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Abstract. We prove that the Hessian matrix of the real period function c�l� associated with the
real versal deformation fl�x� � �x4 � l2x2 � l1x� l0 of a singularity of type A3, is
nondegenerate, provided that l 2 R3 does not belong to the discriminant set of the singularity.
We explain the relation between this result and the perturbations of the spherical pendulum.
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1. Introduction

Let H�x; y� be a ¢xed real polynomial, and let R�x; y� be a real polynomial of degree
at most n. The study of real zeros of the Abelian integral

I�h� �
Z Z

HW h
R�x; y�dx dy �1�

is closely related to the `weakened 16th Hilbert problem' [1, p. 313], [4,11]. It is
proved that, in many cases, the vector space of Abelian integrals of the form (1)
has the following non-oscillation property: the number of the zeros of I�h� is less
than the dimension of the vector space.

Consider a real polynomial versal deformation fl�x; y� of the real polynomial
f0�x; y� with an isolated critical point of multiplicity m. Let g�l� 2 H1�Gl;Z� be a
continuous family of real vanishing cycles in the ¢bres Gl � f�x; y� 2 C2 : fl�x; y�
� 0g of the central Milnor ¢bration associated to f0 [3]. A key role in the under-
standing of the non-oscillation property of Abelian integrals is played by the
following real period function c�l� � Rg�l� y dx; l 2 Rm: Indeed the integral (1)
can be represented as a linear combination of �@=@li�c�l�; i � 1; 2; :::; m, whose
coef¢cients are, for almost all f0, polynomial functions in l [9]. In this paper we
consider one of the simplest nontrivial cases f0�x; y� � y2 � x4. The versal
deformation of f0 is fl�x; y� � y2 � x4� l2x2 � l1x� l0, m � 3, and the ¢bres Gl

are af¢ne elliptic curves with two removed points at `in¢nity'. Denote the real part
of the complex discriminant set of fl by SR. The main result of the paper is that
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the map

l! @

@l0
c�l�; @

@l1
c�l�; @

@l2
c�l�

� �
� 1

2

Z
g�l�

dx
y
;

Z
g�l�

x dx
y
;

Z
g�l�

x2 dx
y

� �
;

l 2 R3nSR �2�

is nondegenerate. This implies obviously the following claims

^ the real level surfaces of the functions

I0�l� �
Z
g�l�

dx
y
; I1�l� �

Z
g�l�

x dx
y
; I2�l� �

Z
g�l�

x2 dx
y

are smooth and intersect transversally at any point l 2 R3nSR

^ for any ¢xed real constants �a0; a1; a2� 6� �0; 0; 0� the level surface

fl 2 R3nSR : a0I0�l� � a1I1�l� � a2I2�l� � const:g

is smooth.

We prove a similar assertion for the restriction of the real period function to the
planes fl2 � constg.

The proof is based on the observation that the nondegeneracy of the Hessian
matrix of the period function depends only on the isomorphism class of the curve
Gl and not on the curve itself. Using this we put Gl into a canonical form
fy2 � �x2 � 1�2 � t � 0g and then study the corresponding real complete elliptic
integrals as functions in t in a complex domain.

The motivation of our results came from mechanics. The period function c�l� can
be viewed as an `action variable' of a completely integrable Hamiltonian system, and
the nondegeneracy of the map (2) is equivalent to the nondegeneracy of the fre-
quency map of an appropriate integrable system. The latter is, according to the
Kolmogorov^Arnold^Moser theory, a typical condition which ensures the survival
of most of the invariant Liouville tori after a small Hamiltonian perturbation of
the integrable system [2, App. 8]. The question of nondegeneracy of the frequency
map of the usual spherical pendulum was raised by Duistermaat and completely
answered by Horozov [10] (see also Cushman and Bates [6, pp.182^186]). It turns
out that this map is nondegenerate for all regular values of the energy-momentum
map. The proof of this (quite mysterious) theorem is based on the direct study
of Picard^Fuchs equations satis¢ed by Abelian integrals and Picard^Lefschetz
theory. Our results were obtained in an attempt to understand Horozov's theorem.
In Section 4 we prove that the nondegeneracy of the frequency map of the spherical
pendulum is equivalent to the nondegeneracy of the Hessian matrix of the real period
function c�l�jl2�const:. This gives a new proof of Horozov's theorem. As a by-product
we also obtain a simpler expression for the action variables of the spherical
pendulum (Proposition 4.1).
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2. Statement of the Result

