ASYMPTOTIC PROPERTIES OF LEAST-SQUARES
ESTIMATES OF PARAMETERS OF THE SPECTRUM OF
A STATIONARY NON-DETERMINISTIC TIME-SERIES

A. M. WALKER
(received 6 December 1963)

1. Introduction

Let {z,} (¢=0, 41, £-2---) be a stationary non-deterministic time
series with E(#?) < oo, E(x,) = 0, and let its spectrum be continuous
{strictly absolutely continuous) so that the spectral distribution function
Flw) =%, f(A)dA (—x < o =< =), where f(w) is the spectral density
function. It is well known that {z,} then has a unique one-sided moving-
average representation

1) X, = 2 Bubt—u
u=0
with g, = 1,
3 g < oo,
u=0
and
E(e) =0, Efe,e,) = 0 (t#u), E(&) = *>0
where
1 n
2 2 — — .
@) o? = 2m exp {27; Llog f(w)dw}

(See, for example, Hannan, [7], pp. 21—2, Grenander and Rosenblatt,
{61, pp. 67—76). The coefficients g, are determined from f(w) by

Q 3 gue = exp (3, o)
u=0 U=1
where

1 ,
a, = 2::],_,, e~ Jog f{w)dw,
(3) defining a function of the complex variable z which is analytic and
never zero in the interior of the unit circle |z| < 1. Conversely (1) gives

oo

2
D g e .

=0

(4) He) = (o*/27)
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Suppose now that the spectral density is a specified function of a
number of unknown parameters, and that we wish to obtain estimates
of these from data consisting of part of a realisation of the series, which,
as usual, will be assumed to be n consecutive observations, denoted by
%y, &y, * * *, Z,. We shall take the g, to be functions of p independent para-
meters, 6,, 0,, -+ -, 0,, which may be called sfructural parameters, the set
of parameters being completed by the addition of o® Thus, writing
6= (6,,6,,---,6,),wehave |32, g, e“*|* = g(w, ), where g is a specified
function, and then, from (4), the spectral density f = (0%/2n)g(w, @). The
term “‘structural parameter”” is used because in most applications the
series is defined by a linear model which can be put in the form (1), with
g, representing the effect of a disturbance at time ¢, for example, a linear
autoregressive process of order p given by the stationary solution of the
set of difference equations z,+3?_, 8,2, , = ¢, where the ¢, are indepen-
dently and identically distributed and the roots of the equation
224 3P_, zP~4f, == 0 have moduli less than unity. The parameter o? on
the other hand, can be thought of as a scale factor, being proportional to
the variance of , (that is, to the total power F(x) in the whole frequency
range of the spectrum); it is also equal to the minimum mean square
error that can be achieved when z,,, is predicted by a linear combination
of observations x, (# < ?). Clearly if we wish to estimate the standardised
spectral density f(w)/[”, f(2)dA giving the relative distribution of power over
[—=, #], we require only estimates of the structural parameters.

Let us first assume that {z,} is a normal process, namely that the
joint distribution of any finite set of the @, is normal; this is equivalent
to taking the ¢, to be independently and identically distributed as N (0, ¢2).
The logarithm of the likelihood of the data x = (z, z,," -, z,)’ can
then be written

(5) L,(8, 0*) = —}log |V ,(0)|—3n log 270°—Q,(x, 6)/20

where, if
1 n
0,(6) = E(g,2,)/o* = - f ¢0tr=) gfor, @)deo
g

V,.(0) = (v,,(0)) 1=r,s=#n), and
Qn(X: 0) = X,{Vn(e)}_lx'
It would be natural to consider estimation of 8 and o? by the method
of maximum likelihood, but this is awkward because of the term
—%1og |V, (6)]. However, Whittle ([12], Chapter 7; [13]) showed that
lim, . |V,(0)] =1 (at least if Zu=0 g.(0)z* is analytic and never zero in

|2| < 146, 8 > 0), so that when # is fairly large it should make little dif-
ference if instead the expression —4n log 276?—Q,(x, 6)/20? is maximised.
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Doing this gives us estimates 8, = (6,,,0,,,0,,) which minimise
Q.(x, 0) and therefore may be called least-squares estimates, @, being
equal to a sum of squares of uncorrelated random variables, and then
82 = Q,.(x,0,)/n. In most problems there will remain the difficulty of
finding explicit expressions for the elements of {V (@)}, but Whittle
showed that this could also be avoided when # is large by replacing Q, by

n

€@ O ido=7n 5 @@,

s==(n-1)

n 2
z x‘eiwt

t=1

6) U.x,0)=

27

hant

where C, = Y {"z,, ,/n is the sample serial covariance (with divisor
n) for lag |s|, and

1 n
7 = iws —1
) %(6) = - f_"e (g(, 6))1dw
since clearly
n—1
=n z eiwscs'
gam—m (7m1)

Whittle went on to investigate the asymptotic properties (# — o)
of the estimates obtained in this way, and established that under suitable
regularity conditions on g(w, 8), these were what would be expected by
analogy with the classical asymptotic theory of maximum likelihood
estimation for data consisting of independent identically distributed
observations. Thus

