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FUNCTIONAL LIMIT THEOREMS FOR CRITICAL
PROCESSES WITH IMMIGRATION
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Abstract

We consider a critical discrete-time branching process with generation dependent
immigration. For the case in which the mean number of immigrating individuals tends
to ∞ with the generation number, we prove functional limit theorems for centered
and normalized processes. The limiting processes are deterministically time-changed
Wiener, with three different covariance functions depending on the behavior of the
mean and variance of the number of immigrants. As an application, we prove that
the conditional least-squares estimator of the offspring mean is asymptotically normal,
which demonstrates an alternative case of normality of the estimator for the process with
nondegenerate offspring distribution. The norming factor is n

√
α(n), where α(n) denotes

the mean number of immigrating individuals in the nth generation.
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1. Introduction

We consider a discrete-time branching stochastic process Z(n), n ≥ 0, Z(0) = 0. It
can be defined by two families of independent, nonnegative integer-valued random variables
{Xni, n, i ≥ 1} and {ξk, k ≥ 1} recursively as

Z(n) =
Z(n−1)∑

i=1

Xni + ξn, n ≥ 1. (1)

Assume that the Xni have a common distribution for all n and i, and that the families {Xni}
and {ξn} are independent. The variables Xki will be interpreted as the number of offspring of
the ith individual in the (k − 1)th generation, and ξk will denote the number of immigrating
individuals in the kth generation. Then Z(n) can be viewed as the size of the nth generation
of the population. In this interpretation A = E Xni denotes the mean number of offspring of a
single individual. The process Z(n) is called subcritical, critical, or supercritical depending
on whether A < 1, A = 1, or A > 1, respectively. The independence assumption of the
families {Xni} and {ξn} means that reproduction and immigration processes are independent.
However, in contrast to the classical models, we do not assume that the ξn, n ≥ 1, are identically
distributed, i.e. the immigration rate may depend on the time of immigration.

Investigations show that the asymptotic behavior of the process with immigration is very
sensitive to any changes of the immigration process in time. For instance, in the critical case, a
change in the mean number of immigrating individuals in time leads to such fluctuations of the
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process that it is necessary to use various functional normalizations to obtain a nondegenerate
limit distribution for the process; see [16, Chapter III] and the references therein. Therefore, a
description of the processes that can be used as an approximation in this situation is of interest.
Conversely, these kinds of functional limit theorem are useful in estimating parameters and in
the study of various functionals of the process.

In this paper we prove functional limit theorems for critical processes for the case in which
the immigration mean tends to ∞. It turns out that a suitably normalized process may be
approximated by a Gaussian process with independent increments and with three different
covariance functions depending on the behavior of the mean and variance of the number of
immigrants. The limiting Gaussian process can be obtained from the Wiener process by a
deterministic time change. As an example of the application of functional limit theorems,
we prove that the conditional least-squares estimator (CLSE) of the offspring mean, A, is
asymptotically normal. It is interesting to note that the norming factor depends on the mean
number of immigrants and can be chosen to depend on the rate of immigration.

First approximation theorems of branching stochastic processes have appeared in [5], where it
was demonstrated that a branching stochastic process without immigration can be approximated
by a diffusion process. Lamperti [12], [13] proved that finite-dimensional distributions of
the process with a large number of initial individuals converges to those of some diffusion
processes with two different normalizations. These results were extended to the functional
form in [14] and [15]. The convergence of finite-dimensional distributions of a sequence of
Galton–Watson branching processes with stationary immigration has been investigated in [1]
and [11]. Wey and Winnicki [18] have shown that random step functions of a critical branching
process with immigration converges in Skorokhod topology to a nonnegative diffusion process.
Fluctuation theorems for the sequence of nearly critical branching processes have been proved
by Sriram [17], who obtained a diffusion approximation. In [7] and [8] the authors demonstrated
that Sriram’s result was also valid when the offspring variance tended to 0, and that the
centralized process can be approximated by Ornstein–Uhlenbeck-type processes. In addition,
asymptotic normality of the mean-square estimator of the offspring mean was proved with
normalizing factor n3/2. Note that in the latter case the reproduction process will approach
a deterministic multiplication of individuals. The same authors also examined the critical
branching process with varying offspring and immigration distributions in [9]. However, in
contrast to our situation, in [9] the offspring variance tends to 0.

