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Abstract
In this note, we study deterministic and stochastic models for the spread of cholera. The
deterministic model for the total number of cholera cases fits the observed total number
of cholera cases in some recent outbreaks. The stochastic model for the total number
of cholera cases leads to a binomial type distribution with a mean that agrees with the
deterministic model.
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1. Introduction

Cholera is a disease caused by the bacterium Vibrio cholerae often found in water
contaminated by faecal matter. It has a short incubation period, from less than one
day to five days, and produces an enterotoxin that causes copious watery diarrhoea in
humans, quickly leading to severe dehydration and death if treatment is not promptly
given.

According to the World Health Organization (WHO) website, cholera persists as a
global threat and continues to challenge countries where access to safe drinking water
and adequate sanitation is not assured. Almost every developing country faces cholera
outbreaks or the threat of a cholera epidemic.

It was during the 1854 cholera epidemic in London that British physician John
Snow (1813–1858) first determined the cause of cholera. He showed [4] that a nearby
sewer had contaminated water from the Broad Street pump; once this had been put out
of action, the epidemic subsided.

In this paper we develop and discuss deterministic and stochastic models for
the spread of cholera. The models developed are applicable to other water-borne
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FIGURE 1. A diagrammatic representation of the spread of cholera.

gastrointestinal bacterial infections such as dysentery due to Shigella bacteria and
typhoid due to Salmonella typhi bacteria. Deterministic models for the spread of
cholera have also been considered by Das et al. [1], Pourabbas et al. [2] and Singh
and Singh [3].

2. A deterministic model

Let us assume that cholera bacteria in a sewer A escape at a Poisson rate α into the
water supply B, where y(t), t ≥ 0, bacteria multiply at the birth rate λ, with some of
them infecting a susceptible human population C of size N − z(t) at the rate µ < λ,
z(t) being the number of infectives with cholera.

Figure 1 is a diagrammatical representation of this process and gives the
deterministic equations

dy(t)

dt
= α + λy(t)− µy(t) and

dz(t)

dt
= µy(t)(N − z(t)), (2.1)

with initial conditions y(0)= 0 and z(0)= 0. We readily see that

y(t)=
α

λ− µ

(
e(λ−µ)t − 1

)
,

z(t)= N

[
1− exp

(
−
−αµ

(λ− µ)2

((
e(λ−µ)t − 1

)
− (λ− µ)t

))]
.

(2.2)

Since e(λ−µ)t > 1+ (λ− µ)t , the number of cholera infectives z(t) is always less
than or equal to N .

The WHO’s Global Task Force on cholera control was launched in 1992 with the
aim of reducing mortality and morbidity associated with the disease and addressing
the social and economic consequences of cholera. The Task Force provides technical
advice and support for cholera control and prevention; preparedness and response to
diarrhoeal disease outbreaks; and the dissemination of information on cholera and
other epidemic prone enteric diseases. The task force’s report series Cholera Country
Profile, available on the WHO website, often contains data on cholera cases reported
on a weekly basis.

The points in Figures 2(a) and (b) show the total number of cholera cases during
outbreaks in Sierra Leone (20 August to 11 November 2006) and in N’Zerekore
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FIGURE 2. Total number of cholera cases shown as points and model predictions of z(t) shown with lines
for (a) Sierra Leone data, N = 2435, µ= 0.65, λ= 3 and α = 3.2, (b) Guinea data, N = 1335, µ= 0.4,
λ= 1.6 and α = 0.55, (c) El Salvador data, N = 7300, µ= 0.35, λ= 0.85 and α = 0.75.

province in Guinea (1 January to 17 December 2006). Similar data sets are available
for other countries. An additional set of data can be obtained from Pourabbas et al. [2]
who present a method of estimating the seasonal variation of infection rate in cholera
cases using empirical methods. The total number of cholera cases in El Salvador from
9 September 1993 to 2 September 1994 is shown with points in Figure 2(c). The
solid curves in Figure 2 also show the predictions from deterministic model (2.2) for
the total number of cholera cases z(t) in Sierra Leone, Guinea and El Salvador. The
deterministic model (2.2) for z(t) provides a good representation of the behaviour
shown in these data sets.

