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Abstract
Let n be a positive integer, let 0 < 𝑝 � 𝑝′ � 1

2 , and let ℓ � 𝑝𝑛 be a nonnegative integer. We prove that if
F ,G ⊆ {0, 1}𝑛 are two families whose cross intersections forbid ℓ—that is, they satisfy |𝐴 ∩ 𝐵 | ≠ ℓ for every
𝐴 ∈ F and every 𝐵 ∈ G – then, setting 𝑡 := min{ℓ, 𝑝𝑛 − ℓ}, we have the subgaussian bound

𝜇𝑝 (F ) 𝜇𝑝′ (G) � 2 exp
(
− 𝑡2

582 𝑝𝑛

)
,

where 𝜇𝑝 and 𝜇𝑝′ denote the p-biased and 𝑝′-biased measures on {0, 1}𝑛, respectively.
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1. Introduction

Extremal set theory can be traced back to the seminal work1 of Erdős, Ko and Rado [EKR61] who
obtained sharp estimates of the cardinality of a family A ⊆

( [𝑛]
𝑘

)
that is intersecting; that is, it satisfies

𝐴 ∩ 𝐵 ≠ ∅ for every 𝐴, 𝐵 ∈ A. (Here and in the rest of this paper,
( [𝑛]
𝑘

)
denotes the set of all k-element

subsets of the discrete interval [𝑛] := {1, . . . , 𝑛}.) Since then, it is an active subfield of combinatorics;
we refer the reader to [El22, FT18] for recent expositions of this theory and its applications.

1Although published in 1961, the Erdős–Ko–Rado theorem was actually discovered much earlier, in 1938.
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1.1. The Erdős–Sós problem and related results

A more challenging problem was posed in 1971 by Erdős and Sós (see [Erd75]); it asks to determine,
for a given triple ℓ � 𝑘 � 𝑛 of positive integers, the cardinality of the largest family A ⊆

( [𝑛]
𝑘

)
whose

intersections forbid ℓ; that is, it satisfies |𝐴 ∩ 𝐵 | ≠ ℓ for every 𝐴, 𝐵 ∈ A. Early significant progress
on the Erdős–Sós problem was made by Frankl–Wilson [FW81] and Frankl–Füredi [FF85]. Somewhat
later, in 1987, a breakthrough was achieved by Frankl and Rödl, who obtained exponential estimates in
the regime where ℓ is proportional to n. More precisely, it is shown in [FR87, Theorem 1.5] that for
every 0 < 𝜀 < 𝑝 � 1

2 , there exists a constant 𝛾(𝜀, 𝑝) > 0 such that for every pair of positive integers
ℓ, 𝑛 with 𝜀𝑛 � ℓ � 𝑝𝑛− 𝜀𝑛, and every pair of families2 F ,G ⊆ {0, 1}𝑛 whose cross intersections forbid
ℓ – that is, they satisfy |𝐴 ∩ 𝐵 | ≠ ℓ for every 𝐴 ∈ F and every 𝐵 ∈ G – we have

𝜇𝑝 (F) 𝜇𝑝 (G) �
(
1 − 𝛾(𝜀, 𝑝)

)𝑛
, (1.1)

where 𝜇𝑝 denotes the p-biased measure on {0, 1}𝑛 – namely, the probability measure on {0, 1}𝑛 defined
by setting for every 𝐴 ⊆ [𝑛],

𝜇𝑝
(
{𝐴}

)
:= 𝑝 |𝐴 | (1 − 𝑝)𝑛−|𝐴 | . (1.2)

(For the case F = G, an alternative proof was given by Keevash and Long [KLo16]; see also [KSZ22].)
The work of Frankl and Rödl has proven to be very influential, and it has found applications in a number
of different areas such as discrete geometry [FR90], communication complexity [S99] and quantum
computing [BCW99].

Further progress on the Erdős–Sós problem was made by several authors, including the very recent
works of Ellis–Keller–Lifshitz [EKL24], Keller–Lifshitz [KLi21] and Kupavskii–Zaharov [KZ24] (see,
also, [KLLM23, KLo20] for closely related developments). Collectively, the papers [EKL24, KLi21]
obtain the sharp estimate |A| �

(𝑛−(ℓ+1)
𝑘−(ℓ+1)

)
for every family A ⊆

( [𝑛]
𝑘

)
whose intersections forbid ℓ in

the regime 2ℓ < 𝑘 �
( 1

2 − 𝜀
)
𝑛 with 𝑛 � 𝑛0 (ℓ, 𝜀) for some (unspecified) threshold function 𝑛0 (ℓ, 𝜀).

The more recent paper [KZ24] extends this sharp estimate in the regime ℓ = �𝑘𝛽� and 𝑛 = �𝑘𝛼�, where
𝛼, 𝛽 > 0 are positive reals with 𝛽 < 1

2 and 𝛼 > 1 + 2𝛽 and k is sufficiently large in terms of 𝛼, 𝛽.

1.2. The main estimate

Our main result provides new estimates of the product of the biased measures of a pair of families with
forbidden cross intersections, and in particular, it bridges the gap between the aforementioned results.

Theorem 1.1. Let n be a positive integer, let 0 < 𝑝 � 𝑝′ � 1
2 , and let ℓ � 𝑝𝑛 be a nonnegative integer.

Also let F ,G ⊆ {0, 1}𝑛 be two families whose cross intersections forbid ℓ; that is, |𝐴 ∩ 𝐵 | ≠ ℓ for every
𝐴 ∈ F and 𝐵 ∈ G. Then, setting 𝑡 := min{ℓ, 𝑝𝑛 − ℓ}, we have the subgaussian bound

𝜇𝑝 (F) 𝜇𝑝′ (G) � 2 exp
(
− 𝑡2

582 𝑝𝑛

)
. (1.3)

Note that Theorem 1.1 extends the Frankl–Rödl theorem [FR87, Theorem 1.5]; indeed, the bound
(1.3) is nontrivial if 80√𝑝𝑛 � ℓ � 𝑝𝑛 − 80√𝑝𝑛 uniformly for 𝑝 � 1602

𝑛 .

Remark 1.2. Theorem 1.1 can be extended to cover the case of all parameters 𝑝, 𝑝′ in the regime
0 < 𝑝 � 𝑝′ � 1 − 𝑝, and it also has a version for pairs of families F ,G that are contained in two,
possibly different, layers of the cube. We present these (standard) extensions in Section 7.

Remark 1.3. The subgaussian bound (1.3) is actually optimal, modulo universal constants, for various
choices of 𝑝, 𝑝′ and ℓ. We discuss these issues in Section 8.

2We identify every 𝐴 ⊆ [𝑛] with its indicator function 1𝐴 ∈ {0, 1}𝑛.

https://doi.org/10.1017/fms.2025.10067 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10067


Forum of Mathematics, Sigma 3

Remark 1.4. Theorem 1.1 also has a supersaturation version, which is in the spirit of [FR87,
Theorem 1.14]; see Section 9 for details.

1.3. Outline of the proof of Theorem 1.1

The proof of Theorem 1.1 follows the general strategy invented by Frankl and Rödl [FR87]. The idea is to
gradually ‘deform’ the given families and eventually arrive at a pair of families whose cross intersections
forbid an initial or a final interval; the measures of these final families can then be estimated by standard
probabilistic tools. This ‘deformation’ is entirely algorithmic, and it is the heart of the proof.

The algorithm in [FR87] takes as an input two families F ,G ⊆ {0, 1}𝑛 whose cross intersections
forbid an interval of [𝑛], and it starts by using a density increment argument in order to show that the
two sections

F0 := {𝐴 : 𝑛 ∉ 𝐴 ∈ F } and F1 :=
{
𝐴 \ {𝑛} : 𝑛 ∈ 𝐴 ∈ F

}
of F have roughly the same measure. Once this is done, the algorithm proceeds by comparing the
measures of the union G0 ∪ G1 and the intersection G0 ∩ G1 of the sections of G. Again, a density
increment argument is used to ensure that the measures of G0 ∪ G1 and G0 ∩ G1 are roughly equal,
which in turn implies that the two sections, G0 and G1, are almost equal. One can then use this structural
information to produce a pair of families whose cross intersections forbid a larger interval, while at the
same time, one keeps control of the product of their biased measures.

While the algorithm of Frankl and Rödl is elegant and efficient, unfortunately it leads to suboptimal
results as p gets smaller, and it hits a barrier3 at 𝑝 = 𝑜(1). The reason is rather simple: if p is small,
then having (or not having) density increment for the section A1 of a family A ⊆ {0, 1}𝑛 has negligible
effect on the measure of the other section A0.

We resolve this issue by introducing a new algorithm that also takes as an input two families
F ,G ⊆ {0, 1}𝑛 whose cross intersections forbid an interval of [𝑛], and it starts by seeking for a density
increment for one of the pairs (F1,G1), (F0,G0∪G1) and (F0∪F1,G0). However, the density increment
the algorithm is searching for is not uniform and depends on the specific pair it is looking at (as well as
the parameter p). The particular choice of the density increments is justified analytically: if the algorithm
does not succeed in this search, then this yields a strong lower bound for the product of the measures of
F1 and G0 ∩ G1, or the product of the measures of F0 ∩ F1 and G1. This is the content of Lemma 4.1
(the ‘widening lemma’) in Section 4. With this information at hand, we may proceed as in the algorithm
of Frankl and Rödl. The main novelty (and technical difficulty) of the proof of Theorem 1.1 is thus to
show that this rough outline is actually feasible by appropriately selecting the various parameters.

2. Background material

2.1. General notation

For every pair 𝑎, 𝑏 of integers with 0 � 𝑎 � 𝑏 by [𝑎, 𝑏], we denote the discrete interval {𝑘 ∈ Z :
𝑎 � 𝑘 � 𝑏}. Also recall that for every positive integer n and every nonnegative integer 𝑘 � 𝑛,
we set [𝑛] := {1, . . . , 𝑛} and

( [𝑛]
𝑘

)
:= {𝐴 ⊆ [𝑛] : |𝐴| = 𝑘}; moreover, for every 𝑡 � 0, we set

[𝑛]�𝑡 := {𝐴 ⊆ [𝑛] : |𝐴| � 𝑡}, [𝑛]<𝑡 := {𝐴 ⊆ [𝑛] : |𝐴| < 𝑡}, [𝑛]�𝑡 := {𝐴 ⊆ [𝑛] : |𝐴| � 𝑡} and
[𝑛]>𝑡 := {𝐴 ⊆ [𝑛] : |𝐴| > 𝑡}.

2.2. Families of sets

Let n be a positive integer, and let A ⊆ {0, 1}𝑛. We say that A is downwards closed if for every 𝐴 ∈ A
and every 𝐵 ⊆ 𝐴, we have that 𝐵 ∈ A; respectively, we say that A is upwards closed if for every 𝐴 ∈ A

3It is also not clear if the algorithm works if min{ℓ, 𝑝𝑛 − ℓ } = 𝑜 (𝑝𝑛) and 𝑝 = Θ(1) , but the obstacles in this regime seem
somewhat less serious.
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and every 𝐵 ⊇ 𝐴, we have that 𝐵 ∈ A. If, in addition, 𝑛 � 2, then we set

A0 := {𝐴 : 𝑛 ∉ 𝐴 ∈ A} and A1 :=
{
𝐴 \ {𝑛} : 𝑛 ∈ 𝐴 ∈ A

}
, (2.1)

and we view both A0 and A1 as subfamilies of {0, 1}𝑛−1.
It is also convenient to introduce the following definition.

Definition 2.1 (Forbidden intersections). Let n be a positive integer, let 𝐿 ⊆ [𝑛], and let F ,G ⊆ {0, 1}𝑛.
We write (F ,G) ∈ Forbid(𝑛, 𝐿) to denote the fact that the cross intersections of F and G forbid L; that
is, |𝐴 ∩ 𝐵 | ∉ 𝐿 for every 𝐴 ∈ F and 𝐵 ∈ G.