It was known that in the critical or nearly critical case the CLSE of the offspring mean
is not asymptotically normal; see [17] and [18]. When the process is nearly critical and the
offspring variance tends to 0, the results of [7] and [8] have shown that it has a normal limiting
distribution. Our Theorem 4 demonstrates an alternative situation of asymptotic normality of
the CLSE for the process with nondegenerate offspring distribution.

It is known that (see [2], [4], and [6]) in the case of the Bernoulli offspring distribution the
process (1) is an integer-valued, first-order autoregressive (INAR(1)) time-series model with
noise ξk . In the framework considered here, the process Z(n) can be related to the INAR(1)
model with nonstationary (rising) noise.

In the proofs we follow the approach introduced by Ispàny et al. [7], [8], and use some tricks
of the proof of appropriate statements there. Namely, we represent our process in the form of
normalized martingale differences, and use martingale limit theorems to derive our results.

The main results and some examples will be given in Section 2. In Section 3 we prove
several preliminary results which will be used in the proofs of the main theorems. Section 4 is
devoted to the proofs of the main results.
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2. Main results and examples

From now on we assume that A = E Xni and B = var(Xni) are finite. We also assume that
α(n) = E ξn < ∞ and β(n) = var(ξn) < ∞ for each n ≥ 1 are regularly varying functions as
n tends to ∞, i.e. they have the form

α(n) = nαLα(n), β(n) = nβLβ(n),

where α, β ≥ 0, and Lα(n) and Lβ(n) are slowly varying functions as n tends to ∞. Then
A(n) = E Z(n) and B2(n) = var(Z(n)) are finite for each n ≥ 1 and, when A = 1,

A(n) =
n∑

k=1

α(k), B2(n) = �2(n) + σ 2(n),

where

�2(n) = B

n∑
k=1

α(k)(n − k), σ 2(n) =
n∑

k=1

β(k).

For each t ∈ R+ = [0, ∞), we define a sequence of step functions

Yn(t) = Z([nt]) − A([nt])
B(n)

.

Throughout the paper, ‘
d−→’, ‘

d−→’, and ‘
p−→’ will denote the convergence of random functions in

Skorohkod topology, the convergence of random variables in distribution, and convergence in
probability, respectively.

Theorem 1. If A = 1, B ∈ (0, ∞), α(n) → ∞, and β(n) = o(nα(n)) then Yn(t)
d−→ W(t2+α)

as n → ∞ weakly in Skorokhod space D(R+, R), where (W(t), t ∈ R+) is a standard
Brownian motion.

In Theorem 1 note that we do not require a Lindeberg-type condition on the offspring or
immigration distribution. In fact, in this case it is satisfied for the immigration process owing
to the normalization by B2(n). However, in the opposite case we need one on the sequence
{ξn, n ≥ 1}, which seems natural for the process with inhomogeneous immigration. Thus, we
denote, for each ε > 0,

δn(ε) = 1

σ 2(n)

n∑
k=1

E[(ξk − α(k))2; |ξk − α(k)| > εσ(n)].

Theorem 2. If A = 1, B ∈ (0, ∞), α(n) → ∞, α(n) = o(n−1β(n)), and δn(ε) → 0 as
n → ∞ for each ε > 0 then Yn(t)

d−→ W(t1+β) as n → ∞ weakly in Skorokhod space
D(R+, R).

The following theorem is related to the case in which nα(n) and β(n) have the same rate.

Theorem 3. If A = 1, B ∈ (0, ∞), α(n) → ∞, β(n) ∼ cnα(n), c ∈ (0, ∞), and δn(ε) → 0
as n → ∞ for each ε > 0 then Yn(t)

d−→ W(t1+β) = W(t2+α) as n → ∞ weakly in Skorokhod
space D(R+, R).
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Remarks. 1. Using Lemma 1, given in Section 3, we can see that the condition β(n) =
o(nα(n)) is equivalent to σ 2(n) = o(�2(n)), the condition α(n) = o(n−1β(n)) is equivalent
to �2(n) = o(σ 2(n)), and that β(n) ∼ cnα(n) as n → ∞, if and only if σ 2(n) ∼ θB2(n) with
θ = d/(d + (1 + β)B), where d = c(1 + α)(2 + α).