Consider a germ of a real analytic function f : C; 0! C; 0 with a singularity at the
origin of type A�3 [2]. Put f in a normal form f �x� � �x4 and choose a versal
deformation fl�x� � �x4 � l2x2 � l1x� l0 of f �x�. Denote by S � C3 the subset
of those l 2 C3 for which the af¢ne algebraic curve Gl �
f�x; y� 2 C : y2 � fl�x� � 0g is singular. Consider the central global Milnor ¢bration
with base C3nS and ¢bers the smooth af¢ne algebraic curves Gl. When l 2 R3

the curve Gl carries a natural real structure (anti-holomorphic involution)

s : Gl! Gl : �x; y� ! � �x; �y� : �3�

From now on we restrict our attention to the real Milnor ¢bration Gl! R3nSR,
where SR is the real part of S. We note thatR3nSR has three connected components
L0;L1;L2 in which the polynomial fl�x� has 0, 2 and 4 real roots, respectively. The
components L1;L2 are simply connected, while p1�L0� � Z.

Let g�l� 2 H1�Gl;Z�, l 2 Li, i � 0; 1; 2, be a continuous family of real vanishing
cycles. This means that g�l� is a locally constant section of the homology Milnor
bundle, H1�Gl;Z� ! l; l 2 Li; which vanishes at a single Morse critical point
of y2 � fl�x� as l tends to l0 2 SR along an appropriate analytic curve. The reality
condition on the cycle g�l� means that s�g�l� � g�l� 2 H1�Gl;Z� where s is the
anti-holomorphic involution (3). Note that there are continuous families of nonreal
vanishing cycles, as well continuous families of real cycles which are not vanishing.

DEFINITION 1. The function c�l� � Rg�l� y dx; l 2 Li � R3 is called a real
period function of the singularity of type A3 provided that g�l� 2 H1�Gl;Z�,
l 2 Li, is a continuous family of real vanishing cycles.

In the Hamiltonian mechanics the period functionc�l� is called action variable of the
one degree of freedom Hamiltonian system �d2=dt2�x � �d=dx� fl�x� [1, p. 281]. The
purpose of the present article is to prove the following

THEOREM 2.1. Let c�l�, l 2 R3nSR, be a real period function of the singularity of
type A3. Then

det

@2c

@l20

@2c
@l0@l1

@2c
@l0@l2

@2c
@l1@l0

@2c

@l21

@2c
@l1@l2

@2c
@l2@l0

@2c
@l2@l1

@2c

@l22

0BBBBBBBBB@

1CCCCCCCCCA
6� 0 : �4�
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If in addition l 2 L0, then

det

@2c

@l20

@2c
@l0@l1

@2c
@l1@l0

@2c

@l21

0BBBB@
1CCCCA 6� 0 �5�

Remark. For l 2 L0 the locally constant section g�l� of the homology Milnor
bundle may be multivalued. In this case the period function c�l� will be multivalued
too. It worth noting, however, that the representation of p1�L0� onH1� �Gl;Z�, where
�Gl is the compacti¢ed curve, is trivial [13]. This, together with the fact that the
meromorphic differential 1-forms

@2c
@li@lj

� ÿ 1
4
xi�jdx
y3

; 0W i � jW 4

have no residues on the compact curve �Gl, implies that the derivatives @2c=@li@lj are
single-valued functions even in the real domain L0.

3. Proof of Theorem 2.1

The proof will consist in two steps. First we show that it is enough to prove the
inequality (4) in the case when fl�x� has the `canonical' form ft�x� � �x2 � 1�2 � t
for suitable negative real constant t, and g�t� is an appropriate continuous family
of vanishing cycles on the curve Gt � fy2 � �x2 � 1� � t � 0g; tW 0: At the second
step we study, following Petrov [12], the properties of the Abelian integralsZ

g�t�

xidx
y3

; 0W iW 4

as functions in t 2 C.

