]) showed that
lim^..^ IK,Wl = ! (a t least if 2£Lo&u(®)z" is analytic and never zero in
\z\ < l+(5, <5 > 0), so that when n is fairly large it should make little dif-
ference if instead the expression — \n log 2JIG2—Qn(x, 0)/2CT2 is maximised.
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Doing this gives us estimates dn = ($n>1, 6ni, • • • $np) which minimise
Qn{x, 0) and therefore may be called least-squares estimates, Qn being
equal to a sum of squares of uncorrelated random variables, and then
#n — Qn(x> &n)ln- I n most problems there will remain the difficulty of
finding explicit expressions for the elements of {Fn(0)}-1, but Whittle
showed that this could also be avoided when n is large by replacing Qn by

(6) Un(x, 0) = 1

where C, = ~£!li^%t%t+\i\ln is the sample serial covariance (with divisor
n) for lag \s\, and

n

2 *<*•<*( = i

2

{g(<°> 6 ) } ~ 1dco = n
n - l

2- ( n - l

(7) «.(») = ~ f e«°>
since clearly

2 n - l

= » 2 e'°"C9.

Whittle went on to investigate the asymptotic properties (n -> oo)
of the estimates obtained in this way, and established that under suitable
regularity conditions on g{a>, 6), these were what would be expected by
analogy with the classical asymptotic theory of maximum likelihood
estimation for data consisting of independent identically distributed
observations. Thus

(i) bn is a (weakly) consistent estimate of 0, namely p lirrin^ Qn = 0;
(ii) «*(#„—0) has, as« -*• oo, a limiting distribution which is2V(0, W~l),

namely multinomial with mean 0 and covariance matrix equal to the
inverse of the matrix W = (wtj) (1 5S i, j ^p), where

8L*\f f).
L* = — JM log 2w2—Un{x, 0)/2<r2 being the modified log-likeUhood which
is maximised, whence it follows that

(8) »« = ^ J' d log g(a>, 6) d log g(<o,6)
—^7 r^ — da>

and
(i')

n-»oo

(ii') wi(^*—cr2) has, as n -*• oo, a limiting distribution which is
N(0, 2a4), and in the limit ni(&l—a3) and ni(§n—O) are distributed in-
dependently.
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(See Whittle, [14]; [15], pp. 211-5 , Hannan, [7], pp. 46-7) .
Now suppose that the normality assumption does not hold. The above

method of estimation, although no longer effectively that of maximum
likelihood when n is large, is still intuitively reasonable. Qn(x, 8) remains
a sum of squares of uncorrelated random variables which in fact is ap-
proximately equal to the sum of squares of "residuals (see Whittle,
[15], p. 207; the argument given there is heuristic, but can certainly be
shown to be valid when ^ L o Su(^)z" IS analytic and never zero in \z\ < l+<5,
the representation (1) then being invertible to give et — ̂ ^ohuzt_u with
the coefficients hu tending to zero like some power of e~u when w -> oo).
We might therefore expect that the estimates will still possess most of the
asymptotic properties (i), (ii), (i'), (ii') under wide conditions. Whittle
found that this is so, the assumption that the et are independently and
identically distributed with E(e*) < oo being sufficient to ensure that all
these asymptotic properties hold, with the exception of the formula for
the asymptotic variance of &% which will depend on the value of E(e*)
(see Whittle, [15], p. 215). Indeed it is enough for {a;,} to be a linear process
with finite fourth moment, namely that

where the r\t are independently and identically distributed with E(r/t) = 0,
0 < E{r)\) < oo, and J^oll < oo (compare Bartlett, [2], p. 146). (It
should be noted that taking l0 = 1 does not necessarily make (9) identical
with the representation (1) because the function ^Lo^uz" might have
zeros in |z| < 1; for example this would happen when xt = Vt+2rl t-i)-

The arguments presented by Whittle in obtaining these results are on
the whole heuristic, although extremely interesting and ingenious (com-
pare Hannan, [7], p. 46, footnote). In this paper we provide rigorous
proofs under fairly general conditions. Whittle ([15], p. 213) does in fact
indicate that methods similar to those used here will yield rigorous proofs,
but he gives no details. As we shall see, there are many points in the ar-
guments that require careful treatment, although the main ideas are quite
simple.