2. Since β(n)/nα(n) is regularly varying with exponent β − 1 − α and has a positive finite
limit when β(n) ∼ cnα(n) as n → ∞, we conclude that β = α + 1. This explains the equality
W(t1+β) = W(t2+α) in Theorem 3.

Now we consider some examples of the immigration process which satisfy the conditions
of Theorems 1, 2, and 3.

Example 1. Let ξk, k ≥ 1, be Poisson with mean λ(k) → ∞, k → ∞, and regularly varying
with exponent α. Then

�2(n) = B

n∑
k=1

λ(k)(n − k), σ 2(n) =
n∑

k=1

λ(k),

and, clearly, σ 2(n) = o(�2(n)). In this case we obtain the following result from Theorem 1.

Corollary 1. If A = 1, B ∈ (0, ∞), and ξk, k ≥ 1, are Poisson with mean λ(k) → ∞,
k → ∞, and (λ(k))∞k=1 is regularly varying with exponent α then Yn(t)

d−→ W(t2+α) as n → ∞
weakly in Skorokhod space D(R+, R).

Example 2. Now let ξk, k ≥ 1, have positive geometric distributions with parameterpk = k−1,
i.e. P{ξk = i} = qi−1

k pk, i = 1, 2, . . . , qk = 1 − pk . In this case

α(k) = k and β(k) = qkp
−2
k = k2(1 − k−1).

Consequently, we have �2(n) ∼ Bn3/6 and σ 2(n) ∼ n3/3. Therefore,

σ 2(n) ∼ 2B2(n)

B + 2
.

Now we show fulfilment of the Lindeberg condition. Since E Sξk = (pkS)(1 − qkS)−1,
0 < S < 1, we find that

(E Sξk )
′′′ = 6pkq

2
k (1 − qkS)−4,

where ‘
′′′

’ denotes the third derivative. Therefore,

E ξk(ξk − 1)(ξk − 2) = 6q2
k p−3

k .

From this we conclude that E |ξk − α(k)|3 = O(k3), k → ∞, which leads to the relation

C3
n =:

n∑
k=1

E |ξk − α(k)|3 = O(n4), n → ∞.

Thus, C3
n/σ 3(n) = O(n−1/2), n → ∞, i.e. the Lyapunov condition is satisfied for ξk, k ≥ 1.

Now we obtain the following result from Theorem 3.

Corollary 2. If A = 1, B ∈ (0, ∞), and ξk, k ≥ 1, are geometric with parameter pk = k−1

then Yn(t)
d−→ W(t3) as n → ∞ weakly in Skorokhod space D(R+, R).
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Example 3. Let ξk, k ≥ 1, be such that p = P{ξk = k2} = 1 − P{ξk = 0} and q = 1 − p.
Then simple calculations give

�2(n) ∼ Bpn4

12
and σ 2(n) ∼ pqn5

5
as n → ∞,

and, consequently, �2(n) = o(σ 2(n)). Since in this case

C3
n ∼ pq(p2 + q2)n7

7
and σ 3(n) ∼

(
pq

5

)3/2

n15/2,

the Lyapunov condition is again satisfied. Thus, from Theorem 2 we find that Yn(t) converges,
as n tends to ∞, to W(t5) weakly in Skorokhod space D(R+, R).

Now we consider one nontrivial application of our theorems, related to the conditional least-
squares estimator of the offspring mean. Let I(n) for each n ≥ 0 be a σ -algebra generated by
{Z(k), k = 0, 1, . . . , n}. From (1) we obtain

E[Z(n) | I(n − 1)] = AZ(n − 1) + α(n), n ≥ 1. (2)

If we assume that the immigration mean, α(n), is known then the CLSE Ân of A must
minimize the sum of squares error

n∑
k=1

(Z(k) − AZ(k − 1) − α(k))2.

By standard arguments we find that it has the form

Ân =
∑n

k=1(Z(k) − α(k))Z(k − 1)∑n
k=1 Z2(k − 1)

. (3)

Using Theorem 1, we shall prove the following result for Ân.

Theorem 4. If the conditions of Theorem 1 are fulfilled then

n
√

α(n)(Ân − 1)
d−→ N(0, a),

where N(0, a) is a normal random variable with mean 0 and variance

a2 = (1 + α)(2α + 3)2B

3α + 4
.