2.3. p-biased measures

Recall that for every positive integer n and every 0 < 𝑝 < 1 by 𝜇𝑝 , we denote the p-biased probability
measure on {0, 1}𝑛 defined in (1.2). We record, for future use, the following elementary property of
these measures.

Fact 2.2. Let n be a positive integer, let 0 < 𝑝 � 𝑝′ < 1, and let A ⊆ {0, 1}𝑛. If A is upwards closed,
then 𝜇𝑝 (A) � 𝜇𝑝′ (A); respectively, if A is downwards closed, then 𝜇𝑝 (A) � 𝜇𝑝′ (A).

2.4. Chernoff bounds

We will need the following standard estimates of the biased measure of the tails of the binomial
distribution (see, for example, [AS16, Appendix A]).

Lemma 2.3. Let n be a positive integer, let t be a nonnegative real, and let 0 < 𝑝 < 1.

(i) If 𝑝 � 1
2 and 𝑝𝑛 � 𝑡 � 2𝑝𝑛, then

𝜇𝑝
(
[𝑛]�𝑡

)
� exp

(
− (𝑡 − 𝑝𝑛)

2

6𝑝(1 − 𝑝)𝑛

)
. (2.2)

(ii) If 𝑝 � 1
2 and 𝑡 � 𝑝𝑛, then

𝜇𝑝
(
[𝑛]�𝑡

)
� exp

(
− (𝑡 − 𝑝𝑛)

2

2𝑝(1 − 𝑝)𝑛

)
. (2.3)

2.5. Estimates of binomial coefficients

We will also need the following basic estimates of binomial coefficients that follow from a
non-asymptotic version of Stirling’s approximation—see, for example, [Ro55]—and elementary
computations.

Fact 2.4. Let 𝑛 � 2 be an integer, and let 𝑘 ∈ [𝑛 − 1]. Then we have

24
25
√

2𝜋
·
√

𝑛

𝑘 (𝑛 − 𝑘) ·
𝑛𝑛

𝑘 𝑘 (𝑛 − 𝑘)𝑛−𝑘
<

(
𝑛

𝑘

)
<

1
√

2𝜋
·
√

𝑛

𝑘 (𝑛 − 𝑘) ·
𝑛𝑛

𝑘 𝑘 (𝑛 − 𝑘)𝑛−𝑘
; (2.4)

in particular, for every F ⊆
( [𝑛]
𝑘

)
we have

√
2𝜋 ·

√
𝑘 (𝑛 − 𝑘)

𝑛
· 𝜇 𝑘

𝑛
(F) < |F |(𝑛

𝑘

) < 25
√

2𝜋
24

·
√
𝑘 (𝑛 − 𝑘)

𝑛
· 𝜇 𝑘

𝑛
(F). (2.5)
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Moreover, if 𝐻 : [0, 1] → R denotes the binary entropy function4, then

24
25
√

2𝜋
·
√

𝑛

𝑘 (𝑛 − 𝑘) · 2
𝑛𝐻 ( 𝑘𝑛 ) �

(
𝑛

𝑘

)
�

1
√

2𝜋
·
√

𝑛

𝑘 (𝑛 − 𝑘) · 2
𝑛𝐻 ( 𝑘𝑛 ) . (2.6)

3. Forbidding initial or final intervals

Our goal in this section is to obtain estimates for the product of the biased measures of a pair of families
F ,G ⊆ {0, 1}𝑛 whose cross intersections forbid an initial or a final subinterval of [𝑛]. This information
is needed for the proof of Theorem 1.1.

We note that closely related problems have been studied extensively in extremal combinatorics;
see [El22, FT18] and the references therein. We shall obtain the desired estimates, however, from
the following well-known concentration inequality for the biased measures. As usual, for a family
A ⊆ {0, 1}𝑛 and a nonnegative real 𝑡 � 𝑛, we set A𝑡 := {𝐻 ⊆ [𝑛] : ∃𝐴 ∈ A such that |𝐻 � 𝐴| � 𝑡}.

Proposition 3.1. Let n be a positive integer, let 0 < 𝑝 < 1, let 𝑡 � 𝑝𝑛 be a nonnegative real, and let
A ⊆ {0, 1}𝑛 such that 𝜇𝑝 (A) � 1

2 .

(i) If 0 < 𝑝 � 1
2 , then we have

𝜇𝑝 (A𝑡 ) � 1 − exp
(
− 𝑡2

6𝑝(1 − 𝑝)𝑛

)
. (3.1)

(ii) If 1
2 < 𝑝 < 1, then we have

𝜇𝑝 (A𝑡 ) � 1 − exp
(
− 𝑡2

2𝑝(1 − 𝑝)𝑛

)
. (3.2)

Proposition 3.1 follows from the proof of [BHT06, Proposition 2.4] in the work of Bobkov, Choudré
and Tetali, which in turn is based on results of Bollobás–Leader [BL91], Jogdeo–Samuels [JS68] and
Talagrand [Ta89]. Since Proposition 3.1 is not explicitly isolated in [BHT06], for the convenience of
the reader, we briefly recall the argument.

Proof of Proposition 3.1. As it is mentioned in [BHT06], it is enough to prove the result under the
additional assumption that A is downwards closed. Indeed, Step 1 through Step 4 in the proof of [Ta89,
Theorem 7] carry out this reduction. So, suppose that A is downwards closed with 𝜇𝑝 (A) � 1

2 . By
[JS68, Theorem 3.2 and Corollary 3.1], we have

𝜇𝑝 (A) � 𝜇𝑝
(
[𝑛]� �𝑝𝑛�

)
; (3.3)

that is, the median of the binomial distribution Bin(𝑛, 𝑝) is greater than or equal to �𝑝𝑛�. Moreover,
since A is downwards closed, by [BL91, Corollary 5], we have

𝜇𝑝 (A𝑡 ) � 𝜇𝑝
(
[𝑛]� �𝑝𝑛�+𝑡

)
, (3.4)

which in turn implies that

1 − 𝜇𝑝 (A𝑡 ) � 𝜇𝑝
(
[𝑛]> �𝑝𝑛�+𝑡

)
� 𝜇𝑝

(
[𝑛]�𝑝𝑛+𝑡

)
. (3.5)

Therefore, if 0 < 𝑝 � 1
2 , then (3.1) follows from (3.5) and (2.2), while if 1

2 < 𝑝 < 1, then (3.2) follows
from (3.5) and (2.3). �

4Recall that 𝐻 (0) = 𝐻 (1) = 0, and 𝐻 (𝑥) = −𝑥 log2 (𝑥) − (1 − 𝑥) log2 (1 − 𝑥) if 0 < 𝑥 < 1.
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Proposition 3.1 will be used in the following form (the proof is straightforward, and it is left to the
reader).

Corollary 3.2. Let n be a positive integer, let 0 < 𝑝 < 1, let 𝑡 � 𝑝𝑛 be a nonnegative real, and let
A ⊆ {0, 1}𝑛.

(i) If 0 < 𝑝 � 1
2 and 𝜇𝑝 (A) > exp

(
− 𝑡2

6𝑝 (1−𝑝)𝑛
)
, then 𝜇𝑝 (A2𝑡 ) > 1 − exp

(
− 𝑡2

6𝑝 (1−𝑝)𝑛
)
.

(ii) If 1
2 < 𝑝 < 1 and 𝜇𝑝 (A) > exp

(
− 𝑡2

2𝑝 (1−𝑝)𝑛
)
, then 𝜇𝑝 (A2𝑡 ) > 1 − exp

(
− 𝑡2

2𝑝 (1−𝑝)𝑛
)
.

We are now ready to state the main result in this section.

Lemma 3.3. Let n be a positive integer, let 0 < 𝑝 � 𝑝′ � 1− 𝑝 with 𝑝 � 1
2 , and let 𝛼 � 𝑝𝑛 be a positive

integer. Also let F ,G ⊆ {0, 1}𝑛.

(i) If (F ,G) ∈ Forbid(𝑛, [0, 𝛼]), then

𝜇𝑝 (F) 𝜇𝑝′ (G) � exp
(
− 𝛼2

24𝑝(1 − 𝑝)𝑛

)
. (3.6)

(ii) If (F ,G) ∈ Forbid(𝑛, [𝑝𝑛 − 𝛼, 𝑛]), then

𝜇𝑝 (F) 𝜇𝑝′ (G) � 2 exp
(
− 𝛼2

24𝑝(1 − 𝑝)𝑛

)
. (3.7)

Proof. We start with the proof of part (i). Clearly, we may assume that the pair (F ,G) is optimal, in the
sense that it maximizes the quantity in the left-hand side of (3.6); consequently, we may assume thatF and
G are both upwards closed. Next observe that if 𝜇𝑝 (F) � exp

(
− 𝛼2

24𝑝 (1−𝑝)𝑛
)
, then (3.6) is straightforward.

Therefore, we may also assume that 𝜇𝑝 (F) > exp
(
− 𝛼2

24𝑝 (1−𝑝)𝑛
)
. By Corollary 3.2 applied for ‘𝑡 = 𝛼

2 ’,
we obtain that 𝜇𝑝 (F𝛼) > 1− exp

(
− 𝛼2

24𝑝 (1−𝑝)𝑛
)
, where F𝛼 := {𝐻 ⊆ [𝑛] : ∃𝐴 ∈ F with |𝐻 � 𝐴| � 𝛼}.

Set G := {[𝑛] \ 𝐺 : 𝐺 ∈ G}, and note that for every 𝐹 ∈ F and every 𝐺 ∈ G, we have that
|𝐹 � ([𝑛] \𝐺) | > 𝛼. This yields that G∩F𝛼 = ∅, which in turn implies that 𝜇𝑝 (G) < exp

(
− 𝛼2

24𝑝 (1−𝑝)𝑛
)
.

Finally, since G is upwards closed and 𝑝′ � 1 − 𝑝, by Fact 2.2, we conclude that

exp
(
− 𝛼2

24𝑝(1 − 𝑝)𝑛

)
> 𝜇𝑝 (G) = 𝜇1−𝑝 (G) � 𝜇𝑝′ (G) � 𝜇𝑝 (F) 𝜇𝑝′ (G). (3.8)

We proceed to the proof of part (ii). As before, we may assume that the pair (F ,G) is optimal and,
hence, that F and G are both downwards closed. Consequently, by Fact 2.2, it is enough to show that

𝜇𝑝 (F) 𝜇𝑝 (G) � 2 exp
(
− 𝛼2

24𝑝(1 − 𝑝)𝑛

)
. (3.9)

Setting

◦ F�𝑝𝑛− 𝛼
2 := {𝐴 ∈ F : |𝐴| � 𝑝𝑛 − 𝛼

2 }, F>𝑝𝑛− 𝛼
2 := {𝐴 ∈ F : |𝐴| > 𝑝𝑛 − 𝛼

2 }, and
◦ G�𝑝𝑛− 𝛼

2 := {𝐵 ∈ G : |𝐵 | � 𝑝𝑛 − 𝛼
2 }, G>𝑝𝑛−

𝛼
2 := {𝐵 ∈ G : |𝐵 | > 𝑝𝑛 − 𝛼

2 },

by part (ii) of Lemma 2.3 applied for 𝜇1−𝑝 , we see that

max
{
𝜇𝑝

(
F�𝑝𝑛− 𝛼

2
)
, 𝜇𝑝

(
G�𝑝𝑛− 𝛼

2
)}
� exp

(
− 𝛼2

8𝑝(1 − 𝑝)𝑛

)
; (3.10)
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thus, if 𝜇𝑝
(
F>𝑝𝑛− 𝛼

2
)
< exp

(
− 𝛼2

24𝑝 (1−𝑝)𝑛
)
, then the result follows from (3.10). So, suppose that

𝜇𝑝
(
F>𝑝𝑛− 𝛼

2
)
� exp

(
− 𝛼2

24𝑝 (1−𝑝)𝑛
)
. By Corollary 3.2 again applied for ‘𝑡 = 𝛼

2 ’, we obtain that

𝜇𝑝
(
F>𝑝𝑛− 𝛼

2
𝛼

)
� 1 − exp

(
− 𝛼2

24𝑝(1 − 𝑝)𝑛

)
, (3.11)

where F>𝑝𝑛− 𝛼
2

𝛼 := {𝐻 ⊆ [𝑛] : ∃𝐴 ∈ F>𝑝𝑛− 𝛼
2 with |𝐻 � 𝐴| � 𝛼}. Now note that, since (F ,G) ∈

Forbid(𝑛, [𝑝𝑛 − 𝛼, 𝑛]), for every 𝐹 ∈ F>𝑝𝑛− 𝛼
2 and every 𝐺 ∈ G>𝑝𝑛− 𝛼

2 , we have

|𝐹 � 𝐺 | = |𝐹 | + |𝐺 | − 2|𝐹 ∩ 𝐺 | > 𝛼. (3.12)

This observation yields that G>𝑝𝑛− 𝛼
2 ∩ F>𝑝𝑛− 𝛼

2
𝛼 = ∅, and therefore, by (3.11), we obtain that

𝜇𝑝
(
G>𝑝𝑛− 𝛼

2
)
< exp

(
− 𝛼2

24𝑝 (1−𝑝)𝑛
)
. Inequality (3.7) follows from this estimate and (3.10). The proof of

Lemma 3.3 is thus completed. �

4. The widening lemma

The section is devoted to the proof of the following lemma. (Recall that for every family A ⊆ {0, 1}𝑛
(𝑛 � 2) by A0 and A1, we denote the sections of A defined in (2.1); we also recall that we view A0 and
A1 as families in {0, 1}𝑛−1.)