The following assumptions will be made throughout.
(1) {*,} is a linear process with finite fourth moment defined by (9),

and £(»??) = 1 (which clearly involves no loss of generality).
(2) The estimates 6n, d\ are such that
L*(d, a2) = —\n log 27to2—Un(x, 0)/2<j2 is an absolute maximum

when 0 — §„, a* = a\. (We do not exclude the possibility that there is
more than one set of estimates maximising L*, although this will be ex-
tremely unlikely).
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[5] Asymptotic properties 367

(3) The true values 9, a1 of the parameters lie in a region defined by
0 < <r2 < oo, 0 e ©, where © is a bounded closed set contained in an open
set S in ^-dimensional Euclidean space.

(4) If 0lt 0.J are any two points of ©, g(co, 9t) and g(m, 92) are not
equal almost everywhere (<w). (This ensures that two different sets of
parameter values cannot give the same spectral distribution).

(5) If 9 e S, g((o, 9) and {g(w, 0)}~l are continuous functions of <w
for —n ̂  w ̂  n.

2. Consistency of &„

We first establish the following lemma.

LEMMA 1. Let 90 be the true value of 9 and let 9* be any other point of
©. Then there is a positive constant K(9Q, 9*) such that

(10) limp{n-i[Un(90)-Un(9*)] < -K(90, 9*)} = 1
n-*oo

[From now on we write Un{9) for Un(x, 9)].

PROOF. Write

Yn = n-i[Un(00)~Un(9*)} = 2 C,{as(0o)
|«|S«-1

from (6).
Then

where yi" = E(xtxt+S \9 = 90, a
2 = o%), o% denoting the true value of o8.

Now by Parseval's formula we have

and

1 rio)«.(0*) = £- f (2^/0/g*)do. = f- f teo/g*)d«>,
«— oo &nj-n &xj-„

writing /„, g0, g* respectively for f(<u, 90), g(eo, 90), g{co, ©*).
Hence

lim£(Yn) = f yio){oc,(0o)~a,(0*)}

Now equation (2) may be rewritten
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log (a»/2») = — f log {o>g(a>)/2ft}da>

i.e.

(2a) log g(a>)d(o — 0.

Therefore

since the logarithmic function is concave, and by assumption (4), g0, g*
are not equal almost everywhere. From (11) and (12),

lim E(Yn) = — ,M(0O, 0*) say, where /*(©„, 0*) > 0.
n-*oo

Also, using the alternative formula for Un(&) given in (6), we have

var Yn = var= var (

(13)

*«««" (go"1

where /„(«) = (2/«) I2!^i x«e<wfl2 denotes the usual periodogram intensity
for frequency co. Now there is a theorem due to Grenander and Rosenblatt
([5], p. 541; [6], p. 137) which states that when {*,} satisfies assumption
(1), i.e. is a linear process with finite fourth moment, and has a continuous
spectral density f(co), then

lim n var I lB(a>)W(co)dco
n-.oo \J— n

J* /2(«)W2(to)da>+K4{ r
(14)

where W(a>) is any bounded even function of a> with at most a finite number
of discontinuities, K€ denoting the fourth cumulant of rjt. Applying this
theorem to (13) we see that lim,,..,,, var YB = 0. The result (10) then follows
by a simple application of Chebyshev's inequality; K{00, 6*) can be any
constant less than /i(60,0*).

From Lemma 1 it is easily seen that $„ is consistent when © is a
finite set. To obtain consistency when & is an arbitrary bounded closed
set we require Un(9) to satisfy a suitable continuity condition.

LEMMA 2. Let

(is) l»-W.(0*)-£
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for all O1e0, 02 e S such that |02—0X| < d (d possibly depending on 0X),
where

(16) lim E{Hitn) = 0 uniformly in n,
«-»o

and

(17) lim var (Htn) = 0 for each 6.
n-»oo

Then p lim^,,,, #„ = 0O, the true value of 0.
The form of this condition was suggested by the work of Wald ([10])

and Wolfowitz([16]) on consistency of maximum likelihood estimates when
the observations are independently and identically distributed (compare
also Silvey, [8], pp. 446—7).