(i) 8, is a (weakly) consistent estimate of 6, namely p lim,_,, 8, = 6;

(i) n#(6,—6) has, as# — oo, a limiting distribution which is N (0, W-1),
namely multinormal with mean 0 and covariance matrix equal to the
inverse of the matrix W = (w,;) (1 £14, § =< p), where

otL¥ oL¥ oL%
=1 -1 —_—
wy = lim w715 ae.-ao,) = ImnE (aa ae,)

LY = —1nlog 2ne*—U ,(x, 6)/20® being the modified log-likelihood which
is maximised, whence it follows that

2 log g(w, ) 8log g(w, 8)
(8) Wy = Mf %, do

and
(") plimé; = o

(ii’) »#(82—o?) has, as #—> oo, a limiting distribution which is
N(0, 2¢*), and in the limit ##(¢2—o%) and ##(6,—0) are distributed in-
dependently.
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(See Whittle, [14]; [15], pp. 211—5, Hannan, [7], pp. 46—7).

Now suppose that the normality assumption does not hold. The above
method of estimation, although no longer effectively that of maximum
likelihood when # is large, is still intuitively reasonable. Q,(x, 6) remains
a sum of squares of uncorrelated random variables which in fact is ap-
proximately equal to the sum of squares of ‘“residuals (see Whittle,
[15], p. 207; the argument given there is heuristic, but can certainly be
shown to be valid when 33, g, (0)2* is analytic and never zero in |z] < 144,
the representation (1) then being invertible to give g, = Y2, 4,%,_, with
the coefficients %, tending to zero like some power of ¢ when # — o).
We might therefore expect that the estimates will still possess most of the
asymptotic properties (i), (ii), (i’), (ii’) under wide conditions. Whittle
found that this is so, the assumption that the e, are independently and
identically distributed with E(e}) << oo being sufficient to ensure that all
these asymptotic properties hold, with the exception of the formula for
the asymptotic variance of 42 which will depend on the value of E(ef)
(see Whittle, [15], p. 215). Indeed it is enough for {x,} to be a linear process
with finite fourth moment, namely that

(9) xt = z lunt—-u
u=0

where the 7, are independently and identically distributed with E(n,) =0,
0< E(p}) < 0, and 32,2 < 0 (compare Bartlett, [2], p. 146). (It
should be noted that taking /, = 1 does not necessarily make (9) identical
with the representation (1) because the function 32 ,/,z* might have
zeros in |z| << 1; for example this would happen when x, = #,+27,_,).
The arguments presented by Whittle in obtaining these results are on

the whole heuristic, although extremely interesting and ingenious (com-
pare Hannan, [7], p. 46, footnote). In this paper we provide rigorous
proofs under fairly general conditions. Whittle ([15], p. 213) does in fact
indicate that methods similar to those used here will yield rigorous proofs,
but he gives no details. As we shall see, there are many points in the ar-
guments that require careful treatment, although the main ideas are quite
simple.

The following assumptions will be made throughout.

(1) {=,} is a linear process with finite fourth moment defined by (9),
and E(7?) = 1 (which clearly involves no loss of generality).

(2) The estimates §,, 82 are such that

L% (6, 0?) = —}nlog 2no?—U ,,(x, 0)/2¢* is an absolute maximum
when 0 = §,, o®> = 62. (We do not exclude the possibility that there is
more than one set of estimates maximising LY, although this will be ex-
tremely unlikely).
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(3) The true values @, o® of the parameters lie in aregion defined by
0 < 6% < 0, 8 €O, where @ is a bounded closed set contained in an open
set S in p-dimensional Euclidean space.

(4) If 8,, 8, are any two points of @, g(w, 6,) and g(w, 6,) are not
equal almost everywhere (w). (This ensures that two different sets of
parameter values cannot give the same spectral distribution).

(6) If €S, g(w, 8) and {g(w, 8)} are continuous functions of w
for - <0 = a.

2. Consistency of 8,

We first establish the following lemma.

LEMMA 1. Let 6, be the true value of 8 and let 8* be any other point of
O. Then there is a positive constant K (8, %) such that

(10) lim p{n~1[U,(8,)—U,(6%)] < —K(6,, 6%)} = 1

{From now on we write U, (@) for U,(x, 6)].
Proor. Write
Yn = n_l[Un(oo)_'Un(a*)] =l Ig_lcs{“s(ao)—“a(a*)}:
from (8).
Then

EW) = 3 0 (1- ) o) —w(em),

| =n—1

where p" = E(z,z,,, |0 = 6,, * = ¢}), oz denoting the true value of o2,
Now by Parseval’s formula we have

5 a0 = 5 | @rfulgolde = o}

§=—00

and

oo 1 7 a "
Sy, (6%) = o f (2nfo/g*)dw = ng (80/g*)dw,
$=— 00 RS —n TS

writing f,, g, g* respectively for f(w, 8,), g(w, 8,y), g{w, @*).

Hence

m E(Y,) = 3 yO{x,(80)—(0%)}

(11) n—00 #=—00 1 »
= ai{1— 5| (eole)aa).

