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What do glaciers tell us about climate variability and
climate change?

Gerard H. ROE

Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, Washington 98195-1310, USA
E-mail: gerard@ess.washington.edu

ABSTRACT. Glaciers respond to long-term climate changes and also to the year-to-year fluctuations
inherent in a constant climate. Differentiating between these factors is critical for the correct
interpretation of past glacier fluctuations and for the correct attribution of current changes. Previous
work has established that century-scale, kilometre-scale fluctuations can occur in a constant climate.
This study asks two further questions of practical significance: how likely is an excursion of a given
magnitude in a given amount of time, and how large a trend in length is statistically significant? A
linear model permits analytical answers wherein the dependencies on glacier geometry and climate
setting can be clearly understood. The expressions are validated with a flowline glacier model. The
likelihood of glacier excursions is well characterized by extreme-value statistics, although probabilities
are acutely sensitive to some poorly known glacier properties. Conventional statistical tests can
be used for establishing the significance of an observed glacier trend. However, it is important to
determine the independent information in the observations which can be effectively estimated from
the glacier geometry. Finally, the retreat of glaciers around Mount Baker, Washington State, USA, is
consistent with, but not independent proof of, the regional climate warming that is established from the

instrumental record.

1. STATISTICS AND THE INTERPRETATION OF
GLACIER VARIABILITY

Climate is defined as the statistics of weather, averaged
over some period of interest. The World Meteorological
Organization takes 30years as the time interval over
which those statistics should be determined, although other
intervals are equally valid depending on the purpose. The
statistics of weather includes the average and the standard
deviation, as well as higher-order statistical moments. By
definition, a constant climate means constant (or stationary)
statistics. Variability, as manifest in the standard deviation, is
therefore inherent in a constant climate. What does this mean
for how glaciers behave in such a climate? Of particular
importance are the year-to-year stochastic fluctuations in
accumulation and ablation. Glaciers are dynamical systems
with a finite memory, and a fundamental property of such
systems is that they will integrate such stochastic fluctuations
to produce persistent fluctuations on longer timescales (e.g.
Hasselmann, 1976; Roe, 2009).

Oerlemans (2000) and Reichert and others (2002) mod-
elled two well-studied glaciers in Scandinavia and the
European Alps and concluded that Little Ice Age-scale
fluctuations will occur every so often, even in a constant
climate. Roe and O’Neal (2009) showed that, for the setting
of Mount Baker in the Cascade Range of Washington State,
USA, glaciers will undergo kilometre-scale, century-scale
fluctuations even in a constant climate. Sorting out real
climate change from the variability intrinsic to a constant
climate is crucial for correctly interpreting the climatic cause
of past glacier variations and for the detection and attribution
of modern climate change from the modern glacier record.

Burke and Roe (2009) and Roe (2009) gave a spectral
interpretation of this argument, which we review briefly here.
The true, physical measure of climatic persistence is whether
climate variables are autocorrelated. In other words, does
one year’s climate bear any relationship to that of previous
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years? Consider a climate that has year-to-year variability
(drawn randomly from the probability distribution of that
climate), but no memory. The time series of such a climate is
characterized by a ‘white noise’ power spectrum; that is to
say, it has equal power at all frequencies. By construction,
a climate that has no persistence nonetheless has power at
all frequencies. The reason is that the phase of individual
frequencies in the spectrum is random. On average they
destructively interfere, leaving no persistence in the time
series constructed from that spectrum.

A glacier can be thought of as acting as a low-pass spectral
filter: the glacier’s response to this white-noise climate is
characterized by a ‘red noise’ power spectrum. Analogous to
red light, higher frequencies are damped compared to lower
frequencies. Because of this damping, different frequencies
will no longer cancel out and the time series of glacier length
variations exhibits long-term fluctuations with a timescale
related to the spectral filter of the glacier dynamics.

In the above example, the climate was chosen to be white
noise (i.e. with no persistence). Weak interannual persistence
in sea-surface temperatures does exist because the ocean
mixed layer has some thermal intertia (e.g. Deser and others,
2003). Such weakly red persistence is captured in the 30 year
statistics, and so should properly be included in the definition
of the climate statistics. The response time of the mixed layer
is ~ 1year or less, except near sites of deep ocean convec-
tion or in the vicinity of the sea-ice margin (e.g. Stouffer and
others, 2000). In other words, it is much less than typical gla-
cier response times and so the above argument is unaffected:
the persistence of glacier fluctuations is due to the memory
intrinsic to the glacier and not any persistence intrinsic to the
climate. Burke and Roe (2009) analysed the persistence of
relevant climate fields and mass-balance records for Europe
and, after linearly detrending to account for anthropogenic
trends, found no evidence in the instrumental or glacier
mass-balance record for decadal-scale persistence.
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Lastly, even where such persistence in climate does exist,
it is typically only a small fraction of the overall variance. It is
always possible to split the time series of climate forcing into
a piece that is due to persistence (i.e. what can be related
to previous years) and a piece that is a residual without
persistence. Burke and Roe (2009) calculated the relative
importance of these two pieces in driving the variance
of glacier fluctuations in Europe, and concluded that the
residual piece is of greatest importance.

The fundamental and important point is that glaciers
can undergo large and persistent fluctuations in a constant
climate that has little or no persistence. This fact is
often overlooked in the climatic interpretation of past
glacier fluctuations. A central goal of palaeoglaciology (and
palaeoclimate in general) is to identify glacier fluctuations
that are either unusually large or unusually persistent
and which are therefore ‘interesting’ to explain. They
are interesting because we can then conclude that some
definitive change in the climate dynamics or climate forcing
has occurred and try to identify the cause. The importance
of framing the problem in this way is that the alternative is
unsatisfying and violates basic tenets of statistical analysis: if
climate is defined as the statistics of weather averaged over
some period of choice, and if it is also established that a
particular glacier fluctuation is quite likely to occur given
those statistics, then it makes no sense to conclude that the
glacier fluctuation reflects a climate change.