LEMMA 3.1. Let P�x� � x4 � ::: be a real polynomial of degree four. There always
exist real constants a; b; c; d, ad ÿ bc 6� 0, such that

�cx� d�4P ax� b
cx� d

� �
� �x2 � 1�2 � t �6�

for some real nonpositive constant t.

Remark. If P�x� is a degree four complex polynomial, then there always exist
complex numbers a; b; c; d, such that (6) holds true for some complex number t.

Proof. We have to consider three cases:

170 LUBOMIR GAVRILOVAND OLIVIER VIVOLO

https://doi.org/10.1023/A:1001821300769 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001821300769


^ Suppose that P�x� has two pairs of complex conjugate roots. The circles perpen-
dicular to the real axe Im�x� � 0 (including the vertical lines Re�x� � const) are
mapped one to the other by real MÎbius transformations

S : C! C : x! ax� b
cx� d

; a; b; c; d 2 R; ad ÿ bc 6� 0 :

Let S be the Mo« bius transformation which maps the circle through the roots of P�x�
to the vertical line Re�x� � 0. Then

�cx� d�4P ax� b
cx� d

� �
� a0x4 � a2x2 � a4;

where a0 � c4P�a=c� > 0. An obvious linear change of the variable x puts
a0x4 � a2x2 � a4 in the form (6).

^ If P�x� has a pair of complex conjugate roots, then we may suppose that these roots
are x1 � i; x2 � ÿi, x3; x4 2 R. The isotropy group of the point i 2 C consists of real
Mo« bius transformations Sy of the form

Sy�x� � xcos�y� � sin�y�
ÿxsin�y� � cos�y� :

If x3 � x4 � 0, then P�x� � x4 � a2x2 � a4. If x3 � x4 6� 0, then Sy�x3� � Sy�x4� � 0,
where

cotg�2y� � x3x4 ÿ 1
x3 � x4

:

It follows that

�ÿxsin�y� � cos�y��2P x cos�y� � sin�y�
ÿx sin�y� � cos�y�
� �

� a0x4 � a2x2 � a4 ;

where a0a4 < 0. If a0 > 0 we proceed as in the preceding case. If a4 > 0 we change the
variable x! 1=x.
^ Suppose at last that P�x� has four distinct real roots. We may always suppose that
x1 � 1; x2 � ÿ1, jx3j; jx4j < 1. The subgroup of real Mo« bius transformations, such
that S�1� � 1;S�ÿ1� � ÿ1 consists of maps

Sa;b�x� � ax� b
bx� a

; a2 ÿ b2 6� 0:

The identity Sa;b�x3� � Sa;b�x4� � 0 is equivalent to

a2 � 2ab
1� x3x4
x3 � x4

� b2 � 0 :
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As

1� x3x4
x3 � x4

� �2

ÿ1 � �x
2
3 ÿ 1��x24 ÿ 1�
�x3 � x4�2

> 0

then there exist real a, b, such that

�bx� a�4P ax� b
bx� a

� �
� a0x4 � a2x2 � a4

where a0 � b4P�a=b� and a4 � a4P�b=a�. As P�x� > 0 for jxj > 1 then either a0 or a4 is
positive.

Note ¢nally that in the three cases above the polynomial � y� 1�2 � t has real roots
which implies tW 0. This completes the proof of Lemma 3.1. &

Let P�x� be an arbitrary polynomial of degree four. Consider the complete Abelian
integrals wi �

R
g x

idx=y3, associated to the algebraic curve

G � f�x; y� 2 C2 : y2 � P�x� � 0g
where g 2 H1�G;Z� and put

D�G� � det
w0 w1 w2
w1 w2 w3
w2 w3 w4

0@ 1A : �7�

The bi-rational change of variables

x! ax� b
cx� d

; y! y

�cx� d�2 ; a; b; c; d � const; ad ÿ bc 6� 0 �8�

induces a bi-holomorphic map from the curve G to

~G � f�x; y� 2 C2 : y2 � ~P�x� � 0g;
where

~P�x� � �cx� d�4P ax� b
cx� d

� �
:

Let ~g be the image of the cycle g under this bi-holomorphic map. Denote as above
~wi �

R
~g�xidx=y3� and

D� ~G� � det
~w0 ~w1 ~w2
~w1 ~w2 ~w3
~w2 ~w3 ~w4

0@ 1A : �9�

LEMMA 3.2. The determinants D�G� and D� ~G� are related in the following way

D�G� � �ad ÿ bc�9D� ~G� : �10�
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Remark. The above Lemma implies that the nonvanishing property of the (real)
determinant D�G� depends only on the isomorphism class of the curve G, and
not on G itself (compare to Horozov [10, Fig. 3]).

Proof. The change of variables (8) transforms the differential one form
xidx=y3; 0W iW 4 to

�ad ÿ bc��ax� b�i�cx� d�4ÿi dx
y3
;

which explains the factor �ad ÿ bc�3 in (10). Consider (as suggested by the referee) the
following homogeneous matrix

M�x; x� �
x4 xx3 x2x2

xx3 x2x2 x3x
x2x2 x3x x4

0@ 1A � x2

xx
x2

0@ 1A � x2 xx x2
ÿ �

:

We have

M�ax� bx; cx� dx� � B �M�x; x� � B�; B 2 GL�3;C�; �11�
where

B
x2

xx
x2

0@ 1A � �cx� dx�2
�ax� bx��cx� dx�
�ax� bx�2

0@ 1A ;

and B� is the transposed matrix B. The last identity is the natural representation of
GL�2;C� on the space of homogeneous polynomials of degree two in two variables
x, x. The map

a b
c d

� �
! det�B�

is then a Lie group homomorphism from GL�2;C� to C� and, hence, det�B� can be
only a factor of ad ÿ bc. It is easy to check that det�B� � �ad ÿ bc�3. Finally (11)
implies

~w0 ~w1 ~w2
~w1 ~w2 ~w3
~w2 ~w3 ~w4

0@ 1A � �ad ÿ bc�3B
w0 w1 w2
w1 w2 w3
w2 w3 w4

0@ 1AB�
which completes the proof of Lemma 3.2. &

Using (10) and Lemma 3.1 we see that it is enough to prove Theorem 2.1 in the case
when Gl has the `canonical' form

Gt � f�y2 � x4 � 2x2 � 1� t � 0g; tW 0:

The continuous family of cycles g�l� is transformed to a continuous family of cycles
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g�t� 2 H1�Gt;Z�, which vanish as t 2 R tends to ÿ1, or 0. We can make further the
following simpli¢cations. If Gt � fÿy2 � x4 � 2x2 � 1� t � 0g, then we substitute
y! �������ÿ1p

y. If Gt � fy2 � x4 ÿ 2x2 � 1� t � 0g, then we substitute x! �������ÿ1p
x. A

real cycle on the initial curve is transformed to a cycle invariant under one of
the following four anti-holomorphic involutions

si : Gt ! Gt : �x; y� ! �� �x;��y�
on the curve Gt � fy2 � �x2 � 1� � t � 0g; tW 0:

Consider now the three continuous families of si^invariant (for appropriate si)
vanishing cycles g�t�, t 2 �ÿ1; 0�, and d1;2�t�, t 2 �ÿ1; 0�, as it is shown in
Figure 1. Lemma 3.1 and Lemma 10 imply the following:

COROLLARY 3.3. To prove the inequality (4) it is enough to show that

det

Z
g�t�

dx
y3

Z
g�t�

xdx
y3

Z
g�t�

x2dx
y3Z

g�t�

xdx
y3

Z
g�t�

x2dx
y3

Z
g�t�

x3dx
y3Z

g�t�

x2dx
y3

Z
g�t�

x3dx
y3

Z
g�t�

x4dx
y3

0BBBBBBBBB@

1CCCCCCCCCA
6� 0; forÿ1 < t < ÿ1; ÿ1 < t < 0

�12�

and

det

Z
d1�t�

dx
y3

Z
d1�t�

xdx
y3

Z
d1�t�

x2dx
y3Z

d1�t�

xdx
y3

Z
d1�t�

x2dx
y3

Z
d1�t�

x3dx
y3Z

d1�t�

x2dx
y3

Z
d1�t�

x3dx
y3

Z
d1�t�

x4dx
y3

0BBBBBBBBB@

1CCCCCCCCCA
6� 0; for ÿ 1 < t < 0 : �13�

where g�t�, d1�t� are the cycles on the curve Gt � fy2 � �x2 � 1� � t � 0g, shown in
Figure 1.

The next step is to study the properties of the Abelian integrals, which we summarize
in the following

PROPOSITION 3.4. If the orientation of d1�t�, d2�t� is ¢xed in such a way that�������ÿ1p R
d1;2�t� dx=y > 0 then for every t 2� ÿ 1; 0� and any constants a; b; c holds

ÿ
�������
ÿ1
p Z

d1;2�t�

�ax2 � bx� c�2dx
y3

> 0 �14�
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and Z
d1;2�t�

xdx
y3
�
Z
d1;2�t�

x3dx
y3
� 0 : �15�

If the orientation of g�t� is ¢xed in such a way that
R
g�t� dx=y > 0, then

Z
g�t�

�x2 � 1�2dx
y3

< 0;
Z
g�t�

dx
y3
> 0; 8t 2 �ÿ1; 0�; �16�

Z
g�t�

x4dx
y3

> 0; 8t 2 �ÿ1; 0�; �17�

Z
g�t�

x4dx
y3

< 0; 8t 2 �ÿ1;ÿ1�; �18�

Z
g�t�

x2dx
y3

< 0; 8t 2 �ÿ1; 0�; �19�

Z
g�t�

xdx
y3
�
Z
g�t�

x3dx
y3
� 0; 8t 2 �ÿ1; 0�: �20�

Figure 1.
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Proof. To prove (14) we note that as for t 2� ÿ 1; 0�
�������
ÿ1
p Z

d1;2�t�

dx
y
�

�������
ÿ1
p Z �1

ÿ1

dx
y
> 0 ;

then

ÿ
�������
ÿ1
p Z

d1;2�t�

�ax2 � bx� c�2dx
y3

� ÿ
�������
ÿ1
p Z �1

ÿ1

�ax2 � bx� c�2dx
y3

> 0 :

(the last integral converges!). The involution �x; y� ! �ÿx;ÿy� acts on H1�g;Z� in
the following way �g; d1; d2� ! �g; d2; d1�, where d1 and d2 are homologous cycles
on the compacti¢ed curve �Gt. This implies that any anti-invariant differential 1-form
without residues on �Gt is co-homologous to zero which proves (15) and (20).

Put

wi�t� �
Z
g�t�

xidx
y3

; 0W iW 4 :

The Abelian integrals wi�t� are also de¢ned for complex values of t. As g�t� vanishes
as t tends to ÿ1, then the Picard^Lefschetz formula implies that wi�t� are
holomorphic functions in the complex domain D � Cn�0;1� (Figure 2). We shall
count, following [12], the zeros of wi�t� in this larger domain. Consider ¢rst the
holomorphic function w0�t�, t 2 D. Let us evaluate the increment of the argument
of w0�t� along the boundary of D described in a positive direction (anticlockwise).
For t 2�0;1� we de¢ne w�0 �t� and wÿ0 �t� to be the analytic continuation of w0�t� along
a path on which Im�t� > 0 and Im�t� < 0 respectively. Let R be a big enough and r be
a small enough constants. Denote by D0 the set obtained from D \ fjtj < Rg by
removing the circle of radius r centered at t � 0 (Figure 2). Consider the increase
of the argument of w0�t� along the boundary of D0. For t 2 D we have
jxj �1 jtj1=4, jyj �1 jtj1=2 so the argument of w0�t� decreases by at least 5p=2 along
the circle jtj � R.