Now equation (2) may be rewritten
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log (0%/2%) = -217; f_ﬂ log {0%g(w)/27}dw

ie.
(2a) f log g(w)dw = 0.
Therefore
| B | B
= * — *
a7 0= 1og (ele)do <log (5 [ (eolet)de],

since the logarithmic function is concave, and by assumption (4), g, g*
are not equal almost everywhere. From (11) and (12),

lim E(Y,) = —u(0,, 0*) say, where u(@,, 6*) > 0.

i 00

Also, using the alternative formula for U,(8) given in (6), we have

n

1 "
var Y, K = var{—-
" {2nnj —r

iwt
x,e
1

3 (et~ (g*)“)dw}

) -
= var {Ef_,, I, (0)(g*—(g*)™) dw} ,

where I, (w) = (2/n) |2, ,6'*|* denotes the usual periodogram intensity
for frequency w. Now there is a theorem due to Grenander and Rosenblatt
([5], p. 641; [6], p. 137) which states that when {z,} satisfies assumption
(1), i.e. is a linear process with finite fourth moment, and has a continuous
spectral density f(w), then

lim # var { i Jﬂ(w)W(w)dw}
(14) N - 00 et . . .
— 162 [4:: f_,fz(w)wz(w)dwq—n{ _ﬂf(w)W(w)dw} ]

where W (w) is any bounded even function of @ with at most a finite number
of discontinuities, x, denoting the fourth cumulant of 5,. Applying this
theorem to (13) we see that lim,,_, var Y, = 0. Theresult (10) then follows
by a simple application of Chebyshev’s inequality; K (68,, 8*) can be any
constant less than u(6,, 6*).

From Lemma 1 it is easily seen that @, is consistent when @ is a
finite set. To obtain consistency when @ is an arbitrary bounded closed
set we require U,(6) to satisfy a suitable continuity condition.

LEMMA 2. Let
(15) (1T (6.) —U(6,)]]| < Hy,u(x, 6,)
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for all 6,€ O, 0;€S such that 10,—6,| < 3 (3 possibly depending on 6,),

where

(16) lim E(H, ) = 0 uniformly in n,
nd 80

Q7) lim var (H,,,) = 0 for each 8.

0~ 00

Then plim, ., 6, = O,, the true value of 6.

The form of this condition was suggested by the work of Wald ([10])
and Wolfowitz{[16]) on consistency of maximum likelihood estimates when
the observations are independently and identically distributed (compare
also Silvey, [8], pp. 446—17).

ProoF. Suppose 6, # 6,. Then by Lemma 1,

(18) Lim $ (a7 [U,(06) = Un(81)] < —K (8, 61)} = L.
Also by (16) and (17) we have
(19) Lm  {Hy o (x, 6,) < K(0,, 61)} = 1,

since we can first choose § so that E{H, ,(x, 6,)} = 1K(6,, 6,) and then
let » — oo, using Chebyshev’s inequality. Hence, since simultaneous oc-
currence of the events in (18) and (19) implies

17U ,(6p) —~Un(65)] < 0 for 10,—6,] < d, (say),
we have
(20) Jim p{, sup [Ua(80)=U.(63)] < 0} = 1,
where N(0,) denotes the set {6 :10—86,] < 6,}.

Now the collection of sets {N(6,) : 6, # 6,}, obtained by letting 6,
run through all points of @ except 8, and the set N(6,) = {0 : |6—0,| < dy},
where d, is arbitrary, together constitute an open covering of @. Since @
is a compact set, this contains a finite open covering, {N(0,); 0 <7 < m},
say. (22) then gives

mp{ sup [U,(8)—U.(0,)] <0} =1,
v 00 o.e'(:;xﬂ(o,)

or

hmﬁ{me(O)- mf U(O)}——l

n-o00 QeN

so that
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(21) lim p {|6,—06,] < 6o} = L.

- 00

Thus since &, can be arbitrarily small, p lim,_ .6, = 6,.

We now show that continuity of the partial derivatives of A(w, 8) =
[g(w, )]~ with respect to the components of @ implies the above continuity
condition and so is sufficient for §, to be consistent.

THEOREM 1. Let h'¥(w, 6) = (oh(w, 0)/20,) (1 < ¢ < p) be continuous
functions of (w,0) for —n <w <=z, 0€S. Then plim, . 6, =6,.

Proor. We have
WTL0)—U,00) = - | T @) b, 0,)—h(w 6,))do,
and by the mean value theorem,
h{w, 0;)—h(w, 6;) =§‘i (0g,i— 01, )80 (w, 26,4 (1—-2)0,) (0 <A <1)

so that if |0,—06,] <4,
»
4w, Gg) —h(w, B;)] = & 3 | (w, 16,1 (1—1)8)|.
=]

Hence
@2 ULE)-U,6) S 0m) 31,0, [ 1,(0)do,

where M,(6,) << co is the supremum of |A(@)] over —n S w < 7,
|0—8,| < 6(6,), 6(6,) > ¢ being chosen so that the set {0 : (0—8,] < 5(0,)}
is contained in S.

Now

f ILwdo=| 2 I C,do = 4C,,

-z lefsn

E(Cy) = E(a}) = »{", and

imnvarCo=2 3 GOP+ePG0F,
-0 o=—00
«{?) denoting the true value of the fourth cumulant of #, (see, for example,
Hannan, [7], p. 40).