The interpretation of the climatic cause of glacier fluc-
tuations can therefore be distilled into a classic statistical
exercise of correctly identifying changes due to a signal (i.e.
the glacier response to a climate change) versus changes due
to noise (i.e. the glacier response to interannual variability).
What factors control the relative magnitude of this signal
and noise? Under the assumption that a glacier is a simple
dynamical system relaxing back to equilibrium with a single
dynamical response time (e.g. Jéhannesson and others,
1989a,b), some useful formulae can be derived (e.g. Huybers
and Roe, 2009; Roe and O’Neal, 2009). This study extends
these prior analyses to ask two more questions:

1. What factors govern the likelihood of a glacier excursion
of a given magnitude in a given interval of time?

2. How can the statistical significance of a trend in observed
or reconstructed glacier length be evaluated?

In both cases, formulae can be derived from the linear
equations in which the dependencies on glacier geometry
and climate setting can be clearly understood. The value
of these formulae is that the parameters involved can be
calculated from a glacier’s geometry, and so they give
guidance as to which glaciers are likely to be best for
detecting past climate change. A second and key part
of the present study is to establish whether the formulae
successfully predict the behaviour of a flowline glacier
model, which obeys a nonlinear rheology.

We find that maximum glacier excursions are governed
by high-frequency behaviour of the glacier, and the linear
formulae hold provided the short-term lag correlations are
used to calculate the response time. The probabilities of a
given excursion are, however, very sensitive to the magnitude
of the natural variability. We also show that glacier trends can
be evaluated using a standard Student’s ¢t test, provided that
the correct degrees of freedom are used. These degrees of
freedom can be accurately calculated from the linear model
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equations. Finally, we conclude that the current retreat of
glaciers around Mount Baker is consistent with, but not by
itself independent proof of, regional warming.

2. LINEAR AND FLOWLINE MODELS
2.1. Linear model

Roe and O’Neal (2009) derived a simple linear model for de-

scribing variations in glacier length in response to variations

in melt-season temperature and annual accumulation. It is

similar in spirit to other earlier models (e.g. J6hannesson and

others, 1989a,b; Harrison and others, 2001), all of which are

essentially the same first-order ordinary differential equation:
dU'ty L'

at -I-T:aT(t)—l-,BP(t). (1)

Equation (1) represents a dynamical system in which glacier
length L'(t) responds to fluctuations in annual accumulation
P’(t) and melt-season temperature T'(t). Primes denote
departures from the long-term climatological mean. 7 is the
e-folding timescale on which the glacier relaxes back to
equilibrium or, equivalently, it is the length of time over
which the glacier remembers its previous states. & and 3 are
coefficients relating climate forcing to the effect on glacier
length. Equation (1) is continuous in time. Its discrete form
is

Livar =Ll + T + B8P, (2)
where At = Tlyear and v = 1 — At/7 and is the
lag-1 correlation coefficient. This form of the equation is
convenient for deriving expressions for the statistics of glacier
length fluctuations. As derived by Roe and O’Neal (2009),
7, a and B are functions of the glacier geometry and some
mass-balance parameters:

. wH
 pltan pAy,
_ BAT>0AL
_ AwtAt

= wH

A schematic illustration of the model is given in Figure 1.
The geometric parameters for the glacier are: width w;
depth H; total area Aio; ablation area A,,j; melt area Arso;
and basal slope tan¢. p is the melt factor relating melting
rates to melt-season temperature and has units ma='°C~';
I is the atmospheric lapse rate, defined as 6.5°Ckm~".

2.2. Flowline model

A dynamic flowline model is also used in this study. We
follow standard equations for the shallow-ice approximation
incorporating glacier sliding (e.g. Oerlemans, 2001):

dH(X) | dF)
a toax P
Fo) = P GH + e (92 ’ )
=p 8y S dx .

H(x) is glacier thickness at position x, F(x) is the vertically
integrated flux of ice and dz/dx is the surface slope.
fy and £ are the coefficients governing deformation and
sliding, respectively. Following Budd and others (1979)
and Oerlemans (2001), we take f; = 1.9x 10724 Pa® s~ and
fi =57 x10729Pa> m2s~". h(x) is the local mass balance.
For simplicity we assume a uniform accumulation pattern,
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Fig. 1. Idealized geometry of the linear glacier model, based on
Johannesson and others (1989a). Precipitation falls over the entire
surface of the glacier Ay, while melt occurs only on the melt-
zone area Arsg. The ablation zone A, is the region below
the equilibrium-line altitude (ELA). Melt is linearly proportional to
the temperature which, in turn, decreases linearly as the tongue
of the glacier recedes up the linear slope tan ¢ and increases as
the glacier advances downslope. The height H of the glacier and
the width of the ablation area w remain constant (after Roe and
O’Neal 2009).

and melt-season temperature is calculated as a function of x
using the standard lapse rate. Equations (4) were solved using
standard numerical techniques on a 50m grid, although
results with 20 and 100 m grid spacing proved very similar.

2.3. Preliminary comparison of linear and flowline
models

In order to evaluate and compare the linear and flowline
models we use the well-documented setting of Mount Baker,
a stratovolcano in Washington State flanked by five typical
mid-latitude glaciers. We use the same climate as Roe and
O’Neal (2009), based on a combination of local station
measurements, weather model output and mass-balance
measurements. The annual mean accumulation is 5ma~"
with an interannual standard deviation of 1Tma~'. The
interannual standard deviation in melt-season temperature
is 0.8°C.

Roe and O’Neal (2009) specified parameters and geometry
representative of the Mount Baker glaciers, and showed that
the linear model was able to simulate historical glacier length
variations fairly well. In order to avoid the complex task
of deriving this exact geometry and parameter set in the
current study, we use a more efficient procedure for the
comparison of the linear and flowline models (which is
our main purpose). We specify the accumulation and the
basal slope and adjust the mean melt-season temperature
until the flowline model is approximately correct in terms of
total area (which is determined as 23°C at sea level). From
the model output, we then diagnose the other geometric
factors needed for the linear model (H, A, and Arsg). This
allows a more exacting comparison between the two models,
which is the main aim here. Values for this geometry and
standard parameters are listed in Table 1. In particular, the
linear timescale calculated from the model geometry (7y;,) is
~7 years.

In the remainder of this section we perform two prelim-
inary comparisons of the two models. We first calculate
the change in length due to step-function changes in mean
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Table 1. Parameters and geometry of a standard-case glacier. The
first set of parameters is imposed; the second set is calculated
from the flowline model and used for the linear model formulae.
Also included is the linear model timescale. The simplified, pseudo
one-dimensional geometry means that not every aspect of the
typical Mount Baker glacier can be matched at the same time.
In particular, the standard glacier has a nominal length of 8km
and the accumulation-area ratio is one-half rather than two-thirds.
Compare with values given by Roe and O’Neal (2009) for Mount
Baker glaciers

Parameter Value

m 0.65 ma—'eCc—!
T 6.5 °Ckm™!
tan ¢ 0.4

w 500m

Atot 4.0 km2
Agbl 2.0km?
AT>0 3.4 km?