We note that, if α = 0, i.e. the immigration mean tends to ∞ as a slowly varying function,
then the variance of the limiting distribution is 9B/4.

In further publications it will be shown that it is possible to study the CLSE in the case when
the conditions of Theorems 2 or 3 are satisfied. Note that in this case Ân may not necessarily
be asymptotically normal.
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3. Preliminary results

We start with two simple lemmas on regularly varying functions. If a sequence (Cn)
∞
n=1 or

function f is regularly varying with exponent ρ, we write (Cn)
∞
n=1 ∈ Rρ and f ∈ Rρ . The

following result is a discrete form of Karamata’s well-known theorem on regularly varying
functions; see [3, Theorem 1.5.11].

Lemma 1. If (Cn)
∞
n=1 ∈ Rρ then, for any θ ∈ (−ρ − 1, ∞),

n∑
k=1

kθCk ∼ nθ+1Cn

θ + ρ + 1
as n → ∞

and (
∑n

k=1 kθCk)
∞
n=1 ∈ Rθ+ρ+1.

Proof. We consider the function fc : [0, ∞) 	→ R defined as fc(x) := C[x] for each x ∈
[0, ∞). Here [x] denotes the integer part of x. Owing to Theorem 1.9.5 of [3], fc ∈ Rρ and is
locally bounded on [0, ∞). Applying Theorem 1.5.11 of [3], we have

∫ x

0
tθfc(t) dt ∼ xθ+1fc(x)

θ + ρ + 1
as x → ∞,

which implies that the function x 	→ ∫ x

0 tθfc(t) dt is regularly varying with exponent θ +ρ+1.
Since Cn−1/Cn → ∞, we obtain the statements of Lemma 1.

Lemma 2. If A(n) is a regularly varying function with exponent α ≥ 0 then

sup
ε≤t≤a

∣∣∣∣A(nt)

A(n)
− tα

∣∣∣∣ → 0 as n → ∞

for any 0 < ε ≤ a < ∞.

The assertion of Lemma 2 is a simple consequence of the uniform convergence theorem for
slowly varying functions.

Lemma 3. If α(n) → ∞ as n → ∞ and regularly varies with exponent α and A(n) =
α(1) + · · · + α(n) then, as n → ∞,

(a)

�2(n) ∼ Bα(n)n2

(α + 1)(α + 2)
, σ 2(n) ∼ nβ(n)

β + 1
; (4)

(b) for each γ ≥ 0,
n∑

k=1

Aγ (k) ∼ n

γα + γ + 1
Aγ (n).

Proof. To prove part (a), consider

n∑
k=1

α(k)(n − k) = nA(n) −
n∑

k=1

kα(k).

If we apply Lemma 1 with θ = 0 and θ = 1, we obtain

A(n) ∼ nα(n)

α + 1
,

n∑
k=1

kα(k) ∼ n2α(n)

α + 2
, as n → ∞,
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which implies the first relation in (4). The second relation in (4) is a direct consequence of
Lemma 1.

To prove part (b), we take into account the facts that (A(n))∞n=1 ∈ Rα+1 and ((A(n))γ )∞n=1 ∈
R(α+1)γ for any γ ∈ [0, ∞). Therefore, again applying Lemma 1 with θ = 0, we obtain

n∑
k=1

(A(k))γ ∼ n

(α + 1)γ + 1
(A(n))γ as n → ∞.

This completes the proof.

Lemma 4. If α(n) → ∞ as n → ∞ then, for each t ∈ R+ = [0, ∞),

(a)

B−4(n) var

( [nt]∑
k=1

Z(k)

)
→ 0;

(b)

B−4(n)

[nt]∑
k=1

EZ2(k) → 0. (5)

Proof. To prove part (a), we consider

var

( [nt]∑
k=1

Z(k)

)
= I1 + I2,

where

I1 =
[nt]∑
k=1

B2(k), I2 = 2
[nt]−1∑
i=1

[nt]∑
j=i+1

cov(Z(i), Z(j)).

It is easy to see that

B−4(n)I1 ≤ B2([nt])[nt]
B4(n)

.