Hence if the right-hand side of (22) is defined to be H, ,(x, 0,), this
will satisfy the conditions (16) and (17). The result then follows from
Lemma 2.
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3. Asymptotic normality of §,

Having established the consistency of #,, we can go on to obtain
the limiting distribution of n#(6,—6,) in the usual way by applying the
mean value theorem to U (8,) U (0,) (1 < i < p), where US" denotes
the partial derivative aU /96, and 6, as in § 2, is the true value of 8. Here
further conditions must be imposed on 4w, 8) to ensure that the second
order partial derivatives 02U, /00,00, satisfy a suitable continuity condition
and that a central limit theorem can be applied to give the limiting joint
distribution of #~1UM(6,) (1 <+ < p).

THEOREM 2. Let W' (w, 0) (1 =i < p) be continuous in (v, 8) for
—n=w<n 0S5, and b (w, 6) = 2k[00,00,, A (w, B) = &3h/06, 00,06,
(1<14,4,k=p) be continuous in (w, @) for —n < w <7, 0eN,(6,),
where Ny(0,) = {0 : |0—0,| < 8} is some neighbourhood of 8,. Also let

o
(23) S ulll? < oo

u=0
where the I are the values of the coefficients in the lincar process (9) when
0 = 0,, and let the matriz Wy = (wl) (1 <4, § < p) with

1 .4
v = Ef {9 (@, 85)h9 (, 6,) /1 (w, By) }dw

1 7 /31
_ _J‘ (3 ogg) (alogg) do
in - aei [} aol o
(using an obvious motation), be non-singular.
Then the limiting distribution of n¥(B,—0,) when n — oo is N(0, Wy).
ProoF. Since from (7), «,(0) = (1/2r) |7, ¢***A(w, B)dw, the partial
derivative dx,/90, = a{(0) = (1/2n) {7, e** A" (w, O)dw exists, the validity
of differentiation under the integral sign being guaranteed by the fact that
A (w, 6') is bounded for —z < w < @, 6’ € N(0), some neighbourhood of
0 (compare Cramer, [3], p. 68). Similarly

: 1 "
Pa,[00,00, = «{)(0) = Ef ) (w, 8)dw
and B
| N
Pa,/00,00,00, = o™ (6) = o f e Bl (g B)dw
—1

exist when 6eN,(6,). Hence all the corresponding partial derivatives
Uie), UB), UY™(6) of U,(0) = n 3, <1 %,(0)C, exist when

0 e N, (6,).
Since @, is consistent, by Theorem 1, we can obtain the limiting distri-
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bution on the assumption that § eN,(6,). (For if we denote the event
6,.eN,(6) by B, we have lim,_ #(B,) = 1, and it is easily seen that
lim, , , #(4,|B,) =1 for some sequence of events {4,} then implies that
lim, ., p(4,) = I.) Clearly we must have U¥(8,) =0 (1 < < $), and so
by the mean value theorem,

0 = UD(B)+ 3 (B,.—00.) UL (B2),
=1

where 6} = 48,4 (1—1)0, € Ny(6,). [Strictly we should write 6*” but
the omission of the superfix will cause no ambiguity]. Hence

24) S (—m U @2))-4{6, 0, } = n+UD(G,). 1

We shall now show

(a) that plim, ., {#"1U$"(6%)} = lim, , , nE{UY (6,)} = 23w, and

(b) that the limiting distribution of s 3UY(6,) (1 < § < $) isN(0, 4a3W,).
The conclusion of the theorem will then follow at once from (24).
Proor oF (a). We first show that

(25) # lim 21 [USH(67) —UL"(6,)] = 0

n-oo

For, proceeding as in the proof of Theorem 1, we have

1 k.4

=] L@t 80—k, 6
4 -1

(26) < {10%—6,| M4 (Go)/‘br}f_ I, (w)do
= |6:_001M(“’(00)Co: )

In 2 USNOR) — UL (8)]] =

where

»
MU (8,) =El . ngy o )|h(m)(w, 0),
| ., &5\,

and (26) clearly converges to zero in probability.
Next we have

(27) $ lim n U (00)—E{Uﬁ,") 60)}1 =0,

since
var (#1000} = var [~ [ 1, ()4 (@, 6,)da)

tends to zero as # — co by Grenander and Rosenblatt’s theorem (equation
(14)).
! Expression (24) should read after correction

» . .
!2{—”_109’)(9:)}"*{0’:,(_ 0,1 =n"*Uf,’)(9°).

https://doi.org/10.1017/51446788700024137 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700024137

] Asymptotic properties 373

Finally
tm s B @) =tm > (1) o000,
(28) %00 noco |of Sn—-1 n

co
= 3 n«"(0)
#=—00

provided that this series converges. The «{”(,) are Fourier coefficients
of the function 4" (w, 6,) whose square is certainly integrable over
—n < o < #, and Parseval’s formula can therefore be applied, showing
that (28) is equal to

(29) — f B (@, 6,)2nf (0, Bg)dw = > f (B o) deo

(writing Ay = h(w, 6,), B = h(w, 6,)).
Now from equation (2a) we have

f log 4(w, 6)dw = 0,

and for 6 € Ny(0,) this can be differentiated under the integral sign with
respect to 8, and then 6, to give

(30) f 9 (w, 0)g(w, 8)do = 0,
and -

[ 5900, 00500, 0)+40 0, 8)(w, 8)}d0 = 0
or

(31) J {(h("’"/h)—(h“"h”’/hz)}dw = 0.
(29) is therefore equal to
02 4
= [ aomim)do = 2adef?,

and the result follows from (25) and (27).