PROOF. Suppose 61 ̂  0O. Then by Lemma 1,

(18) limp {n-WM-UM] < -K(06, &,)} = 1.
n-*oo

Also by (16) and (17) we have

(19) lim p {Hitn(x, 6,) < K(00, ©,)} = 1,

since we can first choose d so that E{Hiin(x, 0 J} ^ \K(B0, 0X) and then
let n -> c», using Chebyshev's inequality. Hence, since simultaneous oc-
currence of the events in (18) and (19) implies

n-l[Un(00)-Un(d2)l < 0 for |0,_©a| < \ (say),
we have

(20) l im# sup [Un(e0)-Un(62)l < 0} = 1,

where N(et) denotes the set {0 : \B—©x| < dt}.
Now the collection of sets {N(6t) : 0X # 0O}, obtained by letting 0 t

run through all points of 0 except 0, and the set iV(0o) = {0 : |0—0o| < <50},
where <30 is arbitrary, together constitute an open covering of B. Since 0
is a compact set, this contains a finite open covering, {N(0j); 0 ̂  j ^ m},
say. (22) then gives

l im£{ sup [C/B(0o)-tfB(0a)] < 0} = 1,

or
hm p { inf Un(0) = inf Un(d)\ = 1,

so that
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(21) l im^ {|0\,—0O| < <50) = 1.

Thus since 60 can be arbitrarily small, p1han^0oBn = 0O.
We now show that continuity of the partial derivatives of h((o, 0) =

[g(a>, 0)]"1 with respect to the components of 0 implies the above continuity
condition and so is sufficient for §n to be consistent.

THEOREM 1. Let hw(a, 0) = (dh((o, 0)/00,) (1 ^ i <* p) be continuous
functions of (cu, 0) for —n <o)^7i, 0 eS. Then p lim,<00 $„ = 0O.

PROOF. We have
1 r

and by the mean value theorem,

h(a>, 02)-A(o>, 0,) = £ (Oiti-Olri)h«>{a>, A©x+(1-A)02) (0 < X < 1)
1=1

so that if |02—0i| < 6,
V

\h(o), 02)—h(co, 61)\ :

Hence

J> /•»

where M^Oj) < oo is the supremum of |A(<)(0)| over —n ^ co ^n,
|0-0xl ^ <5(0x), <3(0!) > d being chosen so that the set {0 : |0-©i| ^ 6(0^}
is contained in S.

Now

r* r v «»•
J-w " J-n I«|S«-1

£(C 0 ) = £(«») = y«°», and

lim n var Co = 2 J {ylO|}2+lc4°){>'oO>}2>
n-*oo «=—oo

wjp' denoting the true value of the fourth cumulant of rjt (see, for example,
Hannan, [7], p. 40).

Hence if the right-hand side of (22) is defined to be HSin(x, 0X), this
will satisfy the conditions (16) and (17). The result then follows from
Lemma 2.
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3. Asymptotic normality of $„

Having established the consistency of dn, we can go on to obtain
the limiting distribution of nl(Bn—0O) in the usual way by applying the
mean value theorem to E7B"(dB)—U^(90) (1 ^ i•• •£ p), where £/„•> denotes
the partial derivative 8UJ8dt and 0O, as in § 2, is the true value of 0. Here
further conditions must be imposed on h(co, 0) to ensure that the second
order partial derivatives (PUJdOfddj satisfy a suitable continuity condition
and that a central limit theorem can be applied to give the limiting joint
distribution of »~*t/n"(0o) (1 ^ i' 2s p).

THEOREM 2. Let hw (co, 6) (1 ^ t'• tz p) be continuous in (co, 0) for
—a^co^n, OeS, and A<">(co,0) = 82A/80,80,, Aw*>(co, 0) = cPhjddf80,80*
(1 ^ i, j , k < p) be continuous in (co, 0) for —n^co^n, 6eNi(60),
where Nt(90) = {0 : |0—0O| < 6} is some neighbourhood of 0O. Also let

(23) 2>|/iO)| < oo

zeiAere /Ae /J,0) are the values of the coefficients in the linear process (9) when
0 = 0O, and let the matrix Wo = (wg1) (1 ^ *, / ^ />) m/A

81ogg\ /81ogg\gg\ /81ogg\
' 0

(using an obvious notation), be non-singular.
Then the limiting distribution of nl(Qn—0O) when n -> oo »s iV(0, Wj1).