Lemma 4.1 (Widening lemma). Let 𝑛 � 2 be an integer, let 0 < 𝑝 � 𝑝′ � 1
2 , and let F ,G ⊆ {0, 1}𝑛 be

nonempty. Also let 0 < 𝛿 < 1
10 , and assume that

𝜇𝑝 (F1) 𝜇𝑝′ (G1) � (1 + 𝛿) 𝜇𝑝 (F) 𝜇𝑝′ (G) (4.1)

and

max
{
𝜇𝑝 (F0) 𝜇𝑝′ (G0 ∪ G1), 𝜇𝑝 (F0 ∪ F1) 𝜇𝑝′ (G0)

}
�

(
1 + 𝑝

1 − 𝑝 𝛿
)
𝜇𝑝 (F) 𝜇𝑝′ (G). (4.2)

Then we have

max
{
𝜇𝑝 (F1) 𝜇𝑝′ (G0 ∩ G1), 𝜇𝑝 (F0 ∩ F1) 𝜇𝑝′ (G1)

}
>

(
1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2
)
𝜇𝑝 (F) 𝜇𝑝′ (G). (4.3)

As we have noted in Subsection 1.3, Lemma 4.1 is a crucial ingredient of the proof of Theorem 1.1.
That said, we advise the reader to skip its proof at first reading and return to this section once the basic
steps of the proof of Theorem 1.1 have been properly understood.

We shall deduce Lemma 4.1 from the following, purely analytical, result.

Sublemma 4.2. Let 𝑥, 𝑥 ′, 𝑦, 𝑦′, 𝑧, 𝑧′, 𝑤, 𝑤′, 𝑝, 𝑝′, 𝛿 ∈ [−1, 1] be real numbers with 𝑦, 𝑤 � 0, 𝑦′, 𝑤′ � 0,
max{𝑥, 𝑥 ′} � 𝑤, max{𝑧, 𝑧′} � 𝑦, 0 < 𝑝 � 𝑝′ � 1

2 and 0 < 𝛿 < 1
10 . Assume that the following

identities

𝑥 ′ = − 𝑝

1 − 𝑝 𝑥, 𝑤 + 𝑤′ = 𝑥 + 𝑥 ′ = 1 − 2𝑝
1 − 𝑝 𝑥, (4.4)

𝑧′ = − 𝑝′

1 − 𝑝′ 𝑧, 𝑦 + 𝑦′ = 𝑧 + 𝑧′ = 1 − 2𝑝′

1 − 𝑝′ 𝑧, (4.5)
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as well as the following inequalities

(1 + 𝑥) (1 + 𝑧) � 1 + 𝛿, (4.6)

(1 + 𝑥 ′) (1 + 𝑦) � 1 + 𝑝

1 − 𝑝 𝛿, (4.7)

(1 + 𝑧′) (1 + 𝑤) � 1 + 𝑝

1 − 𝑝 𝛿, (4.8)

are satisfied. Then at least one of the following inequalities

(1 + 𝑥) (1 + 𝑦′) > 1 − 𝛿 − 2
𝑝

1 − 𝑝 𝛿
2, (4.9)

(1 + 𝑧) (1 + 𝑤′) > 1 − 𝛿 − 2
𝑝

1 − 𝑝 𝛿
2, (4.10)

must also be satisfied.

We postpone the proof of Sublemma 4.2 to the end of this section. At this point, let us give the proof
of Lemma 4.1.

Proof of Lemma 4.1. Notice, first, that

𝜇𝑝 (F) = 𝑝𝜇𝑝 (F1) + (1 − 𝑝)𝜇𝑝 (F0) and 𝜇𝑝′ (G) = 𝑝′𝜇𝑝′ (G1) + (1 − 𝑝′)𝜇𝑝′ (G0). (4.11)

Next, define the real numbers 𝑥, 𝑥 ′, 𝑦, 𝑦′, 𝑧, 𝑧′, 𝑤, 𝑤′ by setting

𝜇𝑝 (F1)
𝜇𝑝 (F)

= 1 + 𝑥,
𝜇𝑝′ (G1)
𝜇𝑝′ (G)

= 1 + 𝑧,

𝜇𝑝 (F0)
𝜇𝑝 (F)

= 1 + 𝑥 ′,
𝜇𝑝′ (G0)
𝜇𝑝′ (G)

= 1 + 𝑧′,

𝜇𝑝 (F0 ∪ F1)
𝜇𝑝 (F)

= 1 + 𝑤,
𝜇𝑝′ (G0 ∪ G1)
𝜇𝑝′ (G)

= 1 + 𝑦,

𝜇𝑝 (F0 ∩ F1)
𝜇𝑝 (F)

= 1 + 𝑤′,
𝜇𝑝′ (G0 ∩ G1)
𝜇𝑝′ (G)

= 1 + 𝑦′.

With these choices, the result follows from Sublemma 4.2 after taking into account the identities in
(4.11). �

4.1. Proof of Sublemma 4.2

First observe that, by (4.4) and (4.5), we have

𝑥𝑦′ + 𝑥 ′𝑦 = 1 − 2𝑝′

1 − 𝑝′ 𝑥𝑧 −
𝑥𝑦

1 − 𝑝 and 𝑧𝑤′ + 𝑧′𝑤 =
1 − 2𝑝
1 − 𝑝 𝑥𝑧 −

𝑧𝑤

1 − 𝑝′ (4.12)

that yields that

(1 + 𝑥) (1 + 𝑦′) + (1 + 𝑥 ′) (1 + 𝑦) = 2 + 1 − 2𝑝
1 − 𝑝 𝑥 +

1 − 2𝑝′

1 − 𝑝′ 𝑧(1 + 𝑥) −
𝑥𝑦

1 − 𝑝 , (4.13)

(1 + 𝑧) (1 + 𝑤′) + (1 + 𝑧′) (1 + 𝑤) = 2 + 1 − 2𝑝
1 − 𝑝 𝑥(1 + 𝑧) +

1 − 2𝑝′

1 − 𝑝′ 𝑧 −
𝑧𝑤

1 − 𝑝′ . (4.14)
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Combining these equalities with (4.7) and (4.8), we obtain that

(1 + 𝑥) (1 + 𝑦′) � 1 − 𝑝

1 − 𝑝 𝛿 +
1 − 2𝑝
1 − 𝑝 𝑥 +

1 − 2𝑝′

1 − 𝑝′ 𝑧(1 + 𝑥) −
𝑥𝑦

1 − 𝑝 (4.15)

and

(1 + 𝑧) (1 + 𝑤′) � 1 − 𝑝

1 − 𝑝 𝛿 +
1 − 2𝑝
1 − 𝑝 𝑥(1 + 𝑧) +

1 − 2𝑝′

1 − 𝑝′ 𝑧 −
𝑧𝑤

1 − 𝑝′ . (4.16)

Next, observe that since y and w are nonnegative, by (4.7) and (4.8), we have

𝑥 ′ �
𝑝

1 − 𝑝 𝛿 and 𝑧′ �
𝑝

1 − 𝑝 𝛿 (4.17)

that yields that

𝑥 � −𝛿 and 𝑧 � −𝛿. (4.18)

By (4.6), we have that either

(A1) 𝑥 < 𝛿
2 , or

(A2) 𝑧 < 𝛿
2 .

Claim 4.3. If 𝑥 < 𝛿
2 , then

𝑦 � 2
𝑝

1 − 𝑝 𝛿. (4.19)

However, if 𝑧 < 𝛿
2 , then

𝑤 �

𝑝
1−𝑝 +

𝑝′

2(1−𝑝′)

1 − 𝑝′

2(1−𝑝′) 𝛿
𝛿. (4.20)

Proof of Claim 4.3. First assume that 𝑥 < 𝛿
2 . Then, by (4.7), we have

1 + 𝑦 �
1 + 𝑝

1−𝑝 𝛿

1 + 𝑥 ′ = 1 +
𝑝

1−𝑝 𝛿 − 𝑥
′

1 + 𝑥 ′ = 1 +
𝑝

1−𝑝 𝛿 +
𝑝

1−𝑝 𝑥

1 − 𝑝
1−𝑝 𝑥

. (4.21)

Since − 1
10 < −𝛿 � 𝑥 <

𝛿
2 <

1
20 and the function (−1, 1) � 𝑥 ↦→

𝑝
1−𝑝 𝛿+

𝑝
1−𝑝 𝑥

1− 𝑝
1−𝑝 𝑥

is increasing, by (4.21), we
see that (4.19) is satisfied.

Next assume that 𝑧 < 𝛿
2 . By (4.8), we have

1 + 𝑤 �
1 + 𝑝

1−𝑝 𝛿

1 + 𝑧′ = 1 +
𝑝

1−𝑝 𝛿 − 𝑧
′

1 + 𝑧′ = 1 +
𝑝

1−𝑝 𝛿 +
𝑝′

1−𝑝′ 𝑧

1 − 𝑝′

1−𝑝′ 𝑧
. (4.22)

Thus, (4.20) follows from (4.22) using the fact that − 1
10 < −𝛿 � 𝑧 < 𝛿

2 < 1
20 and the fact that the

function (−1, 1) � 𝑧 ↦→
𝑝

1−𝑝 𝛿+
𝑝′

1−𝑝′ 𝑧

1− 𝑝′
1−𝑝′ 𝑧

is increasing. �

We proceed by considering the following cases.
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Case 1: 𝑥 � 0 and 𝑧 � 0.
First assume that 𝑥 < 𝛿

2 . Then, since 𝑝 � 1
2 , by (4.19), we see that 𝑥𝑦

1−𝑝 < 2 𝑝
1−𝑝 𝛿

2. Moreover, since
𝑥, 𝑧 � 0, we have 1−2𝑝

1−𝑝 𝑥 +
1−2𝑝′
1−𝑝′ 𝑧(1 + 𝑥) � 0 and so, by (4.15), we obtain that

(1 + 𝑥) (1 + 𝑦′) > 1 − 𝑝

1 − 𝑝 𝛿 − 2
𝑝

1 − 𝑝 𝛿
2 � 1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2; (4.23)

that is, (4.9) is satisfied.
However, if 𝑧 < 𝛿

2 , then we consider the subcases ‘𝑝 � 3
7 ’ and ‘ 3

7 < 𝑝’. First observe that, by
(4.20) and the fact that 𝛿 < 1

10 , we have that 𝑤 � 2𝛿. If 0 < 𝑝 � 3
7 then, since 𝑤 � 0, this

yields that 𝑧𝑤
1−𝑝′ < 2𝛿2 < 1−2𝑝

1−𝑝 𝛿. Using again our starting assumption that 𝑥, 𝑧 � 0, we see that
1−2𝑝
1−𝑝 𝑥(1 + 𝑧) +

1−2𝑝′
1−𝑝′ 𝑧 � 0. By (4.16) and the previous observations, we obtain that

(1 + 𝑧) (1 + 𝑤′) � 1 − 𝑝

1 − 𝑝 𝛿 −
1 − 2𝑝
1 − 𝑝 𝛿 = 1 − 𝛿 > 1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2; (4.24)

in other words, in this subcase, (4.10) is satisfied. Finally, assume that 3
7 < 𝑝 � 1

2 . Then observe
that 𝑝′

2(1−𝑝′) <
2
3

𝑝
1−𝑝 , which in turn implies, by (4.20) and the fact that 𝛿 < 1

10 , that 𝑤 < 2 𝑝
1−𝑝 𝛿.