ProoF oF (b). Consider first the behaviour of a single component
n-2U{(6,). We have

(32) E{nUY (6,)} = ntE {ﬁf 1, (w)ha”dw}

Now Grenander and Rosenblatt ([5], p. 543) have also shown that in
the notation of equation (14),
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(33) E : fjﬂI"(w)W(w)dw} =dx f_:'f(w)W(w)dw—{-O(log n/n)

provided that the spectral density f(w) has a derivative which is bounded
for —n = w = n. Since

(34) f.0) = 5= 3 A0
with
W = 31, (20

(the convergence of 32 __ || certainly ensuring the validity of the in-
version formula (34)), and

z lsy(l))[ =9 z s z l(o)l(O)
=—00 =1 U=0
<23 I35 I < oo by (23),
u=0 =1

(34) can be differentiated with respect to @ under the summation sign,
so that df{w, 6,)/0w is bounded for —7 =< w < 7. We can therefore use
(33) in (32) to obtain

lim E{n~ U9 (0,)} = lim nt(oﬁ/zn)f ghdw =0 by (30).

7w 00 n— o0

Hence the limiting distribution of »4U{!(8,) is the same as that of
(35) AT UD(O)—EUL(0)}] =nt 3 o (ONC,—E(C,)}.
Il s n—1

Now let
Zm,n = ni 2 “in (00){C8_E(C0)}’
[ sm

R,,=nt 3 a’(0,){C,—E(C,)} (m <n—1),
m<|ssn-1
and let # - 00, m remaining fixed. The condition 32, #{l?)] < o (equation
(23)) certainly ensures that the limiting joint distribution of ##{C,—E(C,)}
(0 <7 <m) is normal with mean 0 and covariance matrix 4@ = (A{?),
where
A® = lim n cov (C,, C,)

o0

0 0 (1] 0 0! (1] 0
2 PPV SV VLU S S PRI

V=200

= 2O A0, 4 910001

T8
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IR YY) being denoted by A® (see Walker [11], Hannan, [7],

pPp. 40—1),
Hence Z,, , has the limiting distribution N(0, o3, ,), where
(36) One =2 o (B)l” (00) (A, + AL+ 71" 9"}

Irl.lslsm

(note that «{?(6,) = «(6,)).
Now the double series

(37) 2 aP(B0)e (B4, = 3 ol (Bo)o” (BT,

7, 8m—00

is absolutely convergent, since

S 006 O K0 = 3 1O S 1o (8,)alli(60)]

r, 800 P 0O
L= <] o0

S 3 A 3 la"(Bo)
t=—00 r=—00

and
o o0
2 NS ( X Irl)2< oo,
o —00 v=—00

3 w00 =5 [ e < .
T —n

Fo=—00

Hence (37) is equal to
lim 3 a0y lim 3 @ = 2 [ ()i,

m-oo |rlsm noco [sjsn -

by Parseval’s formula (used three times). From (36) we therefore obtain

tim o, = 4 [P0+ [ [ Wiisda]

m—00

the second term on the right-hand side resulting from yet another ap-
plication of Parseval’s formula. By (30) this term is zero, and so

(38) lim &%, = (o4/n) f () fhoPdo> = 4obw0?.
m-co —

Also, using the ¢xact expression for cov (C,, C,}) (», s = 0), which
is of the form

cov (C,, C,) = n? "_fl {1 L, s)}
v=—n+st1 n

(39) -
OO S I
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where |{{(v, 7, §)] < n (compare Bartlett, [2], p. 266, Hannan, [7], p. 39),
we have
n—1
nE [Rp.P< 3 |0P(6,)"(60)]

Il lsj=m+1

3 {lya‘" YD, Y, 79, ) Eoll.‘.°’l£‘f£.,l£‘_’+’.l,‘.‘i’.,+,l=
(40) e

n—1

oo
=2 3 16)a"B) I Iyl
[l |sj=m+1 o=—00

2 (> 4
101 { sup 1 @0))"{ 5 o)
v >m u=0
The first term in {40) is certainly not greater than
2{n-1) oo o
I

2 l?i”’yi‘.'ﬁtlli “g) (6o) “ﬁt(ao)l

t=—2(n—1) pm—00 rl=m
o 2¢ o o . +
={ 3 o { 3 oo 3 o .
v=—00 r]=m r=—00
It follows that
(41) E(R:.) =K, (say) for all n, where lim K, = 0.
m-=o0

From (38) and (41) we deduce that Z,, ,+ R, , has the limiting distribution
N(0, 463w(Q). using a form of a limit theorem of P. H. Diananda given
by T. W. Anderson ([1], p. 687, Theorem 4.5).1 A similar argument can be
used to show that the limiting distribution of #~¥3?% &, [UY(8,)—
E{U%(6,)}], where the k, are arbitrary constants, is N (0, 46§37, _,%,k,w'D).
It follows, by using the continuity theorem for characteristic functions
(see, for example, Walker, [11], p. 64), that the limiting joint distribution
of nHUY(6,) —E{UT (0,)}] (1 <4 < p) is N(0, 403 W,), which establishes
the required result.