H 44 m

Tlin 7 years

climate forcing, for which the linear model has analytical
solutions (Roe and O’Neal, 2009). The flowline model must
be integrated until the new equilibrium is reached. There is
generally extremely good agreement between the flowline
and linear models (Fig. 2), with length changes differing by
<5% for climate changes spanning £6°C in melt-season
temperature and +2ma~' in accumulation. There is a
suggestion in Figure 2 that the response to precipitation is
slightly more linear than the response to temperature. For
this range of climate forcing and for this glacier geometry
and setting, Figure 2 strongly supports the validity of the
assumptions made in deriving the linear model (Roe and
O’Neal, 2009).

The second comparison is of the models” response to a
linear trend in climate forcing. We pick a warming trend
comparable to that experienced in the Pacific Northwest
during the 20th century (+0.1 °C(10a)~; e.g. Mote, 2003),
and an increasing accumulation trend (0.1 ma~' (10a)~ "
although the significance of observed accumulation trends
is unclear in this region (Mote, 2003). Analytical solutions
are again available for the linear model, and do a good job
of predicting both the rate and magnitude of the response

Change in accumulation (m a-1)
2 -15 -1 -0.5 0 0.5 1 1.5 2
—— Changes in temperature
—— Changes in accumulation

Change in length (m)

-25

-5000
-6

Change in temperature (°C)

Fig. 2. Response of glacier length to step function changes
in accumulation and melt-season temperature. Solid lines show
analytic solutions from the linear model, and the symbols show
results from the flowline model.
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Fig. 3. Response of glacier length to increasing trends in (a) melt-
season temperature (+0.Tma~"(10a)~") and (b) accumulation
(+0.1°C(10a)~"), imposed beginning in model year 20. There is
good agreement between the linear and flowline models.

of the flowline model as shown in Figure 3. For both trends,
the flowline model lags the predicted linear response slightly.
In the case of a temperature trend, the rate of retreat in the
flowline model appears slightly greater than predicted from
the linear model, consistent with the results in Figure 2.

3. THE RESPONSE TO CLIMATE VARIABILITY

In the following we characterize the nature of the glacier
response to interannual climate variability in more detail.
Equation (2) can be developed further to derive some
useful properties of glacier variability, whose dependence
on glacier geometry and climate parameters can be clearly
understood. As noted in the introduction, a focus of this
present study is to evaluate the degree to which these
expressions also govern the behaviour of the flowline model.

Roe and O’Neal (2009) demonstrated that, after linearly
detrending, the observed interannual variability in the Pacific
Northwest in both the annual-mean accumulation and
the melt-season temperature is consistent with random
fluctuations that are Gaussian (i.e. normally distributed)
and white (i.e. uncorrelated in time). In other words,
after accounting for the trends in climate (presumably
anthropogenic), the remaining natural variability has no
interannual persistence. The analysis of Roe and O’Neal
(2009) is sufficient to prove that, even if some interannual
persistence in climate does in fact exist for the region, it
accounts for a statistically insignificant fraction of the climate
variability over the period of the instrumental record.

Two 10000year long realizations of white noise were
generated to simulate interannual variability in P’ and
T', characteristic of the Pacific Northwest (with standard
deviations of Tma~' and 0.8°C, respectively). This is long
enough to acquire good statistics on the glacier response.
The two climate time series are assumed to be uncorrelated,
also consistent with observations for the region (Roe and
O’Neal, 2009). Both the flowline and the linear models are
then integrated forwards in time, using the same realizations
of this simulated climate variability.

Figure 4 shows a 500year segment of the climate and
the glacier response. Both the linear and flowline models
undergo kilometre-scale, centennial-scale fluctuations in
response to a climate that we reiterate has no persistence.
The standard deviation of the linear model can be derived
from model parameters (Roe and O’Neal, 2009) and is
360m. The standard deviation of the flowline model must
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Fig. 4. A 500 year segment of a 10 000 year simulation of the glacier
response to interannual climate variability. The lower panels are
white-noise realizations of interannual fluctuations in melt-season
temperature and accumulation, for which a 30 year running mean is
also shown. The upper panel shows the response of the two glacier
models. Kilometre-scale, century-scale glacier fluctuations occur in
this simulated climate that, by construction, has no persistence. Also
shown by the thin black curve is a linear fit to the flowline model,
using the best-fit ¢ of 73 years.

be calculated from the numerical integration and is 324 m,
a difference of 10%; this is approximately what Roe and
O’Neal (2009) found for a similar calculation. The smaller
standard deviation of the flowline model is evident in
Figure 4 as is the fact that the flowline model is noticeably
smoother. Finally, it is also clear that the response of the
flowline model lags behind the response of the linear model.

For comparison, Oerlemans (2001) estimates a 1o of
660 m for typical glacier parameters, and Reichert and others
(2002) model values of 550 and 290m for Nigardsbreen,
Norway, and Rhonegletscher, Switzerland, respectively. The
exact values do, and should, vary with glacier geometry and
climate setting. For a particular glacier, the importance of this
natural variability relative to past and current changes must
be judged on a case-by-case basis.

A linear model such as that of Equation (2) must have
a normally distributed response to normally distributed
forcing. For the flowline model, one test of its linearity
is to calculate the probability density function (PDF) from
the histogram of its fluctuations. The PDFs for both models
are shown in Figure 5. The smaller standard deviation of
the flowline model relative to the linear model is clear
in its narrower clustering around zero. Visually, it appears
there is a hint of skewness to central and negative values,
although the skewness is in fact very slightly positive (0.06).
The flowline model PDF is not quite normally distributed,
however. A standard Kolmogorov—Smirnov test (e.g. von
Storch and Zwiers, 1999) rejects the normal distribution at
>95% confidence. The probable reason is that kurtosis of
the flowline model is 3.2, implying it is slightly more outlier-
prone than a normal distribution for which the kurtosis is 3.0.

Despite some small differences, the response of the linear
and flowline models to equilibrium climate changes, climate
trends and climate variability has differed by only a few
percent. This generally solid agreement between the flowline
and linear models in these preliminary tests is a firm basis
for proceeding to explore the response to climate variability,
using the analytical power of the linear model to understand
the reasons for the glacier behaviour.
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Fig. 5. The PDFs of the linear and flowline models. The linear model
follows a normal distribution; the flowline model has a slightly non-
normal distribution.