The Picard^Lefschetz formula implies that when t makes one turn about 0 in a
small neighborhood of 0, the cycle g�t� is transformed in the following way

g�t� ! g�t� ÿ �g�t� � d1�t��d1�t� ÿ �g�t� � d2�t��d2�t� : �21�

It follows that in a neighborhood of 0Z
g�t�

ydx � log�t�
2p

�������ÿ1p
Z
d1�t�

ydx� log�t�
2p

�������ÿ1p
Z
d2�t�

ydx�O�1� ;

Z
d1;2�t�

ydx � O�t�
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and, hence,Z
g�t�

dx
y3
� 2

�������ÿ1p

pt

Z
d�t�

dx
y
� 0�tlog�t��

� �
; �22�

where d�t� is a cycle homologous to d1 or d2 on the compacti¢ed curve �Gt. It follows
that along the circle jtj � r the increment of the argument of w0�t� is close to 2p.
Along the interval �r;R� we use the Picard^Lefschetz formula (21) to get

w�0 �t� ÿ wÿ0 �t� � �2
�������
ÿ1
p

Imw�0 �t� � �2
Z
d�t�

dx
y3

:

Using the same argument as in the proof of (14) we conclude that
R
d�t� dx=y

3 6� 0 on
the interval �0;1� and hence the increase of the argument of w�0 �t� along the interval
�r;R� is less than p. Putting the above data together yields that the increment of the
argument of w0�t� along the boundary of D0 is less than 2pÿ p=2. The argument
principle implies that w0�t� has no zeros in D0 (and hence in D). For the Abelian
integral w4�t� � 2w2�t� � w0�t� the analogue of (22) in a neighborhood of t � 0 is

w4�t� � 2w2�t� � w0�t� � log�t�
p

�������ÿ1p
Z
d�t�

�x2 � 1�2dx
y3

�O�1� �23�

as Z
d�t�

�x2 � 1�dx
y

vanishes at t � 0. Applying once again the argument principle we obtain that
w4�t� � 2w2�t� � w0�t� has no zeros in D. In a quite similar way one shows that

Figure 2. The region D and D0.
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w2�t�;w4�t� have at most one zero in D. Let us compute now wi�ÿ1�. We haveZ
g�ÿ1�

dx
y
� lim

t!ÿ1

Z
g�t�

dx�����������������������������
ÿ�x2 � 1�2 ÿ t

q
� 2p

�������
ÿ1
p

Resx�0
dx������������������������������

ÿ�x2 � 1�2 � 1
q �

���
2
p

p > 0 :

In a similar way

w0�ÿ1� � 2p
�������
ÿ1
p

Resx�0
dx

�
������������������������������
ÿ�x2 � 1�2 � 1

q
�3
� 3p

4
���
2
p > 0;

w2�ÿ1� � 2p
�������
ÿ1
p

Resx�0
x2dx

�
������������������������������
ÿ�x2 � 1�2 � 1

q
�3
� ÿ p���

2
p < 0;

w4�ÿ1� � 2p
�������
ÿ1
p

Resx�0
x4dx

�
������������������������������
ÿ�x2 � 1�2 � 1

q
�3
� 0;

w4�ÿ1� � 2w2�ÿ1� � w0�ÿ1� � ÿ 5p
4
���
2
p < 0;

d

dt
w4�t�jt�ÿ1 � 3p

�������
ÿ1
p

Resx�0
x4dx

�
������������������������������
ÿ�x2 � 1�2 � 1

q
�5
� 3p

4
���
2
p > 0:

The above already implies (16) and (17), (18). In the interval �ÿ1; 0� the inequalities
(16) and (17) imply (19).

End of the proof of Theorem 2.1. On the interval � ÿ1;ÿ1� and up to
multiplication by a constant factor, the determinant (12) equals to w0�w2

2 ÿ w0w4�
which is not zero, as w0w4 < 0. On the interval � ÿ 1; 0� we have
0 < w0 � w4 < ÿ2w2 which implies

�w0 � w4�2 < 4w2
2 , 0W �w0 ÿ w4�2 < 4�w2

2 ÿ w0w4�

and hence w0�w2
2 ÿ w0w4� > 0.

