SOME ELEMENTARY PROPERTIES OF
BILINEAR FORMS
Jonathan Wild
(received September 1, 1960)

The purpose of the present note is to help popularize a
section of Artin's "Geometric Algebra" (chapter I,4; Inter-
science, New York (1957) ) by elaborating on its contents.

The author will have succeeded when the reader discovers that
his results are either presented more simply in Artin's book

or that they are trivial corollaries of its theorems, in particular
of theorem 1. 11.

1. Let V be a finite dimensional vector space over an

arbitrary field F. The letters Vo, Vi, ... denote subspaces
of V. The dimension of VO is denoted by dim Vo. The co-
dimension of V0 is defined through

codim VO =dim V - dim VO.
Obviously
(1) Vo = V1 - VOCV1 and dim VO = dim Vi.

The set Vom'V1 of all the vectors which lie in both V0 .

and _V1 is a subspace. The surn»Vo + “V1 of V0 and V‘l is the

smallest subspace of V which contains both VO and V1 It
consists of all the vectors

v, = vo + v,1 whe:re v0 € Vo, vi'_e V1.,
If Vor\V1 = 0, this decomposition of v, is unique and the sum

V0 + V‘1 is said to be direct. We then write VO + Vi.

It is well known that

(2)  dim(Vy + V,) + dim (V,AV,) =dim Vo + dim V.
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Hence
(3} codim (Vo + Vi) + codim (Vor\V1) = codim _VO + codim Vi.

2. Let W be a second finite dimensional vector space
over F with the subspaces Wo, Wi’ ... . The bilinear form
£f: v,w = (v,w) )
maps all the pairs of vectors ve V, we W onto elements of
F. If v or w is kept fixed, this mapping is required to be
linear in w respectively v. Thus e.g.

(v’)\i,wi + )\sz) = Xi(v,wi) + Xz(v,wz)

for all ve V, wie W, WZE w, )\16 F, )\Ze F. The vector

spaces V and W are said to be paired.

Every subspace V_ of V now determines a new subspace

. 0
V’g CW through
* -—
Vo = {wl(vo,w) =0 forall v e Vo} .
Similarly define *Wo CYV through
* = =- .
W0 {v](v,wo) 0 for all woe Wo)

We call
v* = {w|(v,w) =0 forall ve V}
the right kernel and

*W = {v|(v,w) = 0 forall we W}
the left kernel of f.

Obviously
V_CV  implies V> cv*
(4) { 0 1 . . * 1 *0
WOCW1 implies W1C W0
In particular
(5) v* cvz and *Ww c:"‘w0 forall V , W.

If ve V, then (v,v*) =0 forall vie V¥ Thus ve *(V*)b
Hence VC*(V*). Trivially aq‘(V*)CV. Hence

(6) v = ¥v¥, w=(Fw)* .
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3. We wish to verify

E 3 %k %k %k % %k
; = o = AW .
(7 (V0 +V1) V0 Vi, (Wo + Wi) W0 L

It suffices to discuss the first formula.

Since VOCV + V1 and V‘1 CcV_+ Vi, (4) implies

0 0

*

+ V)y*cv d (V. + Vv )*cv*
Vo 7 o 24 Vg n 1
Thus
* * xrk
V™.
(V0 + Vi) CV0 1
Conversely let w e Vgﬁv’:, v e Vo + Vi' Then there
= . Si
are vectors Vo € VO’ v1 € V1 such that v v0 + v1 ince
w € V:, we have (vo,w) = 0; also we V’; implies (vi,w) = 0.
Hence
= = , = O = .
(v, w) (v0 + v1,w) (V"O,W) + (v1 w) 0+ 0

This remains valid for every choice of v. Hence w e (Vo + Vl)*

or . o x .
V.AvT V. + V).
0V Vgt V)
This yields (7).

If we specialize in (7) V1 = *W, we obtain on account

of (6)
* oy % # gy *
=V W)T = ViAW
(V, + *W)* = Vi w)* = vE
or
(8) (V0 + *w)* = V’g; symmetrically *(Wo + V¥ = *w .

0
In the next three sections we determine dim *Wo.

4. I Yo is a proper subspace of the arbitrary finite

dimensional vector space Y, then there exists a linear form

in Y which vanishes identically in Y0 but not in Y. This can
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be restated as follows: Let Y0 be a subspace of Y. If every

linear form which vanishes identically in YO also vanishes

identically in Y, then YO =Y.

Apply this observation to the dual vector space X' of the
vector space X and to a subspace Xb of X' (thus X' con-

sists of the linear forms in X). Since the space of all the linear
forms in X' may be identified with X, we obtain:

Let Xb be a subspace of the dual space X' of the vector

space X. Suppose to each xe¢ X, x # 0 there exists an element

of Xb which does not annihilate x. Then Xb = X'.