3.1. The autocorrelation and the spectral response of
a glacier

The autocorrelation function and the power spectrum of
a time series are powerful tools for revealing the time
dependence of a dynamical system. They are of course
closely related since the periodogram spectral estimate is
simply the Fourier transform of the autocovariance function
(e.g. von Storch and Zwiers, 1999). Both were calculated
from the 10 000 year integrations, a sample of which is shown
in Figure 4.

At low frequencies with periods longer than a few decades,
the spectra of the linear and flowline models are identical.
These timescales are much longer than the adjustment time
of the glacier, and so both linear and flowline models are in
near-equilibrium with the forcing. Dynamics are irrelevant
and the glacier is simply acting as a reservoir of ice with
nearly balanced input and output fluxes. The linear model
physics captures exactly this. At higher frequencies, the two
spectra differ considerably. Consistent with the time series
shown in Figure 4, high frequencies in the flowline model
are considerably damped compared to the linear model. In
the linear model, any mass imbalance is instantly converted
into a tendency on the length (i.e. dL/dt in Equation (1)). In
the flowline model however, and in a real glacier, there is
some inertia to terminus movement. It takes time for mass to
travel to the terminus, and the terminus slope has to steepen
to the point it drives a flux of ice forwards.

The autocorrelation curve essentially shows the same
information, but in a different light. For a linear model
described by a single timescale, the autocorrelation curve
decays exponentially with an e-folding timescale of .
Figure 6b shows that for lags longer than ~15 years (~2 x
Tiin), the autocorrelations of the linear and flowline models
are identical and closely approximate the exponential
behaviour. For lags shorter than 15 years, the flowline model
has much higher autocorrelations than the linear model. As
noted above, the physical reason for this is that the terminus
cannot respond immediately to mass-balance changes; its
location in one year is strongly related to that of the previous
year. This is reflected in the more smoothly varying behaviour
of the flowline model, evident in Figure 4. For this setting and
geometry, ~15years is the true measure of the timescale
that separates when dynamics does and does not matter.
The power spectrum can be deceptive in this regard. The
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Fig. 6. (a) Power spectral estimate for linear and flowline models,
calculated using a windowed periodogram (a 20ka Hanning
window). (b) Autocorrelation function (ACF) for linear and flowline
models. Both panels show that the flowline model is damped at
higher frequencies compared to the linear model.

visual appearance from Figure 6a is that it is only at much
longer periods that the behaviours of the flowline and linear
models converge. This appearance is because a factor of 27
is included when the exponential decay time is projected
onto the sinusoidal components of the power spectrum (e.g.
Roe, 2009).

There are various ways of characterizing the glacier
response time, and there has been substantial discussion
in the literature (e.g. Nye, 1965; J6hannesson and others,
1989a,b; Schwitter and Raymond, 1993; Van de Wal and
Oerlemans, 1995; Jéhannesson, 1997; Bahr and others,
1998; Raper and others, 2000; Harrison and others,
2001, 2003; Oerlemans, 2001, 2007; Pelto and Hedlund,
2001; Leysinger Vieli and Gudmundsson, 2004; Raper and
Braithwaite, 2009). Figure 6b shows that the autocorrelation
function of the flowline model cannot be represented by a
single timescale. Using the ARfit algorithm of Schneider and
Neumaier (2001), we find that an eighth-order autoregressive
process is needed to match it. This suggests that ice dynamics
introduces a complicated structure of persistence to the
glacier length record.

From Figure 6 it seems that best ‘effective response time’
depends on the timescale and question of interest. Several
studies have, however, assumed explicitly or implicitly a
single response time in characterizing past and predicting
future glacier variations (e.g. Harper, 1992; Pelto and
Hedlund, 2001; Oerlemans 2005, 2007). We find a single
best-fit timescale 7,; for the flowline model by fitting a
first-order autoregressive process using the ARfit algorithm.
This is equivalent to carrying out a regression analysis of
the flowline model to Equation (2) using a least-squares
minimization. The high autocorrelations at short lags in
the flowline model are weighted heavily in the fitting, and
the resulting timescale, 7,y = 73years, is much longer
than predicted from the linear model (r;, = 7 years). For
comparison, Figure 4 shows the output from a linear model
driven by the same climate forcing but with 7,y = 73 years.
The use of a longer timescale correctly captures much of the
low-frequency variability of the flowline model, but cannot
capture some of the decadal fluctuations.
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Fig. 7. The average return time of a glacier advance (i.e. the interval
between up-crossings of glacier length beyond a given threshold)
calculated from Equation (5). The three curves are for the range of
parameters appropriate for a typical glacier on Mount Baker. Note
the logarithmic scale on the y-axis and the acute sensitivity of the
average return time to changes in glacier properties.

4. THE LIKELIHOOD OF A GLACIER EXCURSION

One way of characterizing the expected natural variability of
a glacier in a constant climate is to answer questions such as:
What is the expected return time, on average, of a particular
glacier advance? How long, on average, does the glacier
persist above or below its equilibrium length? How likely
is an excursion of a given size in a given period?

For linear models of the form Equation (2), answers can
be derived using standard formulae for threshold crossings of
stochastic processes (first laid out by Rice, 1948). Vanmarcke
(1983) and Leadbetter and others (1983) provide good
summaries. In the Appendix it is shown that, as long as
T > At, the average interval between up-crossings of a
particular threshold L is given by

2
R(Lo) = 2m/%‘texp l; (2) ] . (5)

R(Lp) is also the average return time of a glacier advance of
size Lg. oy is the standard deviation of natural fluctuations.
Roe and O’Neal (2009) show that Equation (2) yields

ov =[x\ 70F + B}, ®)

provided that P’ and T’ are neither autocorrelated nor
correlated with each other (consistent with climate in the
Pacific Northwest). A general expression for o; without these
restrictions is also possible (Huybers and Roe, 2009).

From Equation (6) the exponent in Equation (5) contains 7;
the return time of a given advance is therefore a very sensitive
function of the response time. A larger value of 7 means
that the glacier is slower to return to equilibrium and has a
weaker restoring tendency. All else being equal, the shorter
the value of 7, the longer the return time will be for a given
excursion magnitude (as seen in Fig. 7). Secondly, the [}
in the exponent in Equation (5) means the average return
time lengthens extremely rapidly as the size of the advance
increases. For 7 = 12 years, for example, an advance of 1 km
will happen on average every 250years. For an advance
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of 1.5km, the average return time balloons to 7500 years
(Fig. 7).