The matrix in (13) is even de¢nite. Indeed, the last claim is equivalent toZ
d1;2�t�

�ax2 � bx� c�2dx
y3

6� 0; 8a; b; c 2 R

which holds true according to (14).
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The proof of (5) goes along the same lines. Namely, the bi-rational transformation
(8) puts the matrix (5) in the form

daÿ bc� �

Z
g�l�

�cx� d�4dx
y3

Z
g�l�

�cx� d�3�ax� b�dx
y3Z

g�l�

�cx� d�3�ax� b�dx
y3

Z
g�l�

�cx� d�2�ax� b�2dx
y3

0BBBB@
1CCCCA :

Suppose that Gl is in a canonical form. As l 2 L0 then ÿ1 < t < 0 and the vanishing
cycle g�l� becomes the vanishing cycle g�t� shown on Figure 1. It follows that
w1�t� � w3�t� � 0 and the determinant of the above matrix is

daÿ bc� �2 w0 w2 d4 � c4 w2w4 � c2d2�w0w4 ÿ 3w2
2�ÿ �

: �24�
This, combined with w0w4 ÿ w2

2 < 0, w0 > 0, w4 > 0, w2 < 0 completes the proof of
Theorem 2.1. &

4. Perturbations of the Spherical Pendulum

The spherical pendulum is a mechanical system which consists of a heavy particle of
mass m, moving without friction on the spherefx 2 R3 : jxj � lg, under the action of
the gravitational force mg. Its motion is governed by the Lagrange function
L � 1

2m� _x21 � _x22 � _x23� ÿmgx3 constrained on the sphere of radius l. After obvious
rescalings L and in spherical coordinates x1 � sinf cos y; x2 � sinf sin y; x3 �
cosf. L takes the form L � 1

2
_f2 � _y2 sin2 f

� �
ÿ cosf: The corresponding Ham-

iltonian system �H;T�S;o�

_y � @H
@py

; _py � ÿ @H
@y
;

_f � @H
@pf

; _pf � ÿ @H
@f

:

lives on the cotangent bundle T�S of the unit sphere S with its canonical simplectic
structure o � dpy ^ dy� dpf ^ df, where py � @L=@_y, pf � @L=@ _f are the conjugate
moments, and

H�py; y; pf;f� � 1
2
pf2 � p2y

2 sin2 f
� cosf :

The variable y is obviously ignorable and the corresponding ¢rst integral
(momentum of the particle about the vertical) is G � py � _y sin2 f : The momentum
mapping of the spherical pendulum is

F : T�Sÿ!R2; �y;f; py; pf� 7ÿ!�H;G� :
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Denote by Ur the set of the regular points of the momentum mapping. The level
surface H � h;G � g for �h; g� 2 Ur is a torus Th;g and the action variables of
the spherical pendulum [8], in a neighborhood of Th;g are given by

I1�h; g� � 1
2p

I
g�h;g�
�2�hÿ cosf� ÿ g2 sinÿ2 f�1=2df

�
I
g�h;g�

�������������������������������������������
2�hÿ u��1ÿ u2� ÿ g2

p
1ÿ u2

du
�25�

I2 � g, where u � cosf, and the cycle g � g�h; g� is shown in Figure 3. Recall that for
�h; g� 2 Ur the polynomial 2�hÿ u��1ÿ u2� ÿ g2 [14] has two real roots u1 and u2
(u1 W u2) on the interval ÿ1W uW 1 and one for u > 1 (Figure 3(a)) [14].