PROOF. Since from (7), a,(0) = (l/2w) /* , e""A(co, 0)dto, the partial
derivative 8a,/804 — ai"(0) = (l/2re) J*ff e*"'A("(co, 0)do> exists, the validity
of differentiation under the integral sign being guaranteed by the fact that
hw(a>, 9') is bounded for — n :£! co 5* n, 9' eN(9), some neighbourhood of
0 (compare Cramer, [3], p. 68). Similarly

= — f ei<Mhw>(a>, 0)dco

and

o, 0)dw

exist when 0e2V,(0o). Hence all the corresponding partial derivatives
UiP(9), U™(0), t7««k»(0) of UB(0) = «2| . | S B_1a,(0)C, exist when
6eN,(00).

Since dn is consistent, by Theorem 1, we can obtain the limiting distri-
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button on the assumption that 6eNt(d0). (For if we denote the event
6neNt(0) by Bn we have Umn^oop(Bn) = 1, and it is easily seen that
Umn_,0O/>(j4B|Bn) = / for some sequence of events {An} then implies that
um»-oo p(An) = I.) Clearly we must have U(^(dn) = 0 (1 ^ / ^ p), and so
by the mean value theorem,

0 = UW(00)+ 2 {Ki-KiW^Pt),

where ©* = A0\,+ (l-A)0oe2V,(0o). [Strictly we should write 0*(« but
the omission of the superfix will cause no ambiguity]. Hence

We shall now show
(a) that p]imn^0O{n-1U^S)(Q*)} = ]han^oon-1E{Utn''(00)} = Za^wf^, and
(b) that the limiting distribution of »-*U™(0o) (1 ^ / ^ p) isN(0, 4a*PT0).

The conclusion of the theorem will then follow at once from (24).

PROOF OF (a). We first show that

(25) p lim n - W n " (©») -U™ (0O)] = 0
n-»oo

For, proceeding as in the proof of Theorem 1, we have

1 C"
|w-l[J/^«)/©*) t/« (©o)]l = Jn(<u){*<°)(°>» ®n)

r*
(26) ^ {|0*—0o|M<M)(0o)/4jt} JB(co

where

Jf («>(»„) = 2 sup |*«»(o>.

and (26) clearly converges to zero in probability.
Next we have

(27) p lim n-^U^(60)-E{U^(60)}] = 0,
n-»oo

since

var {w = var |— J /B (w)A<"> (w, 0o)do>|

tends to zero as « -> cx> by Grenander and Rosenblatt's theorem (equation
(14)).

1 Expression (24) should read after correction
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Finally

(28) n-»oo
CO

provided that this series converges. The ajtf)(0o)
 a r e Fourier coefficients

of the function hW)(a>, 0O) whose square is certainly integrable over
—n ^ (o ^ n, and Parseval's formula can therefore be applied, showing
that (28) is equal to

(29) i - J " A<«>(co, <90)2*/(«>, eo)d«> = ^ J "

(writing k0 = A(<o, »,) A»« = *««»(», »,)).
Now from equation (2a) we have

log h{a>, 0)dco = 0,

and for 6 eNt(d0) this can be differentiated under the integral sign with
respect to dt and then 6t to give

(30) f A<»(w, 0)g(<u, ©)dw = 0,

and

* — w

or

= 0.f
(31) {(A<«»/A)-

(29) is therefore equal to

and the result follows from (25) and (27).

PROOF OF (b). Consider first the behaviour of a single component
n-WW(00). We have

(32) E{n-iU?(00}} = niE j l J" /»*if ldo,)

Now Grenander and Rosenblatt ([5], p. 543) have also shown that in
the notation of equation (14),
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(33) EH In(co)W(a>)do>\ = 4n f f(co)W(a>)dco+O(logn/n)

provided that the spectral density /(«) has a derivative which is bounded
for — n ^ w ^ jr. Since

(34) /(«,,©,) = i - f y<<V-

with

(the convergence of 2 £ - ~ lyi°'l certainly ensuring the validity of the in-
version formula (34)), and

no oo

u-0

22 °o by (23),

(34) can be differentiated with respect to <a under the summation sign,
so that df(o), 60)/9co is bounded for — n ^ eo ̂  jr. We can therefore use
(33) in (32) to obtain

lim E{n~ C7«»(00)} = lim w*(o*/2jt) (" g0A<j"dcu = 0 by (30).