4.1. Return time of zero-crossings

How often does a glacier return to its equilibrium length?
For up-crossings across zero, Ly = 0 in Equation (5) and the
average return time is given by

R(0) = 2m/TAL/2. (7)

For the linear model with 7 = 7;, = 7 years, Equation (7)
gives an average up-crossing interval of 12 years which is in
excellent agreement with the linear model output in Figure 4.
[t must be, since it is an exact solution of the linear equations.
Using the best-fit response time for the flowline model,
T = 73 years, Equation (7) gives a prediction for average
up-crossing interval of 38 years. The actual average interval
from the flowline model outputis 41 years and thus compares
well to the prediction.

It can be shown (e.g. Vanmarcke, 1983) that the rate of
zero-crossings depends only on the first and second statistical
moments of the spectrum. Although it is difficult to see
from Figure 6a because of the log—log axes, the centroid of
the spectrum and its other moments are dominated by the
high-frequency part of the spectrum and are consistent with
using Tpy.

4.2. Likelihood of maximum glacier excursions

Equation (5) presents the average return time of a particular
advance or retreat. It is also possible to calculate the
probability distribution of such return times. This is governed
by the statistics of a Poisson distribution (e.g. von Storch and
Zwiers, 1999), where discrete stochastic events occur at a
known rate A. A requirement of the process is that a time
interval between an initial and a final time ( — &) can be
identified in which the likelihood of one event occurring is
proportional to (& — &), and that the likelihood of two events
occurring in that interval is negligible.

Assuming a Poisson process, the probability of observing
zero advances (or retreats) of magnitude Lo in an interval
(t — &) is given by

PIN(& — &) = Ol = exp[—A(Lo)(§ — &)], (8)

where (L) is the reciprocal of the up-crossing interval R(Lo)
in Equation (7). The probability of at least one occurrence of
an Lo advance (or retreat) is given by the complement of
Equation (8):

PIN(G — ) > 1] =1 — exp[—(§ — t)A(Lo)]

1 2
o =02 N o (ke
=1 exp{ - (TAt) exp [ 3 (0L> ]}.(9)

Equation (9) reveals the dependencies clearly. The probabil-
ity of seeing an advance or retreat is more sensitive to (t; — )
than to 7. The probability is also remarkably and acutely
sensitive to the ratio of Ly to o;: the exponent itself has an
exponential dependence on the square of this ratio.

The advances or retreats considered so far have been
relative to the equilibrium glacier position. In any given
glacial valley it is difficult to determine the long-term average
position of a glacier, especially in the face of a changing
climate. A measure of more practical relevance is the total
excursion of the glacier accounting for length changes of
both signs (i.e. maximum advance minus maximum retreat).
The probability f(L1) of a total excursion of at least the
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Fig. 8. Schematic illustration for the calculation of the likelihood of
exceeding a given total excursion.

size of AL occurring in a given period is given by the
probability density of a maximum advance between L,
and Ly + dL multiplied by the probability of the maximum
retreat exceeding Ly = Ly — AL integrated over all possible
maximum advances (Fig. 8).

The probability density f(L;) of a maximum advance
between Ly and Ly +dL is:

(Ntf—t.fo)
( DA
2

exp[ (& — HA(L)] .
o1
The total probability of a maximum excursion exceeding AL
is therefore

AL AL
P(Lmax — Lmin > Al) :/ %
0

o1

exp [—(t — HA(L)]

{1 —exp [-TAL —AD]} dLy. (10)

Figure 9 shows the probability distribution of maximum
excursions in any 1000vyear period calculated from the
flowline model output and from Equation (10) using 7,y =
73 years. There is good agreement, demonstrating that the
model is closely behaving as a Poisson process with the
best-fit timescale. In any 1000 year period, it is very likely
(>95%) to undergo an excursion of at least 1.4 km, driven
just by interannual variability in a constant climate. On the
other hand, it is very unlikely (<5%) to undergo an excursion
exceeding 2.2 km. Also shown is the curve for 7 = 7 years,
which would predict longer excursions. This is because the
greater power at higher frequencies and the shorter response
time for the linear model (Fig. 6a) makes it more likely to have
a short, spiky fluctuation that takes the linear glacier across
a given threshold. For the more smoothly varying flowline
model, these events are rarer.

Reichert and others (2002) made some similar calculations
for the European Alps and for Scandinavia, but used a
different definition of a glacier excursion and determined
X from the output of a numerical model. The results in this
paper reinforce their conclusions, however, and also those of
Roe and O’Neal (2009) for the Cascades: that is, kilometre-
scale, centennial-scale variations in glacier length will occur
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Fig. 9. The probability of exceeding a given maximum total
excursion (i.e. maximum advance minus maximum retreat) in any
1000 year period. Crosses shows calculations from the flowline
model output. The curves are calculated from Equation (10) for two
different response times.

in a constant climate. An advantage of Equation (10) is
that the dependency of the excursion probabilities on the
underlying glacier properties can be clearly seen. Figure 7
highlights that it is important to identify the correct timescale.

How robust are these excursion probabilities to different
assumptions and model parameters? Figure 10a shows how
the probabilities change for different time intervals. The
change in the curves from a 500 to a 1000 year interval is
about the same as that from a 2000 to a 5000 year interval.
In other words, for longer intervals the probability of seeing
large excursions begins to saturate. However, the super-
exponential dependency on o in Equation (9) makes the
excursion probabilities acutely sensitive to glacier properties.

Figure 10b shows how the curves change for small changes
in 0. Itis clear that even £20% variations have a very large
impact. An error in estimating o, of even this small amount
may reverse the interpretation of whether an excursion could
be caused by interannual climate variability or an actual
climate change. It is doubtful that the o, of real glaciers
can be known so accurately. It is therefore appropriate to
be cautious of studies that use such curves to conclude that
modern retreats exceed natural variability (e.g. Reichert and
others, 2002). It is certainly possible, but an exhaustive error
analysis is needed to be confident.

Fig. 10. Probability of maximum excursions for different assump-
tions. (a) Probability of exceeding a given excursion for different
periods of time. Note the uneven time increments. (b) Probability
of exceeding a given excursion for different values of o in
Equation (10). All curves use the standard parameters for the flowline
model (except where o is varied).
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5. TREND DETECTION FOR GLACIERS

How big a trend in glacier length is statistically significant?
When does the trend exceed that expected from natural
variability? We show here that two factors are of primary
importance: (1) the magnitude of the trend relative to the
magnitude of the natural variability, and (2) the amount of
independent information in the observations. The latter factor
depends on the degrees of freedom, which in turn depends
on the length of observations and the glacier memory.