3. A stochastic equivalent

Let Y (t) and Z(t) be the random numbers of cholera bacteria in contaminated water,
and cholera infectives at time t ≥ 0 respectively, where Y (0)= Z(0)= 0. We define
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the probabilities

P {Y (t)= i, Z(t)= j | Y (0)= 0, Z(0)= 0} = pi j (t), 0≤ i <∞, 0≤ j ≤ N ,

of the infection process, which satisfy the forward Kolmogorov equations

dpi j (t)

dt
= −(α + (λ+ Nµ)i − i jµ)pi j (t)+ (α + (i − 1)λ)pi−1 j (t)

+ (i + 1)(N − j + 1)µpi+1 j−1(t). (3.1)

Denoting the probability generating function (p.g.f.) of the distribution by

φ(u, v, t)=
∑

0≤ j≤N
0≤i<∞

pi j (t)u
iv j , 0≤ u, v ≤ 1,

we find from (3.1) that

∂φ(u, v, t)

∂t
= µv(u − v)

∂2φ(u, v, t)

∂u∂v
+
(
λu2
− (λ+ Nµ)u + µNv

)∂φ(u, v, t)

∂u
+ α(u − 1)φ(u, v, t). (3.2)

To simplify the partial differential equation (PDE) (3.1), we may replace the value
y(t)= i in (3.1) by the deterministic mean

y(t)=
α

λ− µ

(
e(λ−µ)t − 1

)
.

This leads to

dp j (t)

dt
= −

(
α + (λ+ Nµ)y(t)− y(t) jµ

)
p j (t)+ (α + (y(t)− 1)λ)p j (t)

+ (y(t)+ 1)(N − j + 1)µp j−1(t), (3.3)

where p j (t)= P{Z(t)= j | Z(0)= 0}.
We may approximate (3.3) for large values of y(t) by replacing y(t)± 1 by y(t) to

give

dp j (t)

dt
= −

(
α + λy(t)+ (N − j)µy(t)

)
p j (t)+ (α + y(t)λ)p j (t)

+ y(t)(N − j + 1)µp j−1(t)

= −y(t)(N − j)µp j (t)+ µ(N − ( j − 1))y(t)p j−1(t).

The associated p.g.f. ψ(v, t)=
∑N

j=0 p j (t)v j will then satisfy the PDE

∂ψ(v, t)

∂t
+ µy(t)v(v − 1)

∂ψ(v, t)

∂v
= µN y(t)(v − 1)ψ(v, t). (3.4)
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The auxiliary equations are

dt

1
=

dv

µyv(v − 1)
=

dψ

Nµy(v − 1)ψ
. (3.5)

Solving the first equality of (3.5) for v, we find that

µM(t) = µ
∫ t

0
y(τ ) dτ = µ

∫ t

0

[
α

λ− µ

(
e(λ−µ)τ − 1

)]
dτ

=
µα

(λ− µ)2

(
e(λ−µ)t − 1− (λ− µ)t

)
=

∫ (
−

1
v
+

1
v − 1

)
dv = ln

(
v − 1
v

)
+ constant (3.6)

so that (
v − 1
v

)
e−µM(t)

= constant.

Solving (3.5) for ψ ,

dψ

ψ
= N

dv

v
or ln ψ = ln vN

+ constant.