Owing to Lemma 1, B2(n) is regularly varying and

B2(n) ∼ Bα(n)n2

(α + 1)(α + 2)
+ nβ(n)

β + 1
as n → ∞, (6)

and we find that I1/B
4(n) → 0 as n → ∞. Since

cov(Z(t), Z(t + n)) = An var(Z(t)),

recalling that B2(n) = var(Z(n)), we have

I2 =
[nt]−1∑
k=1

([nt] − i)B2(i) ≤ B2([nt])([nt] − 1)2.

Again taking (6) into account and the fact that α(n) → ∞, we conclude that I2/B
−4(n) → 0

as n → ∞.
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To prove part (b), we observe that

[nt]∑
k=1

E Z2(k) =
[nt]∑
k=1

var(Z(k)) +
[nt]∑
k=1

A2(k). (7)

As it was just proved, the first sum is o(B4(n)) as n tends to ∞. It follows, from Lemma 1 and
part (b) of Lemma 3, that

n∑
k=1

A2(k) ∼ n

2α + 3
A2(n), A(n) ∼ nα(n)

α + 1
, as n → ∞. (8)

From (6) and (8), we find that the second sum in (7) is also o(B4(n)) as n tends to ∞. This
completes the proof.

Lemma 5. Let Xki be the random variables given in (1), let X̄ki = Xki − 1, and let T (k) =∑Z(k−1)
i=1 X̄ki . Then

(a)
E[(T (k))2 | I(k − 1)] = BZ(k − 1); (9)

(b)
E[(�′X̄kiX̄kj )

2 | I(k − 1)] = 2B2Z(k − 1)(Z(k − 1) − 1), (10)

where
∑′ denotes summation for i, j = 1, 2, . . . , Z(k − 1) such that i �= j .

Proof. Equations (9) and (10) are a direct consequence of the independence of the random
variables X̄ki and X̄kj, i �= j , and of a simple property of the conditional expectation.

The following technical result is vital in the proofs of the main theorems.

Lemma 6. For any θ > 0,

E[(T (k))2 1{|T (k)|>θ} | I(k − 1)] ≤ I1 + I2, (11)

where
I1 = Z(k − 1) E[X̄2

11 1{|X̄11|>θ/2}],

I2 = 4B2

θ2 (Z(k − 1))2 + 21/2B3/2

θ
(Z(k − 1))3/2.

Proof. If we use the simple inequality

1{|ξ+η|>ε} ≤ 1{|ξ |>ε/2} + 1{|η|>ε/2}, (12)

the left-hand side of (11) can be estimated by R1 + R2 + R3, with

R1 = E

[Z(k−1)∑
i=1

X̄2
ki 1{|X̄ki |>θ/2}

∣∣∣∣ I(k − 1)

]
= Z(k − 1) E

[
X̄2

11 1{|X̄11|>θ/2}
]
,

R2 = E

[Z(k−1)∑
i=1

X̄2
ki 1{|τki |>θ/2}

∣∣∣∣ I(k − 1)

]
,

R3 = E[�′X̄kiX̄kj 1{|T (k)|>θ} | I(k − 1)],
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where �′ is as defined in Lemma 5, and τki = T (k) − X̄ki . To estimate R2 we use the
independence of X̄ki and τki, the Chebyshev inequality, and (9), and we obtain

R2 ≤ 4B

θ2

Z(k−1)∑
i=1

E[τ 2
ki | I(k − 1)] = 4B2

θ2 Z(k − 1)(Z(k − 1) − 1).

Using the Cauchy–Schwarz and Chebyshev inequalities, (9), and (10), we see that R3 is
dominated by

1

θ
(E[(�′X̄kiX̄kj )

2 | I(k − 1)] E[(T (k))2 | I(k − 1)])1/2

= 21/2B3/2Z(k − 1)

θ

√
Z(k − 1) − 1.

This completes the proof.

4. Proofs of Theorems 1–4

We represent our process Yn(t) in the form of a sum of normalized martingale differences,
and deduce our results from a martingale limit theorem. Let M(k) = Z(k)−E[Z(k) | I(k−1)].
Then it follows, from (1) and (2), that

Z(k) − E[Z(k)] = Z(k − 1) − E[Z(k − 1)] + M(k).

Subsequent application of this identity leads to the relation

Yn(t) =
[nt]∑
k=1

M(k)

B(n)
. (13)

To prove Theorem 1, we use the following version of the martingale central limit theorem
from [10].