4. Consistency and asymptotic normality of o2
THEOREM 3. Under the conditions of Theorem 1, plim &2 = o2.

"0

Proor. We have 82 = n1U,(8,), and since
(87U, (6,)—U.(60)]] = ‘éf_" {i(@, 8,)—h(o, 90)}In(w)dw]

» x
< {16.—6,)/47} 3, sup 4w, Gp)| | I,(w)dw
=1 |0 S7,0eNs(0,) —r
when 6, € N,(6,),

1 As stated, this theorem requires Zm n, Rm n to be defined for all positive integers
m, n; when n—1 < m we can define Zp n to be equal to (35) and Ry » to be zero.
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plim n-1U,(8,) = plim n2U ,(6,).

Also
n—1
lim B0, @) =lim 3 40 (1- L) a0y
1200 Nr00 gu—(n—1)
1
= 3 1000 = 5[ 2efuhedo =t
8=—00 2ﬂ —n

by Parseval’s formula, and var {#~1U_(0,)} is of order #»~1 by the theorem
of Grenander and Rosenblatt used in § 2, so that p lim,_, , #7U,.(0,) = o3

THEOREM 4. Under the conditions of Theorem 2, the limiting distribu-
tion of nt(82—a) when n—> o is N(0, 65(2+«y")), and in the limit
nt(62—o?) and n¥(B,—6,) are independent.

Proor. By Taylor’s Theorem,

(42)  #71U,(6,) = n71U,(6,)+ i (60,:—05,:) (6o, ;—0,,,)n UL (67)
1,i=1
where
0 = 10,4 (1—1)8, (0<i<).

From Theorem 2 the second term on the right-hand side of (42) is clearly
of order »—# in probability, so that

nt (82 —af) = ntU,(6y) —ntoh+0,(n1).

Now by proceeding in the same way as in the proof of (b} in Theorem 2,
it being in fact only necessary to replace A’ by k, throughout the argument,
we can show that

wE{U, (0)} = (ntodj2n) [ gohodio-+O(log n/nd)
— ntadto(1),

and that the limiting distribution of #~3[U (68,)—E{U,(6,)}] is normal
with mean 0 and variance equal to

dn f " (hofo)2deo+x ( i

-

2
h,,/odw) = a§(2+«).
Hence the limiting distribution of ##(82—a2) is N(O0, o}(2+«{")).
Also a similar argument can be used to derive the limiting distribution

of nt(62—of)+n-1 37 k(U (0,)— EP{U (6,)}], where the &, are arbitrary
constants, thlS being normal with mean 0 and variance

T ” 2
. f {ho +3 k,hgf)}gfgderKgm [ f {h,,—}— 3 k,h{,”} fodw]
—n i=1 - F=1
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which is easily seen to be equal to

P
406 3 bkl +05(2+x")

i,5=1
It follows that in the limit, #¥(6%2—o?) is independent of
n=H[U(60) — E{UL (6,)}]

and therefore, from (24), of n4(6,—6,).

5. Use of a truncated ‘sum of squares”

The coefficients «, in the “sum of squares” U,(@) tend to zero as
|s| = co, at least as fast as [s|~ by the Riemann-Lebesgue Theorem (Titch-
marsh, [9], p. 408), and typically like ¢!/ where £ > 0. We should there-
fore expect the above results to remain true when a truncated “sum of
squares’’ is used in LY, that is, when the definition of U, is altered to
U, =1n4<4m%C,, where ¢(n) <n—1, but still -co with », which
requires less computation. In fact by imposing slightly stronger conditions
we can then establish Theorems 1—4 in much the same way, the main
changes in the argument arising from our no longer being able to use
Grenander and Rosenblatt’s theorems.

Thus in lemma 1 the proof of (11) will clearly not be affected by
the altered definition of U,. Also to show that lim,_ var Y, = 0 we use
the exact expression for cov (C,, C,) (equation (39)), but without requiring
that 32 |p!% and 3%, |I®] be finite, as in the derivation of (40). For,
if we write for the moment 8, = «,(6,) —«,(6*), we have

od
var¥,snt 5 g8
Il 18] < é(m)
(43) IR IR LR RN
2 it d 2
=wt( 3 i8) [ 3 oo (3 eor))
|r} = @{n) v=—00 u=~0

by Schwartz’s inequality, and this tends to zero as # — oo, since B, is

O(r|™) sothat 3\, < 4(n) 18] is O (log ¢(n)).
Next, in the proof of Theorem 1, we use the formula

1 n
n U (6) = — f I 3 afB)e*do
iz _, ls] £ B(m)

which gives
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W) U0 = [ L) 3 3 tus=tu)ef0%)de

where
6% = 19,+(1—1)6,,

when the derivatives «!” (6) exist and are continuous in @ for 8 € S. Hence,
when |0,—6,] < ¢,

? . L
W) UL0)-U.0) < On) 5 S jel (@) f 1, (w)dw.
It follows that Theorem 1 will certainly be true when for @ ¢ S,

(45) al?(0) is continuous in @ and ¥ |a{?(@)] is bounded (1 <j < p).
In the same way, it is easily seen that the conditions (45) ensure the truth
of Theorem 3.