Thus

ψ(v, t)v−N
= f

((
v − 1
v

)
e−µM(t)

)
, (3.7)

where the function f is unknown.
Now for t = 0, ψ(v, 0)= 1, so that v−N

= f ((v − 1)/v); or settingw = (v − 1)/v
so that v = 1/(1− w), we have f (w)= (1− w)N . Hence

f

((
v − 1
v

)
e−µM(t)

)
=

(
1−

(
v − 1
v

)
e−µM(t)

)N

= v−N
(
v
(

1− e−µM(t)
)
+ e−µM(t)

)N

and

ψ(v, t)=
(
v
(

1− e−µM(t)
)
+ e−µM(t)

)N
(3.8)

so that Z(t) has a binomial distribution with the p.g.f (3.8) satisfying the conditions

ψ(v, 0)= 1 and ψ(v,∞)= vN .

Note that the expectation of this process is E(Z(t))= N (1− e−µM(t)) which is
precisely the deterministic z(t) of (2.2).

Using the values µ= 0.65, λ= 3, α = 3.2 and N = 2435 from the data on the 2006
Sierra Leone cholera outbreak, a graph of some of the transient probabilities

p j (t)=

(
N

j

)(
1− e−µM(t)

) j
e−µ(N− j)M(t)

is shown in Figure 3.
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FIGURE 3. A graph of the probabilities p j (t)= P{Z(t)= j | Z(0)= 0} for the total number of cholera
cases Z(t) in the 2006 Sierra Leone outbreak.

If we assume that the survival rate from cholera is 0< p < 1, then

P{Z(t)= k} =
N∑

j=k

(
N

j

)(
1− e−µM(t)

) j(
e−µM(t)

)N− j
(

j

k

)
pkq j−k

=

N∑
j=k

N ! e−µN M(t)

(N − j)!( j − k)!k!

[(
eµM(t)

− 1
)

q
] j
(

p

q

)k

(3.9)

with p.g.f.

χ(v, t)=
N∑

k=0

vk
N∑

j=k

(
N

j

)(
j

k

)((
1− e−µM(t)

)
q
) j

e−µM(t)(N− j)
(

p

q

)k

. (3.10)

After a change in the order of summation in (3.10),

χ(v, t) =
N∑

j=0

(
N

j

)((
1− e−µM(t)

)
q
) j

e−µM(t)(N− j)
j∑

k=0

(
j

k

)(
pv

q

)k

=

N∑
j=0

(
N

j

)((
1− e−µM(t)

)
q
) j

e−µM(t)(N− j)
(

1+
pv

q

) j

=

N∑
j=0

(
N

j

)(
1− e−µM(t)

) j
e−µM(t)(N− j) (q + pv) j

=

[(
1− e−µM(t)

)
(q + pv)+ e−µM(t)

]N
(3.11)
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FIGURE 4. A graph of the expected total number of deaths predicted by Equation (3.12) (line) compared
to the actual number of deaths (points) in the 2006 Sierra Leone cholera outbreak, with µ= 0.65, λ= 3,
α = 3.2 and N = 2435.

which also follows directly from (3.8). The expected number of fatalities in a cholera
outbreak is

q E(Z(t))= q N
(

1− e−µM(t)
)
. (3.12)

In the 2006 Sierra Leone cholera outbreak, there were 99 reported fatalities, so
that the approximate probability of death q is about 0.041. Figure 4 shows the
actual number of fatalities of this outbreak, together with the number predicted by
Equation (3.12). Although the curve fits the data reasonably, it seems inadequate
between weeks four and nine, possibly because the death rate varies rather than
remaining constant at 0.041.

4. Concluding remarks

In this note, we have considered simple deterministic and stochastic models for
the spread of cholera. We describe the spread of cholera by modeling the bacterial
population in contaminated water and the human interaction with the bacteria in the
water supply. Although the models are relatively simple, they reflect reasonably the
behaviour of the observed total number of cases. The value from the deterministic
model for the total number of cholera cases fits the observed data in three recent
outbreaks. The stochastic model leads to a binomial type distribution for the number
of cholera cases, with a mean that agrees with the deterministic model. We hope that
these models will prove useful to health agencies.
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