5. We now return to our bilinear form f. Let
W ~V* = 0.
0

Map each vector v € V onto the linear form (v,wo) in WO-

Thus V is mapped homomorphically into the vector space Wb

of all the linear forms in WO. By our assumption, there exists

to each Wy a2 v such that (v,wo) # 0. Hence by 4. the image

of our homomorphism is the whole of Wb.

The image of the vector v, i.e. the linear form (v,wo)
vanishes identically in W, if and only if v e *wo. Thus ”‘w0

is the kernel of this homomorphism and V/*W_ is isomorphic

0

to Wb. In particular

codim *Wo = dim V/”‘w0 = dim Wb.

Since a vector space and its dual have the same dimension, we
therefore have

(9) codim "*w0 = dim wO if wonv* = 0.

6. If v* CWO, then there is a W1 such that WO =

W, v*; ¢f. 1. By (8)
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3 % * %
= (W = .
WO ( 1 + V) W1

Hence by (9)

codim *W_ = codim *W1 = dim W,

0
or
(10) codim *W, = dim W, - dim V* if VECW,.
Symmetrically
(10") codim vz = dim V- dim *W it *w Vv,

Finally let W0 be any subspace of W. Consider the re-

striction of the form f to the pair of subspaces V, Wo. 53
Y € W0 is given, then (v,wo) =0 forall ve V if and only
if W, ¢ V*r’\Wo. Hence (10) implies

(11) codim "‘W0 = dim W, - dim (v*nwo).

This formula contains (9) and (40).

The case Wo = W of (11) vyields

(12) codim *W = dim W - dim V¥ = codim V*.

This number is called the rank of f.

7.IfweW,then(*w

B * *
0 0 o,wo)«O forall "w_ € "W

0 0

Hence woe (*WO)* and therefore WOC(*WO)*. By (5),

V¥ c (*WO)*. This yields
%k * E 3
W o+ V w)*.
ot Vicltw))

On the other hand, *W Cc*W_. Hence by (10'), (12),

0
and (11)
codim (*WO)* = dim *wo - dim *w
= codim *W - codim *W

0
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codim V¥ - dim W, + dim (v*hwo)

codim V¥ + codim W0 - codim (V*nwo)

codim (V* + Wo).

The principle (1) therefore implies

(13) (*WO)* = W0 + V¥, symmetrically *(V’g) = Vo + *w.
8. The equation

%

% E
W AW ) = *W_ + *w
(14) (Wynw,) 0 1

need not be true.

Since Wor\W1 C W0 and Wor\W1 C Wi' we always have

* * * *
W
W0 C (Wor\Wi) and W1 C (Wom 1)

and hence

* * *

w W _~W ).
(15) o ‘_Ni c Na 1)
Thus by (1), (14) is equivalent to

(16) codim (’kW0 + *Wi) = codim *(Womwi).

By (3), (7), and (11)

codim (*W_ + *w1) - codim *(wor\wi)

0

codim ’°‘W0 + codim *wi - codim(*Wof\*Wi) - codim *(womwi)

]

codim*Wo + codim*Wi - codim *(WO + Wi) - codim *(Womwi)

1

im W imW, - dim(W_+ W ) - dim (W _~W
{ dim 0 + dim A im ( o + 1) dim ( o 1)}
- {dim (v*mwo) + dim (v*mw1) - dim(v*m(wo W)

- dim (VAW AW}

0
=0 - {dim(V*r\Wo + v*mwi) - dim(V*m(Wo +W )}
Thus (16) is equivalent to

(17) dim (v"‘r\W0 + v*mwi) = dim (v"‘r\(w0 + W)
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Obviously

* ¥ * '
\'A f\Wo +:V nW1CV r\(Wo + Wi)'
Hence (17) is equivalent to
* * *
=V .
(18) Vv r\Wo + V mWi r\(WO + Wi)
This yields the result that (14) and (18) are equivalent.

If v¥c Wi’ both sides of (18) are equal to V*. Hence
(14) then holds true.

The reader will verify that
e - *
(Vor\WO) = V0 + WO
and prove that

%k = %k %5
(19) ’v0+ W, =V e VAW CV

9. We have V* = *W = 0 if and only if

codim *W = dim V,  codim V* = dim W.
The form f is then said to be regular. Formula (12) then
implies
dim V = dim W.