Theorem 5. ([10, Theorem VIII].) Let {Un
k , k ≥ 1} for each n ≥ 1 be a sequence of martingale

differences with respect to some filtration {In
k , k ≥ 1}, such that the conditional Lindeberg

condition
[nt]∑
k=1

E[(Un
k )2 1{|Un

k |>ε} | In
k−1] p−→ 0

holds as n → ∞ for all ε > 0 and t ∈ R+. Then

[nt]∑
k=1

Un
k

d−→ U(t)

asn → ∞weakly, whereU(t) is a continuous Gaussian martingale with mean 0 and covariance
function C(t), t ∈ R+, if and only if

[nt]∑
k=1

E[(Un
k )2 | In

k−1] p−→ C(t) as n → ∞ (14)

for each t ∈ R+.
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Proof of Theorem 1. First we prove fulfilment of condition (14) for the sum in (13) with
Un

k = M(k)/B(n) and In
k = I(k) for all n ≥ 1. Since

M(k) =
Z(k−1)∑

i=1

(Xki − 1) + ξk − α(k), (15)

we easily obtain

[nt]∑
k=1

E[(Un
k )2 | In

k−1] = σ 2([nt])
B2(n)

+ B

B2(n)

[nt]∑
k=1

Z(k − 1). (16)

From Lemma 4 it follows that the variance of the second sum in (16) tends to 0 as n tends to ∞.
Therefore, we just consider

B

B2(n)

[nt]∑
k=1

E[Z(k − 1)] = B

B2(n)

[nt]∑
k=1

A(k − 1).

Since B2(n) ∼ �2(n) as n → ∞ under the conditions of Theorem 1, appealing to Lemma 3,
we see that the last sum converges in probability to t2+α as n tends to ∞. Hence, condition
(14) is satisfied with C(t) = t2+α .

In our case the Lindeberg condition will be satisfied if, for each ε > 0,

I (n) = 1

B2(n)

[nt]∑
k=1

E[(M(k))2 1{|M(k)|>εB(n)} | I(k − 1)] p−→ 0 as n → ∞.

Taking (15) into account and the independence of the immigration and reproduction processes,
we have

I (n) = I1(n) + I2(n), (17)

where

I1(n) = 1

B2(n)

[nt]∑
k=1

E[(T (k))2 1{|M(k)|>εB(n)} | I(k − 1)],

I2(n) = 1

B2(n)

[nt]∑
k=1

E[(ξk − α(k))2 1{|M(k)|>εB(n)} | I(k − 1)],

and T (k) is as defined in Lemma 5.
Consider I1(n). Using inequality (12), we see that it can be estimated by the sum I11(n) +

I12(n), where

I11(n) = 1

B2(n)

[nt]∑
k=1

E[(T (k))2 1{|T (k)|>εB(n)/2} | I(k − 1)],

I12(n) = 1

B2(n)

[nt]∑
k=1

E[(T (k))2 1{|ξk−α(k)|>εB(n)/2} | I(k − 1)].
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Owing to Lemma 6, we obtain

I11(n) ≤ ϒ(εB(n)/4)

B2(n)

[nt]∑
k=1

Z(k − 1) + 16B2

ε2B4(n)

[nt]∑
k=1

(Z(k − 1))2 + 2B

εB3(n)

[nt]∑
k=1

(Z(k − 1))3/2,

where ϒn(ε) = E[X̄2
11 1{|X̄11|>ε}]. As it was proved, the sum in the first term divided by B2(n)

converges in probability to t2+α as n tends to ∞. Owing to (5), the second term converges in
probability to 0 as n tends to ∞. To estimate the last term we use the inequality

n∑
k=1

akbk ≤
√√√√ n∑

k=1

a2
k

n∑
k=1

b2
k .

We find that this inequality is not greater than

2B

ε

√√√√ 1

B4(n)

[nt]∑
k=1

(Z(k − 1))2

√√√√ 1

B2(n)

[nt]∑
k=1

Z(k − 1),

and, therefore, also converges in probability to 0 as n tends to ∞. Hence, we have proved that
I11(n)

p−→ 0 as n → ∞ for any ε > 0.
Consider I12(n). Using the independence of the immigration and reproduction processes,

the Chebyshev inequality, and (9), we have

I12(n) ≤ 4B

ε2B4(n)

[nt]∑
k=1

Z(k − 1)β(k).