Hence the limiting distribution of w~*<7i"(fl0) is the same as that of

(35) n-W»{QQ)-E{Uf{00)}] = ni 2 ^(00){C,-E(C$)}.
|»IS»-1

Now let
*« . . = »* 2 oi«(00){C.-£(Cf)},

I»IS«
« » . . = *»* 2 *{,n{00){C,-E(C,)} (»<*-!),

n»<|»| S n - 1

and le t» -> oo, m remaining fixed. The condition 22U Ml^0)l < °° (equation
(23)) certainly ensures that the limiting joint distribution of nl{Cr—E(Cr)}
(0 ^ r g » ) is normal with mean 0 and covariance matrix Am = (^J')»
where

A!? = lim n cov (Cr, C.)
n-*oo

= 2 {yf^U+yf^
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2 2 — Y v ^ ^ r being denoted by 40) (see Walker [11], Hannan, [7],
pp. 40-1).

Hence Zmn has the limiting distribution N(0, o^2), where

(36) 0*,,,= 2 «?H6

(note that a<»(0o) = a»>(0o)).
Now the double series

(37) 2 ^'(OoJa^^c
r,i=a—oo

is absolutely convergent, since

r,*»—oo

and

I l̂ 01! ̂  ( I |y.l)« < oo.

co.

Hence (37) is equal to

lim 2 •?»(»•) Km 2 «is)(Oo)^. = ** f * W'P/Sdo,
m-too |r|S"> n-»oo |f| S n •/— „

by Parseval's fonnula (used three times). From (36) we therefore obtain

lim < s = 4n f {̂ >}a/2da>+4°> f f"
the second term on the right-hand side resulting from yet another ap-
plication of Parseval's formula. By (30) this term is zero, and so

(38) Urn < s = (<#*) f *
m-»oo J —

Also, using the exact expression for cov (Cr, Cs) (r, s ^ 0), which
is of the form

(39)

• fv<°>v<°> 4-v(°> «<°) -L^(°> V / l ° ) / ' 0 ' /(°l /<°» \
I u=0 /
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where |f (v, r, s)\ < n (compare Bartlett, [2], p. 255, Hannan, [7], p. 39),
we have

nE\Rm>n\*?i " f |o4«(©o)«$»(0o)|

\\Yv

2 2
|r|,|«|=nH-l

The first term in (40) is certainly not greater than

(«—2(n—1) v*m—oo |r|—m

{ oo *\ 2 / °° °° \%

I lyi0)l I l<4"(0o)l2 I I43)(»o)l2 •
««—oo / ljr)=m r=—oo /

It follows that
(41) E(Rlin) ^ Km (say) for all », where Mm Km = 0.

m-»oo

From (38) and (41) we deduce that Zmn-\-Rmn has the limiting distribution
JV(O, 4ffjw$)). using a form of a limit theorem of P. H. Diananda given
by T. W. Anderson ([1], p. 687, Theorem 4.5).x A similar argument can be
used to show that the limiting distribution of n~i 2f=i k}\U^' (So) —
E{U\P(OQ)}], where the kt are arbitrary constants, isiV(O, 4<7$2fj=iA- îK'i?),)-
It follows, by using the continuity theorem for characteristic functions
(see, for example, Walker, [11], p. 64), that the limiting joint distribution
of n-i[U^(60)-E{U^(e0)}] (1 ^ i ^ p) is N(0, 4aiW0), which estabMshes
the required result.

4. Consistency and asymptotic normality of a\

THEOREM 3. Under the conditions of Theorem 1,

PROOF. We have d% = n^U^n), and since

— | {h(co, Bn)-h(w, 60)}I

sup |A«"K®o)l

when dBeiV,(e0),
1 As stated, this theorem requires Zm#tl, J?m,n to be defined for all positive integers

m, n; when n—1 S » w e can define Zm<n to be equal to (35) and Rmin to be zero.
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p lim n-*Un{&n) = /> lim »-*tf .(»„).
n-»oo n-»oo

Also

lim E{n-Wn(60)} = lim "f ri0> (* - — ) «.(«o)
n-.oo n-»oo »——(n—1) \ W /

by Parseval's formula, and var {w"1!!/,̂ ©,,)} is of order »~x by the theorem
of Grenander and Rosenblatt used in §2, so that plimn_oon-1Un(d0) = o%.