Therefore, 𝑧𝑤 < 𝑝
1−𝑝 𝛿

2 < 2 𝑝
1−𝑝 𝛿

2. By the previous discussion, (4.16) and using once again the estimate
1−2𝑝
1−𝑝 𝑥(1 + 𝑧) +

1−2𝑝′
1−𝑝′ 𝑧 � 0, we conclude that

(1 + 𝑧) (1 + 𝑤′) > 1 − 𝛿 − 2
𝑝

1 − 𝑝 𝛿
2, (4.25)

and so, in this subcase, (4.10) is satisfied.

Case 2: 𝑥 < 0 and 𝑧 � 0.
Then we have − 𝑥𝑦

1−𝑝 � 0 and 1−2𝑝
1−𝑝 𝑥+

1−2𝑝′
1−𝑝′ 𝑧(1+𝑥) �

1−2𝑝
1−𝑝 𝑥, and so, by (4.15) and (4.18), we obtain that

(1 + 𝑥) (1 + 𝑦′) � 1 − 𝑝

1 − 𝑝 𝛿 −
1 − 2𝑝
1 − 𝑝 𝛿 = 1 − 𝛿 > 1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2. (4.26)

Thus, in this case, (4.9) is satisfied.

Case 3: 𝑥 � 0 and 𝑧 < 0.
It is similar to Case 2. Indeed, observe that − 𝑧𝑤1−𝑝 � 0 and 1−2𝑝

1−𝑝 𝑥(1 + 𝑧) +
1−2𝑝′
1−𝑝′ 𝑧 �

1−2𝑝′
1−𝑝′ 𝑧. Hence, by

(4.16), (4.18) and the fact that 1−2𝑝
1−𝑝 �

1−2𝑝′
1−𝑝′ , we obtain that

(1 + 𝑧) (1 + 𝑤′) � 1 − 𝑝

1 − 𝑝 𝛿 −
1 − 2𝑝′

1 − 𝑝′ 𝛿 > 1 − 𝛿 − 2
𝑝

1 − 𝑝 𝛿
2; (4.27)

thus, in this case, (4.10) is satisfied.

Case 4: 𝑥 < 0 and 𝑧 < 0.
First observe that − 𝑥𝑦

1−𝑝 > 0. Moreover, since 𝑧′ � 𝑦, by (4.7),

1 + 𝑥 ′ + 𝑧′ + 𝑥 ′𝑧′ = (1 + 𝑥 ′) (1 + 𝑧′) � (1 + 𝑥 ′) (1 + 𝑦) � 1 + 𝑝

1 − 𝑝 𝛿 (4.28)
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that implies that 𝑥 ′ + 𝑧′ + 𝑥 ′𝑧′ � 𝑝
1−𝑝 𝛿. Noticing that 1−2𝑝′

𝑝′ �
1−2𝑝
𝑝 , by (4.4) and (4.5),

1 − 2𝑝
1 − 𝑝 𝑥 +

1 − 2𝑝′

1 − 𝑝′ 𝑧(1 + 𝑥) = −
1 − 2𝑝
𝑝

𝑥 ′ − 1 − 2𝑝′

𝑝′
𝑧′ + 1 − 2𝑝′

𝑝′
1 − 𝑝
𝑝

𝑥 ′𝑧′

� −1 − 2𝑝
𝑝

𝑥 ′ − 1 − 2𝑝
𝑝

𝑧′ − 1 − 2𝑝
𝑝

𝑥 ′𝑧′

� −1 − 2𝑝
𝑝
(𝑥 ′ + 𝑧′ + 𝑥 ′𝑧′) � −1 − 2𝑝

1 − 𝑝 𝛿. (4.29)

Hence, by (4.15) and (4.29), we conclude that

(1 + 𝑥) (1 + 𝑦′) � 1 − 𝑝

1 − 𝑝 𝛿 −
1 − 2𝑝
1 − 𝑝 𝛿 = 1 − 𝛿 > 1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2; (4.30)

thus, in this case, (4.9) is satisfied.
The above cases are exhaustive, and so the proof of Sublemma 4.2 is completed.

5. The algorithm

In this section, we present the formal description and the basic properties of the algorithm that is used
in the proof of Theorem 1.1; we shall also discuss in more loose terms its main features. (Again, we
recall that for every family A ⊆ {0, 1}𝑛 (𝑛 � 2) by A0,A1 ⊆ {0, 1}𝑛−1, we denote the sections of A
defined in (2.1).)

For the analysis of the algorithm, we will need the following elementary, but crucial, fact that
originates in the work of Frankl and Rödl [FR87].

Fact 5.1. Let 𝑛 � 2 be an integer, let F ,G ⊆ {0, 1}𝑛 and let 𝑎, 𝑏 ∈ [𝑛] with 𝑎 � 𝑏. Assume that
(F ,G) ∈ Forbid(𝑛, [𝑎, 𝑏]). Then we have

(F1,G1) ∈ Forbid(𝑛 − 1, [𝑎 − 1, 𝑏 − 1]), (5.1)

(F0,G0 ∪ G1) ∈ Forbid(𝑛 − 1, [𝑎, 𝑏]), (F0 ∪ F1,G0) ∈ Forbid(𝑛 − 1, [𝑎, 𝑏]), (5.2)

(F1,G0 ∩ G1) ∈ Forbid(𝑛 − 1, [𝑎 − 1, 𝑏]), (F0 ∩ F1,G1) ∈ Forbid(𝑛 − 1, [𝑎 − 1, 𝑏]). (5.3)

The algorithm takes as an input

(I1) an integer 𝑛 � 2, two reals 0 < 𝑝 � 𝑝′ � 1
2 and a positive integer ℓ < 𝑝𝑛,

(I2) a real 0 < 𝛿 < 1
10 , and

(I3) two nonempty families Finit,Ginit ⊆ {0, 1}𝑛 whose cross intersections forbid ℓ,

and outputs

(O1) three nonnegative integers 𝑎∗ � 𝑏∗ � 𝑚∗ with 𝑚∗ � 1, and
(O2) two families F∗, G∗ ⊆ {0, 1}𝑚∗ such that

(F∗, G∗) ∈ Forbid(𝑚∗, [0, 𝑏∗]) or (F∗,G∗) ∈ Forbid(𝑚∗, [𝑎∗, 𝑚∗]). (5.4)

It also uses six counters 𝑆𝑑1 , 𝑆𝑑2 , 𝑆𝑤 , 𝑎, 𝑏, 𝑚 that serve different purposes. The first three counters,
𝑆𝑑1 , 𝑆𝑑2 and 𝑆𝑤 , give us the total number of iterations, and they are used for bookkeeping the operations
performed by the algorithm (we shall comment on these operations in due course). The counters 𝑎, 𝑏
encode the interval that is forbidden for the families F and G. Finally, the counter m keeps track of the
dimension of F and G; in particular, m starts from n and drops by one at each iteration. Thus, we have

𝑆𝑑1 + 𝑆𝑑2 + 𝑆𝑤 = 𝑛 − 𝑚∗. (5.5)
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Algorithm.

Input: 𝑛, 𝑝, 𝑝′, ℓ, 0 < 𝛿 < 1
10 , (Finit,Ginit) ∈ Forbid(𝑛, {ℓ}) with Finit,Ginit ≠ ∅

Output: 𝑎∗, 𝑏∗, 𝑚∗,F∗,G∗

Initialize: 𝑆𝑑1 ← 0, 𝑆𝑑2 ← 0, 𝑆𝑤 ← 0, 𝑎 ← ℓ, 𝑏 ← ℓ,
𝑚 ← 𝑛, F ← Finit, G ← Ginit.

Step 1: If 𝑎 = 0, then 𝑎∗ ← 𝑎, 𝑏∗ ← 𝑏, 𝑚∗ ← 𝑚, F∗ ← F , G∗ ← G and terminate;
else go to Step 2.

Step 2: If 𝑏 = 𝑚, then 𝑎∗ ← 𝑎, 𝑏∗ ← 𝑏, 𝑚∗ ← 𝑚, F∗← F , G∗ ← G and terminate;
else go to Step 3.

Step 3: If 𝜇𝑝 (F1) 𝜇𝑝′ (G1) > (1 + 𝛿) 𝜇𝑝 (F) 𝜇𝑝′ (G), then 𝑆𝑑1 ← 𝑆𝑑1 + 1,
𝑎 ← 𝑎 − 1, 𝑏 ← 𝑏 − 1, 𝑚 ← 𝑚 − 1, F ← F1, G ← G1 and go to Step 1;

else go to Step 4.
Step 4: If 𝜇𝑝 (F0) 𝜇𝑝′ (G0 ∪ G1) > (1 + 𝑝

1−𝑝 𝛿) 𝜇𝑝 (F) 𝜇𝑝′ (G), then 𝑆𝑑2 ← 𝑆𝑑2 + 1,
𝑚 ← 𝑚 − 1, F ← F0, G ← G0 ∪ G1 and go to Step 1;

else go to Step 5.
Step 5: If 𝜇𝑝 (F0 ∪ F1) 𝜇𝑝′ (G0) > (1 + 𝑝

1−𝑝 𝛿) 𝜇𝑝 (F) 𝜇𝑝′ (G), then 𝑆𝑑2 ← 𝑆𝑑2 + 1,
𝑚 ← 𝑚 − 1, F ← F0 ∪ F1, G ← G0 and go to Step 1;

else go to Step 6.
Step 6: If 𝜇𝑝 (F1) 𝜇𝑝′ (G0 ∩ G1) > (1 − 𝛿 − 2 𝑝

1−𝑝 𝛿
2) 𝜇𝑝 (F) 𝜇𝑝′ (G),

then 𝑆𝑤 ← 𝑆𝑤 + 1, 𝑎 ← 𝑎 − 1, 𝑚 ← 𝑚 − 1, F ← F1, G ← G0 ∩ G1
and go to Step 1;

else go to Step 7.
Step 7: 𝑆𝑤 ← 𝑆𝑤 + 1, 𝑎 ← 𝑎 − 1, 𝑚 ← 𝑚 − 1, F ← F0 ∩ F1, G ← G1

and go to Step 1.