Again in the proof of (a) in Theorem 2, we can obtain a bound for
[n~{U(6%)—US"(6,)}| similar to (44), which will show that the con-

dition:
(46) %) () is continuous in & and
o0
S [«l#¥(6)] is bounded (1 < 4, §, & < p) for 8 € N4(6,),
=00

ensures convergence of this to zero in probability. Also the fact
that the o”(6,) are Fourier coefficients of A" (w,8,) gives us
lim,_, var{n-1U{’")(6,)} = 0 by an argument using an inequality analogous
to (43), and lim,_ ., E{n-1U{"(6,)} = 0 as before.

Finally, in the proof of (b) in Theorem 2, we must have

lim E(pntUY(0,)} = limnt 3 o ()" (1 B ﬂ) =0,
oo nsoo || < (n) ”

or equivalently,

limnt S« (@) (1 ~ l;l) —o0

nwoo  g(n)<|g <n
Since we have Y2 __ |sy!” < oo, this reduces to

(47) limut 3 &Gy = 0.

n~oo  J(n) <o <nm

A sufficient condition for (47) is clearly

(48) lim » 020: R =0.

naco  s=g(n)+l
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Also the change of the upper limit for |s| from #—1 to ¢(z) in the definition
of R, , will clearly not affect the argument.

6. Effect of applying a mean correction

Suppose now that we consider the effect of replacing z, by z,—%
(where & = Do, #,/n) in U, (x, 8). If we write

n

n 2
S (@,—F)e"| h(w, 6)dw,

=1

Ue) = -

bt 4

we have, for O €S,

(49) E|U%(6)—U,(8)] = 0(1).
For
n n 2
1 [U*(0)—U,(8)] = & f S ¢t b(w, 8)do
—7 | b=
223 [ hw 0) 3 cot-vdw
u=1 - t=1

(% being an even function of w)

= T1,,(6)+T;,,(6), say.
Now

E|T, ,(0)] = E(#%) sup k(w, 0) Jw * dw — 47%£(0, 8,) sup A(w, 0)
IIEX -7

lojs7

n
ewt
2

as n — 00, since
n—-1 s o0
limaE@) =lim 3 (1-21) 0= 3 0= 2270,0))
i 00 7500 gm—(n—1) =00

and therefore
E|Ty,.(0)] = 0(1).

Also
(50) (BT, a(0))f S 4EGE (3 2ucns)
where .

o= w0 3 et do,
and 7 -
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n 2 n n

E (2 z,,c,,',,) = > Ho, By)et ¢, .c, ,dow
u=1 -1 u,v=1

n 2

> e, | do

a=1

< sup (o, oof"

jolsn -

= sup f(, 6)27 % cn,uf*

lojsw

n n 2
h(w,8) 3 e — 3 ¢, et

=1 tmml

n 2 n
dw = [B(w, 8) 3 et do— 3 |c, .2
=l u=1

kg
b 4

while, since
Y 1Cn,ul® = 272m sup |h(w, )2
u=1 w7

It follows that E |T,,(0)] = O(1), and (49) is therefore established.

When U (@) is replaced by Uy (0), Lemma 1 will clearly still hold since
an, immediate consequence of (49) is p lim,, {»U¥(0)—»nU (6)}=0.
Also, it is easily seen that Theorem 1 will remain true, by using the fact
that C§ = n1 Y, (x,—%)2 = Cy—%* has, asymptotically, the same mean
and variance as Cq (for the variance we need the result E(#) = O(n3)
which is easily obtained by direct calculation, using the condition
320 #P] < o0). Again in the proof of (a) in Theorem 2 the argument
leading to (25) will not be affected, since we have merely to substitute C§
for C, in (26), and the result E |[UX¥(6,)—U " (6,)| = O(1), which can be
proved in exactly the same way as (49), shows that the analogues of (27)
and (28) will hold. Finally for the proof of (b) we have only to observe
that we shall have

E[UZ9(8,) ~U(8,)] = O(1), giving p lim n=H{UR?(6o) —UY (6,)} = 0.

We thus see that the use of the mean correction does not affect the
validity of any of our results. Hence they are applicable when the series
mean, 4 say, is not known a priori, so that, denoting the observations
now by {y,}, we have y, = z,+u, u being another parameter that must
be estimated. The substitution of the estimate g = Y7, y,/n for pin L},
which now becomes —1n log 2ne®—U , (y—u, 0)[20® [p = (1, i, - -, u)'],
is then an obvious procedure; moreover the asymptotic variance of £ is
the same as that of the estimate which would be obtained by minimising
with respect to u the “exact” sum of squares Q,(y—p, 8) occurring in
L, (equation (5)), assuming 6 to be known, this being a special case of a
result due to Grenander [4] (see also Hannan, [7], p. 127, Grenander and
Rosenblatt [6], p. 246).