THEOREM 4. Under the conditions of Theorem 2, the limiting distribu-
tion of nl{&l—o%) when n ->• oo is N(0, CTQ(2+KJ1

0))), and in the limit
—o^) and ni(Qn—00) are independent.

PROOF. By Taylor's Theorem,

(42) n-iUH(60) = n-iUn(en)+ f
i,3=

where

From Theorem 2 the second term on the right-hand side of (42) is clearly
of order n~i in probability, so that

Now by proceeding in the same way as in the proof of (b) in Theorem 2,
it being in fact only necessary to replace h^ by h0 throughout the argument,
we can show that

n~iE{Un(Oo)} = («*o5/2w) (" g0h0dw+O(logn[ni)
J—n

and that the limiting distribution of n~i[U„{&„)—E{Un{Q0)}] is normal
with mean 0 and variance equal to

471 K«O) ( J *
Hence the limiting distribution of »*(#-<»?) is N(0, ffj(2+«io))).

Also a similar argument can be used to derive the limiting distribution
of f»*(#-oS)+»-*2Li*/[£#'(»o)-#?){tf(0o)}]. where the ft, are arbitrary
constants, this being normal with mean 0 and variance

"-, \h°+1 ^^'T/o2 dm+K™ [f i
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which is easily seen to be equal to

It follows that in the limit, t&(&\—OQ) *S independent of

and therefore, from (24), of «*(§„—0O).

5. Use of a truncated "sum of squares"

The coefficients as in the "sum of squares" Un(0) tend to zero aa

|s| -> oo, at least as fast as Js| —*• by the Riemann-Lebesgue Theorem (Titch-
marsh, [9], p. 403), and typically like e"*1*1 where k > 0, We should there-
fore expect the above results to remain true when a truncated "sum of
squares" is used in L*, that is, when the definition of Un is altered to
U% = w2|«|s<i(n)ajC's. where <j>(n)<n— 1, but still -*oo with n, which
requires less computation. In fact by imposing slightly stronger conditions
we can then establish Theorems 1—4 in much the same way, the main
changes in the argument arising from our no longer being able to use
Grenander and Rosenblatt's theorems.

Thus in lemma 1 the proof of (11) will clearly not be affected by
the altered definition of Un. Also to show that lin^.,^ var Yn = 0 we use
the exact expression for cov (Cr, C,) (equation (39)), but without requiring
t h a t 2S=-oo lyi0)l a-nd 2£=o iCl b e finite, as in the derivation of (40). For,
if we write for the moment ft. = ctr(60)—ar(6*), we have

var Yn ^ »-i 2 |/J,fc|
M

(43) • | ^ i

<n-i( 2 |jsr|)
2(2

\|r| S #(n) / V
)(

\|r| S #(n) / V «=-oo \a=0

by Schwartz's inequality, and this tends to zero as n -> oo, since /?r is

w |/?r| is
Next, in the proof of Theorem 1, we use the formula

n-Wn{B) = i - f /„(») 2 as(0)e-"»do

which gives
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4 J I J " i»|s #(»)*-i2
where

when the derivatives ai*1 (6) exist and are continuous in 8 for 8 e S. Hence,
when |©2—0t\ < 6,

(44) |»-W.(0i)-CUei)]|< ( W 2 i |a«(©*)| f

It follows that Theorem 1 will certainly be true when for 8 e S,

(45) <*<"(©) is continuous in 8 and f |<xj"(0)| is bounded (1 ̂  / ^ />).

In the same way, it is easily seen that the conditions (45) ensure the truth
of Theorem 3.

Again in the proof of (a) in Theorem 2, we can obtain a bound for
|»~1{yn"(0*)-C7«"(0o)}l similar to (44), which will show that the con-
dition:

a(«*) IQ\ j s continuous in 6 and

f |aiwl)(0)| is bounded (1 ^ *, 7, A ^ p) for 8eNt{00),
JSM—00

ensures convergence of this to zero in probability. Also the fact
that the <4H)(0O) are Fourier coefficients of h{ii)(a>, 80) gives us
]imn_aova.r{n-1UH')(80)} = 0 by an argument using an inequality analogous
to (43), and limB-0O E^U^^)} = 0 as before.