Moreover, by Fact 5.1, at each iteration of ‘type’ 𝑆𝑑1 or 𝑆𝑤 (that is, at each iteration where one of the
counters 𝑆𝑑1 or 𝑆𝑤 is increased by one), the lower bound a of the forbidden interval [𝑎, 𝑏] is reduced
by one; since the algorithm starts with 𝑎 = ℓ, we obtain that

𝑆𝑑1 + 𝑆𝑤 � ℓ. (5.6)

Next, observe that 𝑆𝑑1 and 𝑆𝑑2 count the number of iterations where we have ‘density increment’.
Note, however, that this increment is not uniform: at each iteration of ‘type’ 𝑆𝑑1 , the product of the
measures is increased by a factor (1+𝛿), while at each iteration of ‘type’ 𝑆𝑑2 , the product of the measures
is increased by a factor (1 + 𝑝

1−𝑝 𝛿). However, if at a certain iteration the algorithm reaches Step 6 and
then moves to Step 1, then the product of the measures of the new families is comparable to the product
of the measures of the previous families by a factor (1 − 𝛿 − 2 𝑝

1−𝑝 𝛿
2); in other words, the product of

the measures may possibly drop, but not significantly. Finally, if at a certain iteration the algorithm
reaches Step 7, then the widening lemma (Lemma 4.1) ensures that the product of the measures of
the new families is also at least (1 − 𝛿 − 2 𝑝

1−𝑝 𝛿
2) times the product of the measures of the previous

families.
Summing up the previous observations, we arrive at the following basic estimate

𝜇𝑝 (F∗) 𝜇𝑝′ (G∗) > (1 + 𝛿)𝑆𝑑1

(
1 + 𝑝

1 − 𝑝 𝛿
)𝑆𝑑2

(
1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2
)𝑆𝑤

𝜇𝑝 (Finit) 𝜇𝑝′ (Ginit) (5.7)

that will be used in the analysis of the algorithm in the next section.
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6. Proof of Theorem 1.1

Let 𝑛, 𝑝, 𝑝′, ℓ,F ,G be as in the statement of the theorem. Clearly, we may assume that F and G are
nonempty. Notice that (1.3) is straightforward if ℓ = 0 or ℓ = 𝑝𝑛. Thus, we may also assume that ℓ is a
positive integer with ℓ < 𝑝𝑛 and, consequently, 𝑛 � 2; moreover, setting

𝛿 := min
{ ℓ

58𝑝𝑛
,
𝑝𝑛 − ℓ
51𝑝𝑛

}
, (6.1)

we have that 0 < 𝛿 < 1
10 . We will actually show the slightly stronger estimate

𝜇𝑝 (F) 𝜇𝑝′ (G) � 2 exp(−𝑝𝑛𝛿2). (6.2)

Assume, towards a contradiction, that this is not the case; that is,

𝜇𝑝 (F) 𝜇𝑝′ (G) > 2 exp(−𝑝𝑛𝛿2). (6.3)

We run the algorithm described in Section 5 for 𝑛, 𝑝, 𝑝′, ℓ, 𝛿 and the families F ,G. Let 𝑎∗, 𝑏∗, 𝑚∗,F∗,G∗
denote the output of the algorithm. By (5.4), we see that either

(A1) (F∗,G∗) ∈ Forbid(𝑚∗, [0, 𝑏∗]), or
(A2) (F∗,G∗) ∈ Forbid(𝑚∗, [𝑎∗, 𝑚∗]).

The contradiction will be derived by showing that none of these cases can occur.
To this end, we first observe that, by (5.7) and (6.3), we have

1 > (1 + 𝛿)𝑆𝑑1

(
1 + 𝑝

1 − 𝑝 𝛿
)𝑆𝑑2

(
1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2
)𝑆𝑤

exp(−𝑝𝑛𝛿2), (6.4)

where 𝑆𝑑1 , 𝑆𝑑2 , 𝑆𝑤 are the counters used in the algorithm. We will need the following estimates for
𝑆𝑑1 , 𝑆𝑑2 and 𝑆𝑤 .

Lemma 6.1. We have

𝑆𝑑1 − 𝑆𝑤 < 5𝑝𝑛𝛿, (6.5)

𝑆𝑑2 −
1 − 𝑝
𝑝

𝑆𝑤 < 3𝑛𝛿. (6.6)

In the proof of Lemma 6.1, as well as in the rest of this section, we will repeatedly use the following
elementary observation, which we isolate for the convenience of the reader.

Observation 6.2. The following hold.

(i) We have 1
1−𝑥 = 1 + 𝑥

1−𝑥 for every 𝑥 ≠ 1.
(ii) We have 𝑥 − 𝑥2

2 � ln(1 + 𝑥) � 𝑥 for every 𝑥 � 0.

In particular, for every 0 � 𝑥 < 1, we have

𝑥

1 − 𝑥 −
𝑥2

2(1 − 𝑥)2
� ln

( 1
1 − 𝑥

)
�

𝑥

1 − 𝑥 . (6.7)

We are ready to proceed to the proof of Lemma 6.1.

Proof of Lemma 6.1. We start with the proof of (6.5). Notice first that, by (6.4),

1 > (1 + 𝛿)𝑆𝑑1

(
1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2
)𝑆𝑤

exp(−𝑝𝑛𝛿2) (6.8)
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or, equivalently,

1 > (1 + 𝛿)𝑆𝑑1−𝑆𝑤
(
(1 + 𝛿)

(
1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2) )𝑆𝑤 exp(−𝑝𝑛𝛿2). (6.9)

Since (1+𝛿) (1−𝛿−2 𝑝
1−𝑝 𝛿

2) = 1− 1+𝑝
1−𝑝 𝛿

2−2 𝑝
1−𝑝 𝛿

3, after taking logarithms and rearranging we find that

𝑆𝑑1 − 𝑆𝑤 <
1

ln(1 + 𝛿)

(
𝑆𝑤 ln

( 1
1 − 1+𝑝

1−𝑝 𝛿
2 − 2 𝑝

1−𝑝 𝛿
3

)
+ 𝑝𝑛𝛿2

)
(6.10)

that implies, by Observation 6.2, that

𝑆𝑑1 − 𝑆𝑤 <
1

𝛿(1 − 𝛿
2 )

(
𝑆𝑤

1+𝑝
1−𝑝 𝛿

2 + 2 𝑝
1−𝑝 𝛿

3

1 − 1+𝑝
1−𝑝 𝛿

2 − 2 𝑝
1−𝑝 𝛿

3
+ 𝑝𝑛𝛿2

)
. (6.11)

By (5.6), the fact that ℓ < 𝑝𝑛 and (6.11), we conclude that

𝑆𝑑1 − 𝑆𝑤 < 𝑝𝑛𝛿
����

1+𝑝
1−𝑝 + 2 𝑝

1−𝑝 𝛿(
1 − 𝛿

2
) (

1 − 1+𝑝
1−𝑝 𝛿

2 − 2 𝑝
1−𝑝 𝛿

3
) + 1(

1 − 𝛿
2
) ����. (6.12)

The desired estimate (6.5) follows from (6.12) and the fact that 0 < 𝛿 < 1
10 and 𝑝 � 1

2 .
We proceed to show that inequality (6.6) is also satisfied. As before, we first observe that (6.4) yields

that

1 >
(
1 + 𝑝

1 − 𝑝 𝛿
)𝑆𝑑2−𝑆𝑤

( (
1 + 𝑝

1 − 𝑝 𝛿
) (

1 − 𝛿 − 2
𝑝

1 − 𝑝 𝛿
2) )𝑆𝑤 exp(−𝑝𝑛𝛿2). (6.13)

However, since 0 < 𝛿 < 1
10 , we have(

1 + 𝑝

1 − 𝑝 𝛿
) (

1 − 𝛿 − 2
𝑝

1 − 𝑝 𝛿
2
)
� 1 − 1 − 2𝑝

1 − 𝑝 𝛿 −
16
5

𝑝

1 − 𝑝 𝛿
2 (6.14)

that combined with (6.13) yields that

1 >
(
1 + 𝑝

1 − 𝑝 𝛿
)𝑆𝑑2−𝑆𝑤

(
1 − 1 − 2𝑝

1 − 𝑝 𝛿 −
16
5

𝑝

1 − 𝑝 𝛿
2
)𝑆𝑤

exp(−𝑝𝑛𝛿2). (6.15)

Now after taking logarithms and rearranging, we have

𝑆𝑑2 − 𝑆𝑤 <
1

ln
(
1 + 𝑝

1−𝑝 𝛿
) (
𝑆𝑤 ln

(
1

1 − 1−2𝑝
1−𝑝 𝛿 −

16
5

𝑝
1−𝑝 𝛿

2

)
+ 𝑝𝑛𝛿2

)
; (6.16)

by Observation 6.2, this yields that

𝑆𝑑2 − 𝑆𝑤 <
1 − 𝑝

𝑝𝛿
(
1 − 𝑝

2(1−𝑝) 𝛿
) (
𝑆𝑤

1−2𝑝
1−𝑝 𝛿 +

16
5

𝑝
1−𝑝 𝛿

2

1 − 1−2𝑝
1−𝑝 𝛿 −

16
5

𝑝
1−𝑝 𝛿

2
+ 𝑝𝑛𝛿2

)
(6.17)
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that can be further simplified to

𝑆𝑑2 − 𝑆𝑤 < 𝑆𝑤

1−2𝑝
𝑝 +

16
5 𝛿(

1 − 𝑝
2(1−𝑝) 𝛿

) (
1 − 1−2𝑝

1−𝑝 𝛿 −
16
5

𝑝
1−𝑝 𝛿

2
) + (1 − 𝑝)𝑛𝛿

1 − 𝑝
2(1−𝑝) 𝛿

. (6.18)

However, since 𝑝 � 1
2 , for every 0 < 𝛿 < 1

10 we have(
1 − 𝑝

2(1 − 𝑝) 𝛿
) (

1 − 1 − 2𝑝
1 − 𝑝 𝛿 −

16
5

𝑝

1 − 𝑝 𝛿
2
)
� 1 − 𝛿; (6.19)

indeed, after noticing that

1 − 1 − 2𝑝
1 − 𝑝 𝛿 −

16
5

𝑝

1 − 𝑝 𝛿
2 = 1 − 𝛿 + 𝑝

1 − 𝑝 𝛿 −
16
5

𝑝

1 − 𝑝 𝛿
2, (6.20)

the desired estimate (6.19) follows from the elementary inequality

𝑝

1 − 𝑝 𝛿 +
16
5

𝑝2

2(1 − 𝑝)2
𝛿3 − 𝑝

2(1 − 𝑝) 𝛿(1 − 𝛿) −
𝑝2

2(1 − 𝑝)2
𝛿2 − 16

5
𝑝

1 − 𝑝 𝛿
2 � 0. (6.21)

By (6.18) and (6.19), we obtain that

𝑆𝑑2 − 𝑆𝑤 < 𝑆𝑤

(
1 − 2𝑝
𝑝
+ 16

5
𝛿

) (
1 + 10

9
𝛿

)
+ (1 − 𝑝)𝑛𝛿(1 + 𝛿). (6.22)

We then expand (6.22) to

𝑆𝑑2 − 𝑆𝑤 < 𝑆𝑤

(
1 − 2𝑝
𝑝
+ 16

5
𝛿 + 1 − 2𝑝

𝑝

10
9
𝛿 + 10

9
16
5
𝛿2

)
+ (1 − 𝑝)𝑛𝛿(1 + 𝛿). (6.23)

By (5.6), we see that 𝑆𝑤 � ℓ < 𝑝𝑛, and so (6.23) yields that

𝑆𝑑2 −
1 − 𝑝
𝑝

𝑆𝑤 < 𝑛𝛿

(
𝑝

16
5
+ (1 − 2𝑝) 10

9
+ 𝑝 10

9
16
5
𝛿 + (1 − 𝑝) (1 + 𝛿)

)
. (6.24)

Inequality (6.6) follows from (6.24) and the fact that 0 < 𝛿 < 1
10 and 0 < 𝑝 � 1

2 . �

After these preliminary steps, we are ready to consider cases.