The same conclusion is reached with the “truncated” definition of U,
given in § 5. This depends on results of the form
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(51) E| 3 «,(6)(Cr—C,)| = 0(n1log $(n)), for O€S,
18l < ¢(n)

where
n—|s|

21 (x—% (xH-M_x)/n
To prove (51) we write

2 «(6)(C7-C)

la| S $(n)
= —ay(0)Z 1202 Z {(n——s)xz—x > %, —& z x } (),
t=8+1
so that the left-hand side is not greater than
_ $(n)
E@)|23 (1= 2) 0(0)—a(®)
(52) " »
+2n-1 z 1«,(0)[{5 £ z|+E|E S = }
s=1 Tl t=st1

The first term in (52) is O(n!) since the (C, 1) sum of Y «,(0) converges,
while the second and third terms are O(n~'log ¢(n)) because «,(0) is
certainly O(s™?) so that 3% |«,(6)| is O(log $(n)), and, for example,

n—s
Ef3 =
=1

< [E(azs)E ("fz,)']*, which is O(1)

=1

since

n—s n—s
ESef=m-9 3 (1= Lhmsa 3 pen
t=1 u=—(n—s}) n—s $=—00

(61) with ¢(n) = n—1 could incidentally have been used instead of (49)
in the previous discussion. However (49) is a slightly stronger result, and
is of interest in indicating that the effect of the mean correction for finite
n may sometimes be less for ¢(#) = n—1 than for smaller values of ¢(n),
which is perhaps a little surprising.

7. Further remarks

The conditions that we have imposed on %(w, 8) in our theorems are
certainly stronger than they need be. For example, in Theorem 1 the
partial derivatives 4'")(w, 8} could have discontinuities provided that they
remain bounded in o] <=, @€S, and continuous in the argument @
alone, and in Theorem 2 the same is true for the second and third order
partial derivatives 47 (w, 8), 4%™® (w, §). However in most problems these
conditions, and also the conditions on the Fourier coefficients «,(8) and
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their derivatives given in § 5, will be satisfied (typically #{w, 8) will be of
the form |(1-+35_; ¢x(6)e™)/ (1420 ve(0)e*®)I%, where ¢, and y, are
functions of @ having derivatives of arbitrarily high order), and weaker
conditions will be much less easily verified.

The assumption that @ is a bounded closed set contained in S will
sometimes be an unnatural restriction. For example, if {z,} is generated
by a first-order autoregressive process, with

(53) 20z, =79, (18] <1), k(w, §) = 1462426 cos o,
or by a two-term moving-average process, with
(54) z, = mn+0n., (10 <1), hlw, 0) = (14062+26 cos ),

we would usually want to take @ to be the open interval (—1, 1), that is,
S itself, rather than a closed interval such as [—6,,0,] (0 <0, < 1).
Again one might have a problem in which © was unbounded, for example
the whole real line. However it is not clear how one could establish con-
sistency of &, under general conditions without this assumption; the
difficulty is to show that

lim p { sup [U @) —U,(0)] <0}=1,
newo  GeQ—6

0®—0, being the part of ® not contained.in some bounded closed set 0,.

In some cases the difficulty does not arise because it can be seen
that the “least squares” equations U{?(8) = O(1 = ¢ < $) have a unique
solution. Provided that , lies in some bounded closed set @, C @, Theorem 1
can be applied with @, in place of @ to show that there must be at least
one consistent solution of the equations, which therefore can be identified
as the unique 6,. For example, this clearly happens when %(w, 0) is given
by (53), and more generally when {x,} is an autoregressive process of order
$ with coefficients 8y, 6,, -+, 0,, so that k(w, 8) = 1432, 0,¢/7|® (almost
all the results for this case were derived by Mann and Wald [17]). On the
other hand, for the moving-average model (46) we have «, = (—6)*/(1—62),
U,.(0)={Co+2 37, (—0)'C,}/(1—062%) and it is not clear that the equation
U ,[00 = 0 has (with probability tending to unity as # — o0) just one
root in the interval —1 < 8 < 1, although intuitively one would feel that
this must be so. When the solution of the equations is net unique we can
of course define §, to be one of the consistent solutions, and then Theorems
2—4 will clearly still hold. There will normally be a unique consistent
solution and indeed it is easy to see that two consistent solutions 6%,
6" must be equal with probability tending to unity as # — oo (by applying
the mean value theorem to UP (@) —UL)(6)). This definition of 8, is
in fact used by Whittle in his 1953 paper (compare also Hannan, [7], p. 46).

https://doi.org/10.1017/51446788700024137 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700024137

384 A. M. Walker [22]

Note added in proof. The author apologises for overlooking a paper
by P. Whittle, Gaussian Estimation in Stationary Time Series, Bull. I.S.1.
39 (1962), 105—129, which gives a rigorous treatment along somewhat
different lines from those of the present paper.
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