Finally, in the proof of (b) in Theorem 2, we must have

lim E{n-iU?(e0)} = Urn ni 2 «P(«o)yiO) ( l - — ) = 0,
n-.oo H-.OO |»|S#(n) \ W /

or equivalently,

Since we have 2^.-oo lsyl0)l < °°. * m s reduces to

(47) limn* 2 a^ '^oM 0 '= 0.
n-»oo ^(n) < |«| < n

A sufficient condition for (47) is clearly

(48) limn I {yf}* = 0.
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Also the change of the upper limit for \s\ from w—1 to <}>(n) in the definition
of Rm-n will clearly not affect the argument.

6. Effect of applying a mean correction

Suppose now that we consider the effect of replacing xt by xt—x
(where x = 2<Ua;*/w) in Un(x, 6). If we write

2 (*,-*)«•-' h(m, 0)dco,

we have, for 0 eS,

(49) E\Ut{6)-VM\ = 0(1).

For

- 2 * 2 xu f * A(w, 6)
u=l J-»

being an even function of w)

= r1 > n(e)+r2,n(©), say.

Now

E\TltH{B)\£E(&) sap h(a,e)\*

as « ->• oo, since

lim»£(x2) = lim 2
n-*oo »-*oo si—(fi—1)

dw , 0O) S U P A

and

Also

(50)

therefore

where

{E\T2,

E \Tltn

n(0)\Y <

(0)1

4£(

= 0(1).

P2)E(2
\u=l

and
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2 «.«...) = 2 /(«. »o)siw

/ K «o) f"
J—IT

S sup

= sup

dco

while, since

h(m, 6) £ ««•• -I "" -L I
u - l

2
It follows that E |ra-n(0)| = 0(1), and (49) is therefore established.

When Un(&) is replaced by U*(6), Lemma 1 will clearly still hold since
an. immediate consequence of (49) is ^lim,,^w {n-1U*(0)—n-1Un(6)} = 0.
Also, it is easily seen that Theorem 1 will remain true, by using the fact
that C* = •nr1 2»Li (xt~^)2 — C0—x2 has, asymptotically, the same mean
and variance as Co (for the variance we need the result E(x*) = 0(n~s)
which is easily obtained by direct calculation, using the condition
22=o l̂ i0>l < °o). Again in the proof of (a) in Theorem 2 the argument
leading to (25) will not be affected, since we have merely to substitute C*
for Co in (26), and the result E \UZUi)(d0)-U^{60)\ = 0(1), which can be
proved in exactly the same way as (49), shows that the analogues of (27)
and (28) will hold. Finally for the proof of (b) we have only to observe
that we shall have

E\UW(69)-U<P(60)\ = 0(1), giving = 0.

We thus see that the use of the mean correction does not affect the
validity of any of our results. Hence they are applicable when the series
mean, n say, is not known a priori, so that, denoting the observations
now by {y,}, we have yt = xt-\-/*, ft being another parameter that must
be estimated. The substitution of the estimate fi = 2J=X yjn for ft in L*,
which now becomes — \n log 2jr<T*—Un(y—ft, 0)/2o* U* = (/*> /*•'"> /*)']»
is then an obvious procedure; moreover the asymptotic variance of p. is
the same as that of the estimate which would be obtained by minimising
with respect to p the "exact" sum of squares Qn(y—f*, 0) occurring in
Ln (equation (5)), assuming 0 to be known, this being a special case of a
result due to Grenander [4] (see also Hannan, [7], p. 127, Grenander and
Rosenblatt [6], p. 246).

The same conclusion is reached with the "truncated" definition of Un

given in § 5. This depends on results of the form

https://doi.org/10.1017/S1446788700024137 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024137


382 A. M. Walker

(51) E\ 2 «s(0)(C,*-C,)| = O(«-1log^(»))) for 0 € 5 ,

where

[20]

To prove (51) we write

2 o,(0)(c;-c.)