Case 1: (F∗,G∗) ∈ Forbid(𝑚∗, [0, 𝑏∗])

Note that, in this case, the cardinality of the final forbidden interval [0, 𝑏∗] is 𝑏∗ + 1; however, the
forbidden interval for the initial families F ,G was a singleton. By Fact 5.1, the cardinality of the
forbidden interval increases by 1 if and only if the algorithm executes an iteration of ‘type’ 𝑆𝑤 . Thus,

𝑏∗ = 𝑆𝑤 . (6.25)

Next observe that the initial value of the lower bound a of the forbidden interval is equal to ℓ, and it is
equal to 0 when the algorithm terminates. Using Fact 5.1 again, we see that the counter a decreases by 1
if and only if an iteration of ‘type’ 𝑆𝑑1 or an iteration of ‘type’ 𝑆𝑤 is executed. Therefore, we also have
that

𝑆𝑑1 + 𝑆𝑤 = ℓ. (6.26)
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By (6.5) and (6.26), we obtain that

𝑆𝑤 �
ℓ

2
− 5

2
𝑝𝑛𝛿. (6.27)

However, since (F∗,G∗) ∈ Forbid(𝑚∗, [0, 𝑏∗]) and 𝑏∗ = 𝑆𝑤 , by part (i) of Lemma 3.3, we have

𝜇𝑝 (F∗) 𝜇𝑝′ (G∗) � exp
(
−
𝑆2
𝑤

24𝑝𝑛

)
. (6.28)

Combining (5.7), (6.3), (6.26) and (6.28), we obtain in particular that

exp
(
−
𝑆2
𝑤

24𝑝𝑛

)
> (1 + 𝛿)ℓ−𝑆𝑤

(
1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2
)𝑆𝑤

exp
(
−𝑝𝑛𝛿2

)
(6.29)

that implies, after taking logarithms and using Observation 6.2, that

(𝑆𝑤 − ℓ)
(
𝛿 − 𝛿

2

2

)
+ 𝑆𝑤

(
𝛿 + 2 𝑝

1−𝑝 𝛿
2

1 − 𝛿 − 2 𝑝
1−𝑝 𝛿

2

)
+ 𝑝𝑛𝛿2 >

𝑆2
𝑤

24𝑝𝑛
. (6.30)

Moreover, since 0 < 𝛿 < 1
10 and 0 < 𝑝 � 1

2 , we have

𝛿 + 11
3
𝛿2 �

𝛿 + 2 𝑝
1−𝑝 𝛿

2

1 − 𝛿 − 2 𝑝
1−𝑝 𝛿

2 , (6.31)

which, combined with (6.30), implies that

24𝑝𝑛(2𝑆𝑤 − ℓ)𝛿 − 12𝑝𝑛(2𝑆𝑤 − ℓ)𝛿2 + 100𝑝𝑛𝑆𝑤𝛿2 + 24𝑝2𝑛2𝛿2 > 𝑆2
𝑤 . (6.32)

We now consider the following subcases.

Subcase 1.1: 𝑆𝑤 � 2
3ℓ

In this subcase, by (6.27) and the choice of 𝛿 in (6.1), we have

− 𝑝𝑛
2
� 2𝑆𝑤 − ℓ �

𝑆𝑤
2

and 𝛿 �
2

53
𝑆𝑤
𝑝𝑛

; (6.33)

indeed, by (6.27) and (6.1), 𝑆𝑤 � ℓ
2 −

5
2 𝑝𝑛𝛿 � ℓ

( 1
2 −

5
116

)
� 58𝑝𝑛𝛿

( 1
2 −

5
116

)
� 53

2 𝑝𝑛𝛿. Hence, by
(6.32), (6.33) and the fact that 𝛿 < 1

10 , we obtain that

𝑆2
𝑤 < 12𝑝𝑛𝑆𝑤𝛿 + 30𝑝2𝑛2𝛿2 + 100𝑝𝑛𝑆𝑤𝛿2 �

(24
53
+ 30 · 4

532 +
200
53
· 1

10

)
𝑆2
𝑤 < 𝑆2

𝑤 , (6.34)

which is clearly a contradiction.

Subcase 1.2: 𝑆𝑤 > 2
3ℓ

By (6.26) and (6.1), we have

0 �
𝑆𝑤
2
� 2𝑆𝑤 − ℓ � 𝑆𝑤 and 𝛿 �

3
116

𝑆𝑤
𝑝𝑛
. (6.35)
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Therefore, by (6.32) and (6.35), we get that

𝑆2
𝑤 < 24𝑝𝑛𝑆𝑤𝛿 + 100𝑝𝑛𝑆𝑤𝛿2 + 24𝑝2𝑛2𝛿2 <

(24 · 3
116

+ 100 · 3
116

· 1
10
+ 24 · 9

1162

)
𝑆2
𝑤 < 𝑆2

𝑤 , (6.36)

which leads, again, to a contradiction.

Case 2: (F∗,G∗) ∈ Forbid(𝑚∗, [𝑎∗, 𝑚∗])

The proof in this case is slightly more involved. We start by observing that the initial value of the upper
bound b of the forbidden interval is equal to ℓ, and it is equal to 𝑚∗ when the algorithm terminates.
Moreover, by Fact 5.1, the counter b decreases by 1 if and only if an iteration of ‘type’ 𝑆𝑑1 is executed.
Thus,

𝑚∗ = ℓ − 𝑆𝑑1 � ℓ. (6.37)

Combining (5.5) and (6.37), we obtain that

𝑆𝑑2 + 𝑆𝑤 = 𝑛 − ℓ. (6.38)

This identity together with (6.6) yields that 𝑆𝑤 � 𝑝𝑛 − 3𝑝𝑛𝛿 − 𝑝ℓ that we rewrite as

𝑆𝑤 � (1 − 𝑝)ℓ + ((𝑝𝑛 − ℓ) − 3𝑝𝑛𝛿). (6.39)

Moreover, as we have already noted in the previous case, the cardinality of the forbidden interval
increases by 1 if and only if the algorithm executes an iteration of ‘type’ 𝑆𝑤 . Therefore, we also have
that

𝑚∗ − 𝑎∗ = 𝑆𝑤 . (6.40)

Next, we introduce the quantity

𝛼 := 𝑆𝑤 − (1 − 𝑝)ℓ, (6.41)

and we observe that, by (6.39), we have the lower bound

𝛼 � (𝑝𝑛 − ℓ) − 3𝑝𝑛𝛿; (6.42)

notice that 𝛼 > 0 by the choice of 𝛿 in (6.1). Also notice that, by (6.40) and (6.41),

𝑎∗ + (ℓ − 𝑚∗) = 𝑝ℓ − 𝛼. (6.43)

However, setting

F̂ := {𝐴 ⊆ [ℓ] : 𝐴 ∩ [𝑚∗] ∈ F∗} ⊆ {0, 1}ℓ , (6.44)

Ĝ := {𝐵 ⊆ [ℓ] : 𝐵 ∩ [𝑚∗] ∈ G∗} ⊆ {0, 1}ℓ , (6.45)

by (6.43) and the fact that (F∗,G∗) ∈ Forbid(𝑚∗, [𝑎∗, 𝑚∗]), we see that

(i) 𝜇𝑝 (F∗) = 𝜇𝑝 (F̂) and 𝜇𝑝′ (G∗) = 𝜇𝑝′ (Ĝ), and
(ii) (F̂ , Ĝ) ∈ Forbid(ℓ, [𝑝ℓ − 𝛼, ℓ]).
Hence, by part (ii) of Lemma 3.3, we obtain that

𝜇𝑝 (F∗) 𝜇𝑝′ (G∗) � 2 exp
(
− 𝛼2

24𝑝ℓ

)
. (6.46)
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In particular, by (5.7), (6.3) and (6.46), we have that

exp
(
− 𝛼2

24𝑝ℓ

)
>

(
1 + 𝑝

1 − 𝑝 𝛿
)𝑆𝑑2

(
1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2
)𝑆𝑤

exp(−𝑝𝑛𝛿2). (6.47)

As in the previous case, we will show that (6.47) leads to a contradiction.
To this end, it is enough to show that, by the choice of 𝛿 in (6.1), we have

exp
(
− 𝛼2

24𝑝ℓ

)
�

(
1 + 𝑝

1 − 𝑝 𝛿
)𝑆𝑑2

(
1 − 𝛿 − 2

𝑝

1 − 𝑝 𝛿
2
)𝑆𝑤

exp(−𝑝𝑛𝛿2). (6.48)

After taking logarithms and using Observation 6.2, it is enough to show that

𝑝𝑛𝛿2 + 𝑆𝑤
𝛿 + 2 𝑝

1−𝑝 𝛿
2

1 − 𝛿 − 2 𝑝
1−𝑝 𝛿

2 � 𝑆𝑑2

(
𝑝

1 − 𝑝 𝛿 −
𝑝2

2(1 − 𝑝)2
𝛿2

)
+ 𝛼2

24𝑝ℓ
. (6.49)

Since 0 < 𝛿 < 1
10 and 𝑝 � 1

2 , we have

1
1 − 𝛿 − 2 𝑝

1−𝑝 𝛿
2 <

(
1 + 3

2
𝛿

)
, (6.50)(

1 + 2
𝑝

1 − 𝑝 𝛿
) (

1 + 3
2
𝛿

)
� (1 + 4𝛿). (6.51)

Thus, by (6.49)–(6.51), it is enough to show that

𝑝𝑛𝛿2 + 𝑆𝑤𝛿(1 + 4𝛿) � 𝑆𝑑2

(
𝑝

1 − 𝑝 𝛿 −
𝑝2

2(1 − 𝑝)2
𝛿2

)
+ 𝛼2

24𝑝ℓ
, (6.52)

which is equivalent to saying, after rearranging, that(
𝑝𝑛 + 4𝑆𝑤 +

𝑝2

2(1 − 𝑝)2
𝑆𝑑2

)
𝛿2 +

(
𝑆𝑤 −

𝑝

1 − 𝑝 𝑆𝑑2

)
𝛿 �

𝛼2

24𝑝ℓ
. (6.53)

By (5.6), we have 𝑆𝑤 � ℓ < 𝑝𝑛 and, clearly, 𝑆𝑑2 � 𝑛. Hence, by (6.53) and the fact that 0 < 𝑝 � 1
2 , it

is enough to show that

6𝑝𝑛𝛿2 +
(
𝑆𝑤 −

𝑝

1 − 𝑝 𝑆𝑑2

)
𝛿 �

𝛼2

24𝑝ℓ
. (6.54)

Observe that

𝑆𝑤 −
𝑝

1 − 𝑝 𝑆𝑑2
(6.38)
= 𝑆𝑤 −

𝑝

1 − 𝑝 (𝑛 − ℓ − 𝑆𝑤 ) =
1

1 − 𝑝 (𝑆𝑤 − 𝑝𝑛 + 𝑝ℓ)

(6.41)
=

1
1 − 𝑝

(
𝛼 + (1 − 𝑝)ℓ − 𝑝𝑛 + 𝑝ℓ

)
=

1
1 − 𝑝

(
𝛼 − (𝑝𝑛 − ℓ)

)
. (6.55)

In order to verify (6.54), we consider the following subcases.

Subcase 2.1: 𝛼 � 𝑝𝑛 − ℓ
By (6.55), we have 𝑆𝑤 − 𝑝

1−𝑝 𝑆𝑑2 � 0, and so it is enough to show that

144𝑝2𝑛2𝛿2 � 𝛼2. (6.56)
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Since 0 < 𝛿 < 𝑝𝑛−ℓ
51𝑝𝑛 , by the choice of 𝛿 in (6.1), the estimate (6.56) – and, consequently, (6.54) – follows

from (6.42).

Subcase 2.2: 𝛼 > 𝑝𝑛 − ℓ
In this subcase, by (6.55), we have 𝑆𝑤 − 𝑝

1−𝑝 𝑆𝑑2 > 0. Hence, using again the fact that 0 < 𝛿 < 𝑝𝑛−ℓ
51𝑝𝑛 , it

is enough to show that

144
512 (𝑝𝑛 − ℓ)

2 + 24
51

(
𝑆𝑤 −

𝑝

1 − 𝑝 𝑆𝑑2

)
(𝑝𝑛 − ℓ) � 𝛼2, (6.57)

which is equivalent to saying, by (6.55), that(
144
512 −

24
51(1 − 𝑝)

)
(𝑝𝑛 − ℓ)2 + 24

51(1 − 𝑝) 𝛼(𝑝𝑛 − ℓ) � 𝛼
2. (6.58)

Since 0 < 𝑝 � 1
2 , it is enough to show that

48
51
(𝑝𝑛 − ℓ) � 𝛼 (6.59)

that follows from our starting assumption that 𝛼 > 𝑝𝑛 − ℓ.
Summing up, we conclude that (6.54) is satisfied, and as we have already indicated, this contradicts

(6.47). This completes the proof that Case 2 cannot occur, and so the entire proof of Theorem 1.1 is
completed.