0’ W0 if the restriction of f to
0’ WO is regular. Since the restriction has the kernels

We call £ regularin V
v

*WOAV 0 and sz\WO, we have

THEOREM 9.4 . { is regularin V W0 if and only if

0!
VAW = *W ~V_ = 0.
0o 0o
This regularity implies
(20) dim V= dim W .

We readily deduce by means of (19)

COROLLARY 9.2 . f is regularin V WO if and only if

0’
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. % B *
=V, W + VT =W
(21) VO + W0 A\ 0 0

Formulas (20) and (21) imply
COROLLARY 9.3 . If f is regularin VO, Wo, then

dim V_ = dim W_ = codim ¥*W_ = codim V*
(22) 0 ) 0 0

< codim *W = codim V* = rank f.

&

10. We call f maximally regular in Vo, WO if { is

) WO and if equality holds in (22). From

regular in Vo

codim *WO = codim *W, *W C*WO
we then obtain

(23) *WO = *w; symmetrically V: = v*
Hence by (21),
(24) vo;u*w=v, W0+v*=w.

Conversely, (24) yields on account of (11) and (12)

that
codim *W

. . sk
0 dim W0 - dim (V r\Wo)

= dim WO = codim V* = codim *W.
This implies (23] and (21). This proves

THEOREM 10.1 . f is maximally regular in VO, W0

if and only if (24) holds true.
COROLLARY 10.2 . f is maximally regular in VO, W0
if and only if (21) and one of the equations (23) hold true.

By means of (24) we can readily construct pairs VO,
WO in which f is maximally regular. We only have to choose

Vo. W0 independently of one another such that

vom*w =0, dimV = codim *W
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and

WAV =0, dim W = codim V™.

Obviously, VO and W0 are determined uniquely (mod *W)

respectively (mod V*).

14. We now assume that V and W are both equal to
the same vector space E. We then obtain theorems on general
bilinear forms f in E. On account of (12), the rank of f
can be defined through

rank f = codim FE = codim E*.
If rank{ = dim E, f may be called regular in E. By corollary
9.2, the restriction of f to the subspace EO of E is regular
if and only if

(25) E + *E_ =E_} E¥ = E.

Suppose e.g.
(26) E + E

Then Eof\Ez = 0 and (19) implies Eo + *EO = E. By (9) we

have codim *E = dim E,. Thisyields E  + *E = E. Hence,

THEOREM 11.1 . Formula (26) implies the regularity

of the restriction of f to Eo.

We call { again maximally regular in E_ if (25) holds

0

true and if dim E = rank f; cf. (22). By theorem 10.1, f is

rhaximally regular in EO if and only if

(27 E +*E=E_% Ef = E.
(27) 0+ 0+

This readily yields

THEOREM 11.2 . { is maximally regular in EO if and
only if
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E~NE=zE~E* =0
dim EO = rank f.

Finally we show

THEOREM 11.3 . There are subspaces EO of E in

which f is maximally regular.

Since dim *E = dim E®, this theorem is an immediate
corollary of the observation that two subspaces of the same
dimension have a common complement. For the sake of com-
pleteness we include a proof.

let e,, ..., e beabasisof "ENE". By means of

1 k
the vectors
* * * *
e crer ey [ei, ., eh]
we complete it to a basis of "E [of E¥]. Thus the vectors
%k % £ %
28 3 ooy 3 y e oy ) s s v ey
(28) e o %17 ‘v’ %4 °n

form a basis of "E + E*. We complete it to a basis

* * * * ,
€, ..., e ,e, ....e", e, ..., e
X’ 1 h 1 n 1’ " m

of E. We wish to show that the vectors

(2?) éi’ cee, €

30 *e 4+ e¥, ..., Fe + ¥, e, ..., e
(30) AR a7 %n & °m

span a subspace Eo satisfying (27).

Suppose
ix * J *
e=Z N(Te, + e])+ T p'e! e E mE™.
i i j 0
Then

j i
Tple =e - T A (*e. + e¥) ¢ *E + EX.
j i i
Hence this vector is a linear combination of the vectors
(28). Since its representation as a linear combination of the

vectors (29) is unique, the pJ must vanish and we have

e =X xl(*e_ + e’_k),
i i
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This yields
= ;\‘*ei =e - = \'efe *E~E*.

>

Therefore = Xl*'ei = 0 and hence
)\1=...=Xh=0; e = 0.

Thus EOK\E* = 0 and the vectors (30) are linearly independent.

Symmetrically E ~E = 0. Finally

0
diano+dixn*E=(h+m)+ (k+ h) =k + 2h + m = dim E.
This proves (27).

In concluding the author wishes to thank Dr. Wonenburger
for her kind help in the preparation of this paper.

Collin' s Bay, Ont.
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