Taking into account the inequality

[nt]∑
k=1

E[Z(k − 1)]β(k) ≤ A([nt])σ 2([nt]), (18)

we find that I12(n)
p−→ 0 as n → ∞.

To estimate I2(n), we take into account the fact that I2(n) ≤ σ 2([nt])/B2(n) and, owing to
the condition σ 2(n) = o(�2(n)), we conclude that I2(n)

p−→0 as n → ∞. This completes the
proof.

Proof of Theorem 2. We again prove fulfilment of the conditions of Theorem 5. Since
B2(n) ∼ σ 2(n) as n → ∞ under the conditions of Theorem 2, the first term in (16) tends
to t1+β as n tends to ∞. Owing to Lemma 3,

[nt]∑
k=1

E[Z(k − 1)] ∼ constant

n
�2(n) as n → ∞, (19)

and appealing to Lemma 4, we find that the second term in (16) converges in probability to 0
as n tends to ∞. Hence, condition (14) is satisfied with C(t) = t1+β .
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In the proof of the fulfilment of the Lindeberg condition, convergence in probability to 0
of the term I1(n) in (17) will remain true under the conditions of Theorem 2. Consider I2(n).
Using inequality (12), we find that

I2(n) ≤ δn

(
ε

2

)
+ 1

B2(n)

[nt]∑
k=1

β(k) P

{
|T (k)| >

εB(n)

2

∣∣∣∣ I(k − 1)

}
. (20)

It follows, from the Chebyshev inequality and (9), that the second term in (20) is dominated by

4B

ε2B4(n)

n∑
k=1

β(k)Z(k − 1).

Using (18), we can prove that the second term converges in probability to 0 as n tends to ∞.
Consequently, I2(n)

p−→0 as n → ∞ for each ε > 0 under the conditions of Theorem 2. This
completes the proof.

Proof of Theorem 3. Under the conditions of Theorem 3, the first term in (16) tends to θt1+β .
Using (19), Lemma 4, and taking Remark 1 into account, we find that the second term converges
in probability to (1 − θ)t2+α as n tends to ∞. Consequently, condition (14) is satisfied with
C(t) = θt1+β + (1 − θ)t2+α = t2+α .

The fulfilment of the Lindeberg condition can be proved in a similar manner to that given in
the proofs of the previous theorems. Therefore, its proof is omitted. The assertion of Theorem 3
again follows from Theorem 5.

Proof of Theorem 4. From (3) we obtain

Ân − 1 =
∑n

k=1 Z(k − 1)M(k)∑n
k=1 Z2(k − 1)

=: D(n)

Q(n)
. (21)

Rewrite D(n) as D(n) = D1(n) + D2(n), where

D1(n) =
n∑

k=2

k−1∑
i=1

M(i)M(k) and D2(n) =
n∑

k=2

A(k − 1)M(k).

Consider D1(n). Since

D1(n) =
n∑

k=1

k∑
i=1

M(i)M(k) −
n∑

k=1

M2(k),

using the simple identity

( n∑
k=1

M(k)

)2

= D1(n) +
n∑

k=1

k∑
i=1

M(i)M(k),

we obtain

D1(n) = B2(n)

2
Y 2

n (1) − 1

2

n∑
k=1

M2(k). (22)
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It was shown, in the proof of Theorem 1, that

1

B2(n)

[nt]∑
k=1

E[M2(k) | I(k − 1)] p−→ t2+α as n → ∞

for each t ∈ R+. Using this and the facts that B2(n) ∼ �2(n) and A(n) ∼ C�(n)
√

α(n) as
n → ∞, where C is a positive constant, we can prove that

1

K(n)

n∑
k=1

M2(k)
p−→ 0 as n → ∞,

where K(n) = A(n)�(n). It follows, from Theorem 1, that Y 2
n (1)

d−→ W 2(1) as n → ∞.
Taking this into account in (22), we find that, as n → ∞,

1

K(n)
D1(n)

p−→ 0. (23)

Now we consider D2(n). It is not difficult to see that

D2(n) =
n∑

k=2

k−1∑
i=1

α(i)M(k) =
n−1∑
i=1

α(i)

n∑
k=i+1

M(k).