7. Extensions of the main estimate

We start with the following proposition, which is the analogue of Theorem 1.1 for families of sets
contained in layers of the cube.

Proposition 7.1. Let ℓ � 𝑘 � 𝑚 � 𝑛 be positive integers, and let F ⊆
( [𝑛]
𝑘

)
and G ⊆

( [𝑛]
𝑚

)
with

(F ,G) ∈ Forbid(𝑛, {ℓ}).

(i) If 𝑘 � 𝑛
2 and 𝑚 � 𝑛 − 𝑘 , then, setting 𝑡 := min{ℓ, 𝑘 − ℓ}, we have

|F |(𝑛
𝑘

) · |G |( 𝑛
𝑚

) � 50
√
𝑘 (𝑛 − 𝑘)𝑚(𝑛 − 𝑚)

𝑛2 exp
(
− 𝑡2

582 𝑘

)
. (7.1)

(ii) If 𝑘 � 𝑛
2 � 𝑛 − 𝑘 < 𝑚 � 𝑛 − 𝑘 + ℓ, then, setting 𝑡 := min{𝑘 − ℓ, 𝑛 − 𝑚 − (𝑘 − ℓ)},

|F |(𝑛
𝑘

) · |G |( 𝑛
𝑚

) � 50
√
𝑘 (𝑛 − 𝑘)𝑚(𝑛 − 𝑚)

𝑛2 exp
(
− 𝑡 2

582 (𝑛 − 𝑚)

)
. (7.2)

Proof. We start with the proof of part (i). Assume, first, that 𝑚 � 𝑛
2 . Then,

|F |(𝑛
𝑘

) · |G |( 𝑛
𝑚

) (2.5)� 25
√
𝑘 (𝑛 − 𝑘)𝑚(𝑛 − 𝑚)

𝑛2 𝜇 𝑘
𝑛
(F) 𝜇𝑚

𝑛
(G). (7.3)

Thus, in this case, (7.1) follows from (7.3) and (1.3) applied for ‘𝑝 = 𝑘
𝑛 ’ and ‘𝑝′ = 𝑚

𝑛 ’. Next, assume
that 𝑛2 � 𝑚 � 𝑛 − 𝑘 and set G := {[𝑛] \ 𝐺 : 𝐺 ∈ G} ⊆

( [𝑛]
𝑛−𝑚

)
. Notice that (F ,G) ∈ Forbid(𝑛, {𝑘 − ℓ})

and, moreover, 𝑘 − ℓ � 𝑘 � 𝑛−𝑚 � 𝑛
2 . Therefore, applying the estimate obtained in the first part of the

proof to the pair (F ,G) and invoking the choice of t, we obtain that
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|F |(𝑛
𝑘

) · |G |( 𝑛
𝑚

) =
|F |(𝑛
𝑘

) · |G |( 𝑛
𝑛−𝑚

) � 50
√
𝑘 (𝑛 − 𝑘)𝑚(𝑛 − 𝑚)

𝑛2 exp
(
− 𝑡2

582 𝑘

)
. (7.4)

We proceed to the proof of part (ii). As before, we set G := {[𝑛] \ 𝐺 : 𝐺 ∈ G} ⊆
( [𝑛]
𝑛−𝑚

)
, and we

observe that (F ,G) ∈ Forbid(𝑛, {𝑘 − ℓ}) and 𝑘 − ℓ � 𝑛−𝑚 < 𝑘 � 𝑛
2 . Thus, applying part (i) to the pair

(F ,G) and using the fact that 𝑡 = min{𝑘 − ℓ, 𝑛 − 𝑚 − (𝑘 − ℓ)}, we conclude that

|F |(𝑛
𝑘

) · |G |( 𝑛
𝑚

) =
|F |(𝑛
𝑘

) · |G |( 𝑛
𝑛−𝑚

) � 50
√
𝑘 (𝑛 − 𝑘)𝑚(𝑛 − 𝑚)

𝑛2 exp
(
− 𝑡 2

582 (𝑛 − 𝑚)

)
. (7.5)

�

The next result supplements Theorem 1.1 and extends the subgaussian bound (1.3) to a wider range
of parameters 𝑝, 𝑝′.
Proposition 7.2. Let n be a positive integer, let 0 < 𝑝 < 1

2 < 𝑝′ � 1 − 𝑝, and let ℓ � 𝑝𝑛 be a
nonnegative integer. Also let F ,G ⊆ {0, 1}𝑛 be two families whose cross intersections forbid ℓ. Set
𝑡 := min{ℓ, 𝑝𝑛 − ℓ} and assume that 𝑡 � 3. Then we have

𝜇𝑝 (F) 𝜇𝑝′ (G) � 𝑡 · exp
(
− 𝑡2

6 · 302 𝑝𝑛

)
. (7.6)

Combining Theorem 1.1 and Proposition 7.2, we obtain the following corollary.
Corollary 7.3. Let n be a positive integer, let 6

𝑛 � 𝑝 � 𝑝′ � 1 − 𝑝, and let ℓ � 𝑝𝑛 be a nonnegative
integer. Also letF ,G ⊆ {0, 1}𝑛 be two families whose cross intersections forbid ℓ. Set 𝑡 := min{ℓ, 𝑝𝑛−ℓ},
and assume that 𝑡 � 210

√
𝑝𝑛 ln(𝑝𝑛). Then we have

𝜇𝑝 (F) 𝜇𝑝′ (G) � exp
(
− 𝑡2

902 𝑝𝑛

)
. (7.7)

We proceed to the proof of Proposition 7.2.

Proof of Proposition 7.2. Set 𝑚 := 𝑡
30 , and observe that, by Lemma 2.3,

max
{
𝜇𝑝

(
[𝑛]<𝑝𝑛−𝑚

)
, 𝜇𝑝

(
[𝑛]>𝑝𝑛+𝑚

)}
� exp

(
− 𝑚2

6𝑝𝑛

)
� exp

(
− 𝑡2

6 · 302𝑝𝑛

)
. (7.8)

By (7.8) and the choice of m, there is a nonnegative integer 𝑖0 with 𝑝𝑛 − 𝑚 � 𝑖0 � 𝑝𝑛 + 𝑚 such that,
setting F𝑖0 := F ∩

( [𝑛]
𝑖0

)
, we have

𝜇𝑝 (F) � 2 exp
(
− 𝑡2

6 · 302𝑝𝑛

)
+ 𝑡

15
𝜇𝑝 (F𝑖0). (7.9)

Set G :=
{
[𝑛] \ 𝐺 : 𝐺 ∈ G

}
, and notice that

𝜇𝑝 (F) 𝜇𝑝′ (G) = 𝜇𝑝 (F) 𝜇1−𝑝′ (G)
(7.9)
�

𝑡

15
𝜇𝑝 (F𝑖0) 𝜇1−𝑝′ (G) + 2 exp

(
− 𝑡2

6 · 302𝑝𝑛

)
. (7.10)

Next, observe that 𝑖0 � ℓ and (F𝑖0 ,G) ∈ Forbid(𝑛, {𝑖0 − ℓ}). Since 0 < 𝑝 � 1− 𝑝′ � 1
2 and 𝑖0 − ℓ � 𝑝𝑛,

by Theorem 1.1 and (7.10), we obtain that

𝜇𝑝 (F) 𝜇𝑝′ (G) � 2 exp
(
− 𝑡2

6 · 302𝑝𝑛

)
+ 2𝑡

15
exp

(
− 𝑡2

582𝑝𝑛

)
, (7.11)

where 𝑡 := min{𝑖0 − ℓ, 𝑝𝑛 − 𝑖0 + ℓ}.
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Claim 7.4. We have that |𝑡 − 𝑡 | � 𝑚 = 𝑡
30 .

Proof of Claim 7.4. Suppose, towards a contradiction, that |𝑡 − 𝑡 | > 𝑚; that is, either 𝑡 + 𝑚 < 𝑡 or
𝑡 < 𝑡 − 𝑚. We recall that 𝑝𝑛 − 𝑚 � 𝑖0 � 𝑝𝑛 + 𝑚.

Assume, first, that 𝑡 + 𝑚 < 𝑡. By the definition of t and 𝑡, we see that

(i) min{ℓ, 𝑝𝑛 − ℓ} + 𝑚 < 𝑡 � 𝑖0 − ℓ and
(ii) min{ℓ, 𝑝𝑛 − ℓ} + 𝑚 < 𝑡 � 𝑝𝑛 − 𝑖0 + ℓ.

If ℓ � 𝑝𝑛 − ℓ, then, by (ii), we obtain that ℓ + 𝑚 < 𝑝𝑛 − 𝑖0 + ℓ, which is a contradiction; however, if
𝑝𝑛 − ℓ � ℓ, then, by (i), we have 𝑝𝑛 − ℓ + 𝑚 < 𝑖0 − ℓ which leads, again, to a contradiction.

Next assume that 𝑡 < 𝑡 − 𝑚. Then,

(iii) min{𝑖0 − ℓ, 𝑝𝑛 − 𝑖0 + ℓ} + 𝑚 < 𝑡 � ℓ and
(iv) min{𝑖0 − ℓ, 𝑝𝑛 − 𝑖0 + ℓ} + 𝑚 < 𝑡 � 𝑝𝑛 − ℓ.

Consequently, if 𝑖0 − ℓ � 𝑝𝑛− 𝑖0 + ℓ, then, by (iv), we have 𝑖0 − ℓ +𝑚 < 𝑝𝑛− ℓ, which is a contradiction;
finally, if 𝑝𝑛− 𝑖0 +ℓ � 𝑖0−ℓ, then, by (iii), we have 𝑝𝑛− 𝑖0 +ℓ+𝑚 < ℓ, which is also a contradiction. �

By (7.11) and Claim 7.4, we conclude that

𝜇𝑝 (F) 𝜇𝑝′ (G) � 2 exp
(
− 𝑡2

6 · 302𝑝𝑛

)
+ 2𝑡

15
exp

(
− 𝑡2

4 · 302𝑝𝑛

)
� 𝑡 · exp

(
− 𝑡2

6 · 302 𝑝𝑛

)
. �

8. Optimality

We proceed to discuss the optimality of the bounds obtained by Theorem 1.1 and its extension,
Corollary 7.3. Specifically, fix a positive integer n, 0 < 𝑝 � 𝑝′ � 1 − 𝑝 and a nonnegative integer
ℓ � 𝑝𝑛, set

𝜀𝑛 (𝑝, 𝑝′, ℓ) := max
{
𝜀 > 0 : 𝜇𝑝 (F) 𝜇𝑝′ (G) � 𝑒−𝜀 for every pair of

nonempty families (F ,G) ∈ Forbid(𝑛, {ℓ})
}
, (8.1)

and observe that our goal reduces to that of obtaining appropriate upper bounds for 𝜀𝑛 (𝑝, 𝑝′, ℓ). To this
end, we shall additionally assume that5

16
𝑛
� 𝑝 and 2

√
𝑝𝑛 ln(𝑝𝑛) � ℓ � 𝑝𝑛 − 2

√
𝑝𝑛 ln(𝑝𝑛); (8.2)

we will also use the following standard lower bounds of the biased measures of the tails of the binomial
distribution (see, for example, [Ash65, p. 115]).