Consider the real elliptic curve G with af¢ne equation

y2 � x4 � a1x3 � a2x2 � a3x� a4 � 0 �26�

and natural anti-holomorphic involution �x; y� ! �x; y�, and put

g2 � a4 � 3
a2
6

� �2
ÿ4 a1

4
a3
4
; g3 � ÿ det

1
a1
4

a2
6

a1
4

a2
6

a3
4

a2
6

a3
4

a4

0BBBBB@

1CCCCCA : �27�

It is well known that the curve G and the real curve

C :� fZ2 � 4x3 ÿ g2xÿ g3g : �28�

with anti-holomorphic involution �x; Z� ! �x; Z� are isomorphic over C [7].
Although these curves are not real isomorphic, there is still a relation between their
real structures. The Jacobian variety J�G� of the elliptic curve G turns out to be real
isomorphic to the curve C [15]. For that reason we call C Jacobian and write
J�G� � C. The Jacobian J�G� is complex isomorphic to G, but not real isomorphic
(unless GR 6� ;, as noted by M. Audin [5, p. 123]). The bi-rational isomorphism
which identi¢es C and G over C is given by

�x; y�ÿ! x � A1

r0 ÿ x
ÿ A2

2
; Z � A1

�r0 ÿ x�2 y
� �

; �29�

where r0 is a root of f �x� � x4 � a1x3 � a2x2 � a3x� a4 and A1 � r30 � 3a1r20=4�
a2r0=2� a3=4, A2 � r20 � a1r0=2� a2=6. Of course (29) maps the holomorphic
differential dx=Z to a multiple of dx=y. Using �29� it is easy to check that in fact
dx=Z � dx=y: Next we apply the above to compute the action variable I1 (25),
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we put a1 � 0; a2 � 2h; a3 � 2g and a4 � 1. We have

@I1
@a2
� 1

4p

I
g

du���������������������������������������������������������
2u3 ÿ a2u2 ÿ 2u� a2 ÿ a23=4

q
� 1

4p

I
g

dx
Z
� 1

4p

I
g

dx
y
� 1

2p
@

@a2

I
g

y
x2

dx
� �

:

Then

I1 � 1
2p

I
g

y
x2

dx� j�a3�;

where j�a3� is a function. To compute j�a3�, we note that for any ¢xed a3 such that
the polynomial f �x� has no real roots, we may continuously deform a2 in such a
way, that �a2; a3� lies on the discriminant of f �x� and in addition the cycle
g�a2; a3� vanishes. This implies

I1�a2; a3� � 0;
I
g�a2;a3

y
x2

dx � 0; j�a3� � 0:

We obtain the following proposition:

PROPOSITION 4.1. Consider the elliptic curve

Gh;g � fy2 � f �x� � 0g; f �x� � x4 � 2hx2 � 2gx� 1 :

Denote byL0 � R2 the connected component of the complement to the discriminant of
f �x� inR2 (the hatched part in Figure 4) in which f �x� has no real roots. ThenL0 � Ur

Figure 3. (a) Graph of the P�u� � 2�hÿ u��1ÿ u2� ÿ g2 for �h; g� 2 Ur ; (b) Projection of the cycle g�h; g� on
the complex u-plane.

THE REAL PERIOD FUNCTION OF A3 SINGULARITY 181

https://doi.org/10.1023/A:1001821300769 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001821300769


and for �h; g� 2 Ur the action variables are also given by

I1 � 1
2p

I
g�h;g�

y
x2

dx; I2 � g;

where g�h; g� is a cycle on the elliptic curve Gh;g as in Figure 5.

The above Proposition combined with Theorem 2.1 implies immediately the
following

THEOREM 4.2 ([10]).Denote byH�I1; I2� the Hamiltonian of the spherical pendulum
in action-angle co-ordinates. For every �h; g� 2 Ur holds

det

@2H
@I21

@2H
@I1@I2

@2H
@I1@I2

@2H
@I22

0BBB@
1CCCA 6� 0: �30�

Proof. Put

c �
I
g�h;g�

y
x2

dx:

Figure 4. The discriminant locus of f �x�.
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By a straightforward computation, we have

1
2p

@I1
@H

� �4

det

@2H
@I21

@2H
@I1@I2

@2H
@I1@I2

@2H
@I22

0BBB@
1CCCA � det

@2c
@H2

@2c
@H@G

@2c
@H@G

@2c
@G2

0BB@
1CCA

� det

Z
g

x2dx
y3

xdx
y3

xdx
y3

dx
y3

0BB@
1CCA

which does not vanish, according to (5). &
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