Let p be the correlation of the observations of glacier length
and time at lag At, and let v be the degrees of freedom in
the dependent time series (i.e. glacier length in this case). A
t statistic (distinct from time t) can be calculated from the
following combination of p and v:

T:%i;?. a1

Basic textbooks on statistics (e.g. von Storch and Zwiers,
1999) show that, in the absence of a real trend, the
probability of finding a given value of t will follow
a Student’s t distribution. Standard tables can be used to
calculate how often t would occur simply by chance. In
general, the larger the absolute value of t, the greater the
confidence that the observed trend is significant.

Equation (11) can also be written as:

A{: bO'm/l/—2, (12)
Ores

where b is the regression coefficient between time and
glacier length and ot and ores are the standard deviations
of time and of the residuals of glacier length after the time-
correlated trend has been subtracted, respectively.

ot is the standard deviation of the independent variables
(in this case, time) over a given interval of time (§ — ), and
is given by

1

1 (tf_ti)/z 2 2 (tf _ l-)
= — t=de| = =, (13
ot ((l}’ - ti) ‘/_([f_[i)/z 2\/§ ( )

Equation (12) therefore becomes

AL jv-2
oo 12 7

(14)

AL is equivalent to b(t — ) and is the change in glacier
length that is attributable to the linear trend.

Equation (14) shows some basic and readily understood
dependencies. The first factor on the right-hand side can
be regarded as the signal-to-noise ratio; the greater the
trend relative to the natural variability, the more significant
the trend will be. Glaciers that exist in maritime climates
are subject to a high degree of precipitation variability
(e.g. Huybers and Roe, 2009) and have a muted sensitivity
to temperature. As such, a warming trend in melt-season
temperature may be obscured by the natural variability. A
continental glacier with less precipitation variability and a
higher sensitivity to temperature may more directly reflect
warming trends.

The second factor on the right-hand side of Equation (14)
shows that the degrees of freedom (i.e. the number of
independent pieces of information in the glacier record) is
critical for assigning statistical confidence to an observed
trend. If the glacier position was recorded annually, At =
1year and there would be N = (& — t)/At observations.
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Fig. 11. The distribution of the ¢ statistic calculated from 1000
randomly selected 100 year long periods from the flowline model
output, using 7j;, to calculate the degrees of freedom (dof). It agrees
very well with the theoretical distributions, meaning the model
output has about 7 dof (100a)~". For comparison, the theoretical
distribution assuming 7,¢ is also shown. The  statistic from the
model output for 7y, is imaginary (Equation (14)). In general, though,
smaller dofs from assuming larger 7s would produce a narrower
distribution of the ¢ statistic from the model output (Equation (14)),
making it inconsistent with the theoretical distribution.

A glacier has a dynamical response time, however, so
it has memory of its previous positions. It is therefore
autocorrelated and there are fewer than N degrees of
freedom. Standard theory (e.g. von Storch and Zwiers, 1999)
yields the appropriate formula for the effective degree of
freedom as:

y=NTT, (15)

1+

where, as noted above, v is the autocorrelation coefficient
at a lag time At. Using the approximation that At <« 7 and
considering only first-order terms, Equation (3) yields:

(t—t) At/27 ti — f;

At (1 =2At/7) 2T (16)

vV~

For a 100 year glacier record and for 7, = 7 years, there are
about seven effective degrees of freedom.

An important measure of whether the t test can be used for
trend detection is to determine whether random realizations
of a dynamic glacier that is forced by a climate without
a trend does, in fact, follow a Student’s ¢ distribution. In
other words, is the glacier variability consistent with the
assumptions of the t test? To answer this, the correct number
of degrees of freedom needs to be established.

Figure 11 shows the probability distribution of the  statistic
(Equation (11)) using 1000 randomly selected 100 year
intervals from the flowline model output, assuming that
v = 100/Q27;,). Also shown are the theoretical Student’s
t distributions calculating v using both 7 = 7, = 7 years
and 7 = 7, = 73years. The close agreement between
the distribution derived from the model output assuming
T = 7years demonstrates the model output has about
7 degrees of freedom per 100years. We can also conclude
that the significance of a trend can be evaluated using a
standard t test, using 7, to calculate the degrees of freedom.
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The t statistic was also calculated for 50, 200 and
1000 vyear trends, and again using 7y, for the degrees of
freedom. For 50vyear trends (just 3.2 effective degrees of
freedom) the agreement with the theoretical distribution was
slightly worse than that shown in Figure 11, but at no point
does the error exceed 5%. For 200 year and 1000 year trends,
the t statistic approximated the theoretical distribution even
more closely than that in Figure 11. We also note that annual
observations of glacier length are not required to estimate
trends; providing observations are frequent enough to sample
the effective degrees of freedom, there can still be a correct
assessment of significance.

The analysis highlights the importance of knowing the
correct effective degrees of freedom for evaluating glacier
trends in practice. If degrees of freedom were calculated
using 7,y = 73vyears, it would formally mean less than
one degree of freedom in a 100year record; Figure 11
shows that significant trends with high t statistics would
go unrecognized. One conclusion is that the importance
of having degrees of freedom in the observations means
that the statistical significance of glacier trends can only be
established on multi-decadal or longer timescales.

It is interesting that 7y;, is the correct timescale to use for
evaluating trends; for the likelihood of large excursions, 7
works well. The reason seems to be that a trend, like an
equilibrium step change, is a low-frequency behaviour of the
glacier. It is therefore well described by the linear model, as
seen in section 2.3. In contrast, maximum excursions depend
on relatively abrupt changes that cause a threshold to be
crossed and, for that reason, depend on the high-frequency
behaviour of the glacier which is best characterized by 7.

5.1. Is the observed trend significant?

Equation (14) provides a way of calculating how large an
observed change in glacier length needs to be before the
trend can be declared statistically significant:

~ 12
Al = th=0.95v N5 (17)

Consider a 100 year observing period (for which v = 7.3),
a 95% significance level (for which T = 1.88) and let
o; = 324m, which was what we obtained from the
flowline model for typical Mount Baker glaciers. From
Equation (17), a change of 900 m would be necessary over
that 100 year period in order to declare a significant trend.
The actual observed trend over the last 80 years is equivalent
to 150m(100a)~" (calculated by linearly detrending the
compilation of results of O’Neal (2005) for Easton, Deming,
Boulder, Rainbow and Coleman glaciers in the Cascades).
If a shorter period of the last 30years is considered the
observed trend is larger (400m (30a)~"), consistent with
an anthropogenic climate signal emerging only since that
time. The degrees of freedom in the observations are,
however, reduced to just 2.2, and so very much larger glacier
changes of several kilometres would be required for statistical
significance. We therefore conclude that the observed length
changes in Mount Baker glaciers, by themselves, cannot be
said to reflect a statistically significant trend.