(
»=1 I « - l t-H-1

so that the left-hand side is not greater than

2 (1-7) «.(*)-

x 2 *i
(52)

The first term in (52) is Ofa*1) since the (C, 1) sum of 2 a » W converges,
while the second and third terms are Ofn-Mog^w)) because <x,(0) is
certainly 0(s-») so that J ^ |a,(0)| is O(log^(»)), and, for example,

w h i c h i s

since

2 *. = («-*
(=1 I 2

n=-(n-«)

(51) with <f>(n) = «—1 could incidentally have been used instead of (49)
in the previous discussion. However (49) is a slightly stronger result, and
is of interest in indicating that the effect of the mean correction for finite
» may sometimes be less for <f>(n) = n—1 than for smaller values of <f>(n),
which is perhaps a little surprising.

7. Further remarks

The conditions that we have imposed on A (to, 0) in our theorems are
certainly stronger than they need be. For example, in Theorem 1 the
partial derivatives hw(m, 0) could have discontinuities provided that they
remain bounded in \a>\ f^n, QeS, and continuous in the argument 0
alone, and in Theorem 2 the same is true for the second and third order
partial derivatives hlil)((o, 0), hWk)(<o,0). However in most problems these
conditions, and also the conditions on the Fourier coefficients a,(0) and
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their derivatives given in § 5, will be satisfied (typically h(a>, 6) will be of
the form | ( 1 + 2 U & ( 0 ) ^ * ) / ( l 4 ^ L i V*(0)Ol2 . where fa and % are
functions of & having derivatives of arbitrarily high order), and weaker
conditions will be much less easily verified.

The assumption that 0 is a bounded closed set contained in S will
sometimes be an unnatural restriction. For example, if {xt} is generated
by a first-order autoregressive process, with

(53) Xt+Ox,^ = rjt (|0| < 1), h((o, 0) = l+0 2 +20 cos w,

or by a two-term moving-average process, with

(54) x, = rit+Ot)^ (|0| < 1), h(a>, 0) = ( l+02+20 cos <o)-\

we would usually want to take 0 to be the open interval (—1, 1), that is,
S itself, rather than a closed interval such as [—0lt 0X] (0 < 01 < 1).
Again one might have a problem in which 0 was unbounded, for example
the whole real line. However it is not clear how one could establish con-
sistency of Qn under general conditions without this assumption; the
difficulty is to show that

sup [Un{60)-UH(6)] < 0} = 1,

0—0 6 being the part of 0 not contained, in some bounded closed set 0 6 .
In some cases the difficulty does not arise because it can be seen

that the "least squares" equations U^(6) = 0(1 ^.i-^p) have a unique
solution. Provided that 0O lies in some bounded closed set ©j, C 0 , Theorem 1
can be applied with ©„ in place of 0 to show that there must be at least
one consistent solution of the equations, which therefore can be identified
as the unique &n. For example, this clearly happens when h{m, 6) is given
by (53), and more generally when {a;,} is an autoregressive process of order
•p with coefficients 01( 02, • • •, 6P, so that h(eo, 0) = \1+J^.16re

iur\a (almost
all the results for this case were derived by Mann and Wald [17]). On the
other hand, for the moving-average model (46) we have a, = (—0)'/(l—02),
Un{6) = {C0-f 2 2 ^ i (-0) 'C,}/(l-0a) and it is not clear that the equation
BUJdO = 0 has (with probability tending to unity as n -> oo) just one
root in the interval — 1 < 0 < 1, although intuitively one would feel that
this must be so. When the solution of the equations is net unique we can
of course define #„ to be one of the consistent solutions, and then Theorems
2—4 will clearly still hold. There will normally be a unique consistent
solution and indeed it is easy to see that two consistent solutions Si1',
#i,2) must be equal with probability tending to unity as M-*OO (by applying
the mean value theorem to U^fi^-U1?(&?)). This definition of gn is
in fact used by Whittle in his 1953 paper (compare also Hannan, [7J, p. 46).
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Note added in proof. The author apologises for overlooking a paper
by P. Whittle, Gaussian Estimation in Stationary Time Series, Bull. I.S.I.
39 (1962), 105—129, which gives a rigorous treatment along somewhat
different lines from those of the present paper.
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