Therefore, taking (13) into account, it can be written as

1

K(n)
D2(n) =

∫ 1

0
(Yn(1) − Yn(t)) dAn(t),

where An(t) = A([nt])/A(n), n ≥ 1, are nondecreasing functions of t .
Now we consider the sequence of functionals �n : D(R+, R) 	→ R, n ≥ 1, defined by

�n(x) =
∫ 1

0
(x(1) − x(t)) dAn(t).

Since An(t) → t1+α as n → ∞ uniformly on compact subsets of [0, ∞), for all
x, xn ∈ D(R+, R) such that sup |xn − x| → 0, n → ∞, we have |�n(xn) − �(x)| → 0
as n → ∞, where

�(x) = (1 + α)

∫ 1

0
(x(1) − x(t))tα dt.

It follows, from Theorem 1 and Lemma 4.1 of [7], that �n(Yn)
d−→ �(W(t2+α)) as n → ∞.

Hence, we conclude that
1

K(n)
D2(n)

d−→ η as n → ∞, (24)

where

η = W(1) − (1 + α)

∫ 1

0
W(t2+α)tα dt.
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Now we consider Q(n). It can be written as Q(n) = Q1(n) + 2Q2(n) + Q3(n), where

Q1(n) =
n∑

k=1

A2(k − 1),

Q2(n) =
n∑

k=1

A(k − 1)(Z(k − 1) − A(k − 1)),

Q3(n) =
n∑

k=1

(Z(k − 1) − A(k − 1))2.

It follows, from Lemma 3, that

lim
n→∞

Q1(n)

nA2(n)
= (2α + 3)−1. (25)

To estimate Q2(n), we consider

Q2(n)

nK(n)
=

n∑
k=1

An

(
k

n

) ∫ (k+1)/n

k/n

Yn(t) dt.

Now we define the functionals �n : D(R+, R) 	→ R, n ≥ 1, by

�n(x) =
n−1∑
k=1

An

(
k

n

) ∫ (k+1)/n

k/n

x(t) dt.

It is easy to see that, for any x, xn ∈ D(R+, R) such that sup |xn − x| → 0, n → ∞, we have
|�n(xn) − �(x)| → 0 as n → ∞, where

�(x) =
∫ 1

0
t1+αx(t) dt.

We have
Q2(n)

nK(n)
=

∫ 1

0
An(t)Yn(t) dt = �n(Yn),

where �n(x) := ∫ 1
0 An(t)x(t) dt . Therefore, again using Theorem 1 and Lemma 4.1 of [7],

we conclude that
Q2(n)

nK(n)

d−→
∫ 1

0
t1+αW(t2+α) dt. (26)

Since A2(n)/K(n) ∼ √
(2 + α)α(n)/

√
B(1 + α) as n → ∞, we have

Q2(n)

nA2(n)

p−→ 0 as n → ∞. (27)

Now we consider
Q3(n)

nB2(n)
=

∫ 1

0
Y 2

n (t) dt.
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It follows, from Theorem 1 and the continuous mapping theorem, that the right-hand side of
the last equality converges in distribution to

∫ 1
0 W 2(t2+α) dt as n tends to ∞. Therefore, taking

(6) into account and the second relation in (8), we conclude that

Q3(n)

nA2(n)

p−→ 0 as n → ∞. (28)

Now from (21), (23), (24), and (25)–(28), we find that, as n → ∞,

n
√

α(n)(Ân − 1)
d−→ (2α + 3)

√
B(1 + α)

2 + α
η.

Since η can be written as η = (1 + α)
∫ 1

0 tα(W(1) − W(t2+α)) dt , we have

E η2 =
∫ 1

0

∫ 1

0
sαtαR(t, s) ds dt,

where
R(t, s) = (1 + α)2 E[(W(1) − W(s2+α))(W(1) − W(t2+α))].

We consider

E η2 =
∫ 1

0

∫ t

0
sαtαR(t, s) ds dt +

∫ 1

0

∫ 1

t

sαtαR(t, s) ds dt. (29)

By a standard technique we find that the first term on the right-hand side of (29) is equal to

∫ 1

0

∫ t

0
sαtα E[(W(1) − W(t2+α))2] ds dt = α + 2

2(3α + 4)
.

In a similar way we find that the second term on the right-hand side of (29) is also equal to
(α + 2)/2(3α + 4). Hence, we have

E η2 = α + 2

3α + 4
,

which implies the desired result. This completes the proof.
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