Itis important to be clear about the logic here. These results
represent the difference between saying that the glaciers
by themselves provide independent evidence of climate
change versus saying that they are merely consistent with
the observed regional warming that is already established
to be statistically significant from the instrumental record
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(e.g. Mote, 2003). There is obviously an important distinction
between these two statements. The multi-year response time
of glaciers means there is much less independent information
in their history than in the instrumental record. Moreover,
these are maritime glaciers that experience large and largely
unrelated interannual accumulation variability (e.g. Bitz and
Battisti, 1999; Huybers and Roe, 2009). It should therefore
not be surprising that this variability obscures the effect
of warming on the glaciers, and that the glacier record is
therefore a less decisive demonstration of regional warming
than is provided by thermometers.

5.2. How wrong could o, be?

The results above depend on estimating o, and v from the
flowline model. In general, without long enough records
of unforced natural variability, a model must be used. For
example, general circulation models are used for estimating
the natural variability of global mean climate. It is reasonable
to ask whether a model adequately represents this natural
variability, and, in the case of global climate, this has been
debated extensively.

Alternatively, the question can be turned around to ask
what would the value of o; have to be in order for the
observed trends ALy, to be significant at the 95% level?
That is, solve for

ALObS v—2

TR (18)

g =
{p=0.95,1

For the 100 year and 30 year trends given above, the answer
is o = 52m and 20m, respectively. It seems unlikely that
natural variability is as low as this, or that the flowline model
is wrong by an order of magnitude. Larger values of o could
only arise if there were more degrees of freedom coming from
a shorter effective response time. The agreement between
the t distributions in Figure 11 and the fact that the response
time would have to be <7 years also makes this unlikely. The
linear timescale is actually a lower bound on the timescale,
since it assumes that glacier dynamics are instantaneous (all
mass imbalances instantly transferred to the toe). It is hard
to imagine, therefore, that there could be more degrees of
freedom in the observations. Thus the conclusion — that the
retreat of Mount Baker glaciers is consistent with regional
warming, but not independent proof of it — is very strong.

5.3. More than one glacier, more than one location

Most glaciers are reported to be retreating around the
world. Does this constitute independent evidence of climate
change? The t test is a simple and powerful statistical
measure that works well, even when the underlying process
departs significantly from the test assumptions (e.g. Boneau,
1960). Rather than detailed modelling of individual glaciers,
we could use global datasets of observed glacier length
variations (e.g. from the World Glacier Monitoring Service
(Haeberli, 1998)) and use Equation (18) to solve for the
combination of o; and v required for the observed trend
to be significant at the 95% level. Those values could
be compared to existing estimates of a glacier’s response
time (e.g. Oerlemans, 2005) and historical or reconstructed
estimates of its natural variabilty.

This might provide more rigorous estimates of statistical
significance than obtained by varying model parameters (e.g.
Oerlemans, 2005). It would also identify which glaciers are
more decisive indicators of climate change than others. The
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fact that many glaciers within a single region are observed
to be retreating or advancing does not necessarily provide
much independent information, since they are experiencing
essentially the same climate. The independence of individual
glaciers can be estimated from the spatial coherence of
patterns of natural climate variability (e.g. Bretherton and
others, 1999) of the fields that are most relevant for glaciers
(e.g. Burke and Roe, 2009; Huybers and Roe, 2009).

6. SUMMARY AND DISCUSSION

Stochastic fluctuations are inherent in a constant climate.
Distinguishing between climate records that simply reflect
these fluctuations and those that reflect a true climate change
is a central challenge in climate science. For the case of
global mean temperature, for example, there is widespread
agreement that the instrumental record shows a significant
warming trend that exceeds the natural variability of the
last 30years. An identical issue arises in interpreting the
climatic cause of past glacier fluctuations, which are almost
always attributed to climate change. This study expands on
earlier work and confirms that interannual variability alone
can cause century-scale, kilometre-scale fluctuations in
glacier length.

We have presented results for the geometry and setting
of the glaciers on Mount Baker in the Pacific Northwest.
These are relatively small and steep; to evaluate the impact
of glacier geometry we repeated the analyses for a glacier
with double the total area and half the basal slope and also
for a glacier with quadruple the total area and one-quarter
the basal slope (and double the width). For these cases,
we obtained comparable agreement between the linear and
flowline models to that for the Mount Baker glaciers.

We focused on glacier length because that is typically the
clearest signature of past fluctuations. All of the metrics and
formulae discussed in this study could instead be applied to
glacier volume. The linear model under-predicts the response
of glacier volume to climate variability because it does
not account for thickness changes. For the spectrum of ice
volume fluctuations (i.e. the equivalent of Fig. 6a), the linear
and flowline models show very good agreement at high
frequencies; however, the linear model under-predicts at low
frequencies (by ~30% for the parameters presented here).
At high frequencies, mass-balance fluctuations are simply
added to the existing volume and the dynamics have no
time to respond. At low frequencies, the linear model does
not allow for the thickness changes that amplify the volume
fluctuations in the flowline model.

The autocorrelation timescale for volume fluctuations in
the flowline model is much shorter than that for length
fluctuations (15years vs 73 years) and so is closer to the
predictions of the linear model. Understanding volume
fluctuations might find relevance in settings where glacier
history is recorded in sediments of proglacial lakes or in
trimlines on valley side-walls, or when the impact on sea
level is of interest (e.g. Raper and Braithwaite, 2009). Another
natural metric of glacier response to consider might be the
mean thickness of the ice.

The important principle in this study is that stochastic
interannual climate variability can cause large and persistent
glacier fluctuations that should not be misinterpreted as
being driven by a climate change. This principle is
fundamental and does not depend in any way upon the
details of the models used. These models are sufficient to
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gauge the magnitude of the effects, and sensitivity to different
conditions has been reported here. Glaciers are complicated,
and no model can capture all their facets. We note that
our linear model does not incorporate the mass-balance
(e.g. Harrison and others, 2001) or thickness feedbacks
(e.g. Bahr and others, 1997) that are sometimes included
in linear glacier models, although such a modification is
easily possible.

Other approaches to estimating the glacier response time
have used volume-area scaling ratios that represent some
nonlinearities and asymmetries (e.g. Bahr and others, 1998;
Raper and Braithwaite, 2009). For our geometry and setting,
and also for the sensitivity experiments, we did not find
it necessary to introduce these additional factors in order
to successfully emulate a flowline glacier model for our
purposes. Further work to establish when such factors or
others, such as more complicated geometric settings, cause
a breakdown of the relationships derived here will be useful.

One more assumption is that all of the glacier variability is
driven by climate variability; in other words, that the glacier
physics is fixed. This does not apply to surging or tidewater
glaciers, where the physics of glacier flow is itself a function
of the glacier state. Such factors will always be difficult to
model, however, and it may be best to identify settings where
those complications are minimized. Finally, it has also been
assumed that climate variability itself does not change during
the interval considered. On centennial timescales and longer,
we expect greater variability than on interannual timescales
(e.g. Huybers and Curry, 2006). In general, this will tend to
increase in the magnitude of longer-term glacier fluctuations.

The success of the linear model at emulating the flowline
model at low frequencies means that, when climate change
occurs on timescales longer than a couple of glacier response
periods (meaning longer than about 15years for Mount
Baker), the glacier’s response to climate variability (such as
the excursion probabilities) can be combined linearly with,
and superimposed directly on, the glacier’s response to the
climate change.

Extreme events and zero-crossings depend on short rapid
advances and retreats, and so are governed by the high-
frequency characteristics of the glacier. The flowline model
is highly autocorrelated on short timescales (Fig. 6b), and
hence the longer decorrelation timescale must be used in the
formulae. We also note the extreme sensitivity of threshold-
crossing statistics to o;. It may be very hard to determine the
value of o for a real glacier with the accuracy needed to
formally establish whether a given glacier advance exceeds
that expected from natural variability (cf. Oerlemans, 2000;
Reichert and others, 2002).

On the other hand, trends, t tests and equilibrium
changes depend on the low-frequency characteristics of
the glacier, for which it is acting as an essentially passive
reservoir of ice. The shorter timescale of the linear model
therefore provides excellent agreement; moreover, it can be
efficiently estimated from the glacier geometry. Furthermore,
the analyses are far less sensitive to parameter uncertainties.
Lastly, although not formally as rigorous, by solving for
the o required for the observed trend to have a nominal
confidence level of 95%, the expression for a t statistic
can be used to roughly gauge the significance of a trend
and so circumvent the need for a comprehensive simulation
of the natural variability. Nonparameteric tests that do not
rely on the glacier adhering to a particular theoretical PDF
might be applied for trend detection (Morell and Fried, 2008;
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Cotter, 2009). Such tests are more flexible (although typically
less powerful) than parametric tests, and care is needed to
account for serial correlations.

Various methods have been used to estimate the glacier
response time from observations (e.g. Harper, 1992; Oerle-
mans, 2001, 2007; Pelto and Hedlund, 2001; Harrison and
others, 2003; Klok and Oerlemans, 2004). A useful exercise
would be to repeat those various methods on the output from
the flowline model, and see which best captures the correct
effective degrees of freedom. A concern is that the results
here suggest that short-term lag correlations, which are the
most easily estimated from observations, may underestimate
the actual degrees of freedom.

Finally, this study evaluated the observed retreat of glaciers
around Mount Baker. We conclude there are about seven
effective degrees of freedom in a 100 year long record, and
that the retreat will have to be much larger than is observed
to be considered independent evidence of regional warming.
It can certainly be said that the retreat is consistent with the
observed warming that is already established to be significant
from the instrumental record. It should be made clear that the
detection of a trend in glacier length is a different exercise
from the detection of a trend in glacier mass balance, which
is in many ways more closely related to the instrumental
record of climate. Where available, local instrumental and
local mass-balance records have more statistical power to
resolve climate change than glacier length records. In the
case of mass-balance records, changes in glacier area must
be factored in (e.g. Oerlemans, 2001).

Glaciers are consequential and captivating elements of the
Earth system. Correctly understanding their dynamics and
interpreting their history is a worthwhile challenge. Providing
that care is taken to identify the correct timescale, the linear
model and the formulae derived from its equations do an
excellent job of characterizing some important properties
of glacier behaviour. Such formulae can provide guidance
as to which glaciers and settings are the most sensitive
indicators of warming trends or precipitation trends, and
which palaeoreconstructions are likely to be most indicative
of past climate changes. Identifying such conditions is an
important prerequisite for realizing the fullest potential of
glacier records.
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APPENDIX: THRESHOLD-CROSSING RATES

Let L refer to the rate of change of the glacier. Rice (1948)
(also Vanmarcke, 1983) showed that, for a general random
process, the expected rate (A(Lo)) at which it crosses up over
a given threshold Lo is given by

(ML) = ;—/ abs(i) p(L, L) dL. (A1)
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The term inside the integrand is the joint probability density
of the glacier having a length between Ly and Ly + dL and,
simultaneously, a rate of change which would cause it to
cross Ly. The total probability is the integral over all possible
rates of change. The primes have been dropped from the Ls
for the sake of convenience. If [ and L can be considered
independent of each other, Rice further showed that the
expected rate of up-crossings past Lo is

1 o} 1 (L)’
Lo)) = ——L —— (=2 A2
(AlLo)) 7r o expl 5 <0L) ], (A2)
where ¢; and ¢; are the standard deviations of the glacier
length and its rate of change, respectively. We next derive an
expression for o;, and show that the correlation between L

and L can indeed be considered small.
From Equation (1),

oot prod

i2y g2
which, using Equation (6), becomes
R

Since we are dealing with typical conditions where 7 > At,

this simplifies to
2\ ?
o =01 (7-At> . (A5)

Next, we determine the correlation coefficient between L
and L, which is given by
(L-L)
= —". Ab
f 1 - (A6)
From Equation (1) it follows directly that (L - L) =
(1%)/7. Equation (A5) therefore implies that the correlation

coefficient becomes
1
At ?
r'L,L = <Z> . (A7)

For the typical Mount Baker parameters, 7 ~ 12 years
giving r; , ~ 0.2. Using a Monte Carlo test (Fig. 7), we
show that this correlation is indeed small enough to be
neglected and that Equation (A2) therefore provides an
accurate description of threshold crossings.

Substituting Equation (A5) into Equation (A2) yields

3 2
_ b2y (b
(MLo)) = 2m (TAt) xp [ 2 (UL) ] ’ (A8)

R(Lp), the average interval between up-crossings across Lo,
is the reciprocal of the rate A(Lp).
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