Lemma 8.1. Let 𝑘, 𝑛 be positive integers, and let 0 < 𝑝 � 1
2 . If 𝑘 � 𝑝𝑛, then

𝜇𝑝

(
[𝑛]�𝑘

)
�

1√
8𝑛

(
1 − 𝑘

𝑛

)
𝑘
𝑛

exp
(
− (𝑘 − 𝑝𝑛)

2

𝑝(1 − 𝑝)𝑛

)
, (8.3)

5Notice (8.2) slightly narrows down the regime where the bound (1.3) is nontrivial.
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while if 𝑝𝑛 � 𝑘 < 2𝑝𝑛, then

𝜇𝑝

(
[𝑛]�𝑘

)
�

1√
8𝑛

(
1 − 𝑘

𝑛

)
𝑘
𝑛

exp
(
(𝑘 − 𝑝𝑛)2
𝑝(1 − 𝑝)𝑛

)
. (8.4)

8.1. The high-intersection case: ℓ � 𝑐𝑝𝑛 for some constant 𝑐 > 0

Set F := [𝑛]<ℓ and G := {0, 1}𝑛. Then (F ,G) ∈ Forbid(𝑛, {ℓ}) and, moreover,

𝜇𝑝 (F) 𝜇𝑝′ (G) = 𝜇𝑝
(
[𝑛]<ℓ

) (8.3)
�

1√
8(ℓ − 1) (1 − ℓ−1

𝑛 )
exp

(
− (𝑝𝑛 − ℓ + 1)2

𝑝(1 − 𝑝)𝑛

)
�

1√
8𝑝𝑛

exp
(
− (𝑝𝑛 − ℓ)

2 + 2(𝑝𝑛 − ℓ) + 1
𝑝(1 − 𝑝)𝑛

)
. (8.5)

Next, set 𝐶 := max{2, 𝑝𝑛ℓ } � max{2, 1
𝑐 } and 𝑡 := min{ℓ, 𝑝𝑛 − ℓ}; notice that if ℓ � 𝑝𝑛

2 , then 𝐶 = 2 and
𝑡 = 𝑝𝑛 − ℓ, while if ℓ < 𝑝𝑛

2 , then 𝐶 � 1
𝑐 and 𝑡 = ℓ. By (8.2), (8.5) and taking into account the previous

observations, it is easy to see that

𝜀𝑛 (𝑝, 𝑝′, ℓ) � 4(𝐶 − 1)2 𝑡2

𝑝𝑛
. (8.6)

In particular, under (8.2), if ℓ � 𝑝𝑛
2 , then 𝜀𝑛 (𝑝, 𝑝′, ℓ) � 4 𝑡2

𝑝𝑛 .

Remark 8.2. Note that if F := [𝑛]<ℓ , then |𝐴 ∩ 𝐵 | ≠ ℓ for every 𝐴, 𝐵 ∈ F and, by (8.2) and (8.5), we
have 𝜇𝑝 (F) � exp

(
− 4(𝐶 − 1)2 𝑡2

𝑝𝑛

)
, where 𝐶 = max{2, 𝑝𝑛ℓ }. Thus, Theorem 1.1 and Corollary 7.3

are optimal in the regime ℓ � 𝑐𝑝𝑛 also in the non-crossing case.

8.2. The symmetric case: 𝑝′ = 1 − 𝑝

We will show that, under (8.2), we have

𝜀𝑛 (𝑝, 1 − 𝑝, ℓ) � 4
𝑡2

𝑝𝑛
, (8.7)

where, as usual, 𝑡 := min{ℓ, 𝑝𝑛 − ℓ}; note that (8.7) includes the important special case 𝑝 = 𝑝′ = 1
2 that

corresponds to the uniform probability measure on {0, 1}𝑛.
The subcase ‘ℓ � 𝑝𝑛

2 ’ follows of course from (8.6), and so we may assume that ℓ � 𝑝𝑛
2 . Set

F := [𝑛]>𝑝𝑛+ ℓ2 and G := [𝑛]� (1−𝑝)𝑛+ ℓ2 . Notice that (F ,G) ∈ Forbid(𝑛, {ℓ}) and

𝜇𝑝 (F) � 𝜇𝑝
(
[𝑛]�𝑝𝑛+

ℓ
2 +1

) (8.4)
�

1√
8𝑝𝑛

exp
(
− ℓ2

4𝑝(1 − 𝑝)𝑛 −
ℓ + 1

𝑝(1 − 𝑝)𝑛

)
, (8.8)

𝜇1−𝑝 (G) = 𝜇𝑝
(
[𝑛]�𝑝𝑛−

ℓ
2
) (8.3)
�

1√
8𝑝𝑛

exp
(
− ℓ2

4𝑝(1 − 𝑝)𝑛

)
. (8.9)

Therefore, using (8.2) and observing that in this case we have 𝑡 = ℓ, we obtain that

𝜇𝑝 (F) 𝜇1−𝑝 (G) � exp
(
−2

𝑡2

𝑝(1 − 𝑝)𝑛

)
, (8.10)

which clearly yields (8.7).
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Remark 8.3. It is unclear whether the subgaussian bound (1.3) is optimal (modulo universal constants)
in the low-intersection and asymmetric case – namely, when ℓ = 𝑜(𝑝𝑛) and 𝑝′ < 1 − 𝑝. The optimality
of Theorem 1.1 in this regime is closely related6 to the problem of obtaining sharp estimates of the
product 𝜇𝑝 (F) 𝜇𝑝 (G) of the biased measures of a pair of families F ,G ⊆ {0, 1}𝑛 that are cross-ℓ-
intersecting; that is, they satisfy |𝐴 ∩ 𝐵 | � ℓ for every 𝐴 ∈ F and every 𝐵 ∈ G. The non-crossing
case, F = G, is completely understood thanks to the seminal work of Ahlswede–Khachatrian [AK97,
AK99] and the more recent work of Filmus [Fi17]; see, also, [Fi13, Theorem 3.28] for some progress
for general cross-intersecting families.

9. Supersaturation

The main result in this section is a supersaturation version of Proposition 7.1, which is the analogue
of [FR87, Theorem 1.14]. To state it we need, first, to introduce some pieces of notation. Let n be a
positive integer, let F ,G ⊆ {0, 1}𝑛, and let 𝑆 ⊆ [𝑛]. Given a nonnegative integer ℓ � 𝑛, we set

𝐼ℓ (F ,G) :=
{
(𝐹, 𝐺) ∈ F × G : |𝐹 ∩ 𝐺 | = ℓ

}
and 𝑖ℓ (F ,G) := |𝐼ℓ (F ,G) | (9.1)

and, respectively,

𝐼ℓ (𝑆, G) :=
{
𝐺 ∈ G : |𝑆 ∩ 𝐺 | = ℓ

}
and 𝑖ℓ (𝑆,G) := |𝐼ℓ (𝑆,G) |. (9.2)

We have the following theorem.
Theorem 9.1. Let ℓ, 𝑘, 𝑛 be positive integers with ℓ < 𝑘 � 𝑛

2 , and set 𝑇 := max{ℓ, 𝑘 − ℓ}. Also let 𝛿 > 0
and assume that 105√𝑘 (ln 𝑛)3/2 � 𝛿 � min{ℓ, 𝑘 − ℓ}. Finally, set

𝜀(𝛿) :=
𝛿4

𝐶 𝑇2 ℓ
(
ln( 𝑛𝛿 )

)4 , (9.3)

where 𝐶 := 28 586 604. If F ⊆
( [𝑛]
𝑘

)
and G ⊆

( [𝑛]
𝑛−𝑘

)
satisfy

|F |(𝑛
𝑘

) · |G |( 𝑛
𝑛−𝑘

) > exp
(
− 𝜀(𝛿)

)
, (9.4)

then we have

𝑖ℓ (F ,G)
𝑖ℓ

( ( [𝑛]
𝑘

)
,
( [𝑛]
𝑛−𝑘

) ) > exp(−𝛿). (9.5)

By Theorem 9.1, we obtain the following corollary.

Corollary 9.2. Let ℓ, 𝑘, 𝑛, 𝑇, 𝛿 be as in Theorem 9.1 and set 𝜀′(𝛿) := 𝛿4

𝐶𝑇 2 (𝑘−ℓ) (ln( 𝑛𝛿 ))4
, where

𝐶 := 28 586 604. If F ,G ⊆
( [𝑛]
𝑘

)
satisfy |F |(𝑛𝑘)

· |G |(𝑛𝑘)
> exp

(
− 𝜀′(𝛿)

)
, then

𝑖ℓ (F ,G)
𝑖ℓ

( ( [𝑛]
𝑘

)
,
( [𝑛]
𝑘

) ) > exp(−𝛿). (9.6)

Proof. Set G :=
{
[𝑛] \𝐺 : 𝐺 ∈ G

}
⊆

( [𝑛]
𝑛−𝑘

)
, and notice that 𝑖ℓ (F ,G) = 𝑖𝑘−ℓ (F ,G) and 𝑖ℓ

( ( [𝑛]
𝑘

)
,
( [𝑛]
𝑘

) )
=

𝑖𝑘−ℓ
( ( [𝑛]
𝑘

)
,
( [𝑛]
𝑛−𝑘

) )
. The result follows from these observations and Theorem 9.1 applied to F and G. �

We proceed to the proof of Theorem 9.1.

6In fact, the techniques developed in this paper show that these two problems are essentially equivalent.
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Proof of Theorem 9.1. We argue as in the proof of [FR87, Theorem 1.14] with the main new ingredients
being Theorem 1.1 and Proposition 7.1. For the reader’s convenience, we will first give a high level
overview of the proof.

Our analysis is focused on the way the elements of F and G are correlated with arbitrary sets of
size 2ℓ. More precisely, for every 𝐴 ∈

( [𝑛]
2ℓ

)
, we define F𝐴 and G𝐴 to be the sets 𝐹 ∈ F and 𝐺 ∈ G,

respectively, whose intersection with A is roughly equal to ℓ. We shall informally refer to these sets as
‘good’.

The proof is then divided into three parts. In the first part, we show that there are many 𝐴 ∈
( [𝑛]

2ℓ
)

for
which both F𝐴 and G𝐴 are large – this is the content of Claim 9.3. In the second part, we work towards
a contradiction, and we show that if 𝐼ℓ (F ,G) is small, then there exists 𝐴0 ∈

( [𝑛]
2ℓ

)
for which both F𝐴0

and G𝐴0 are large, and at the same time, there are few number of pairs (𝐹, 𝐺) ∈ F𝐴0 × G𝐴0 whose
intersection is of size ℓ and the size of its trace on 𝐴0 is a specific proportion of ℓ – this is achieved in
Claim 9.4. Finally, in the third step of the proof, we arrive to a contradiction. Specifically, the properties
of 𝐴0 imply that most of the ‘good’ 𝐹 ∈ F𝐴0 and 𝐺 ∈ G𝐴0 are also bad in the sense that they do not
form a pair whose intersection is of size ℓ and its trace on 𝐴0 has size specified by the previous step;
this tension is enough to derive the contradiction.

We proceed to the details. We fix F ,G that satisfy (9.4), and we assume, towards a contradiction,
that (9.5) does not hold true. We set 𝑑 (F) := |F |

(𝑛𝑘)
, 𝑑 (G) := |G |

( 𝑛
𝑛−𝑘)

and

𝛼 := 116
√
ℓ 𝜀(𝛿) (9.3)= 𝛿2

(23 582 602) 𝑇
(
ln( 𝑛𝛿 )

)2 . (9.7)

We also notice that for every 𝑆 ∈
( [𝑛]
2ℓ−𝛼

)
, we have

◦ 𝑖ℓ
( ( [𝑛]
𝑘

)
,
( [𝑛]
𝑛−𝑘

) )
=

(𝑛
𝑘

) (𝑘
ℓ

) ( 𝑛−𝑘
𝑛−𝑘−ℓ

)
,

◦ 𝑖ℓ
(
𝑆,

( [𝑛]
𝑘

) )
=

(2ℓ−𝛼
ℓ

) (𝑛−2ℓ+𝛼
𝑘−ℓ

)
,

◦ 𝑖ℓ
(
𝑆,

( [𝑛]
𝑛−𝑘

) )
=

(2ℓ−𝛼
ℓ

) (𝑛−2ℓ+𝛼
𝑛−𝑘−ℓ

)
.

Next, we set

◦ SF :=
{
𝑆 ∈

( [𝑛]
2ℓ−𝛼

)
: 𝑖ℓ (𝑆,F) � 𝐾F

}
and SG :=

{
𝑆 ∈

( [𝑛]
2ℓ−𝛼

)
: 𝑖ℓ (𝑆,G) � 𝐾G

}
,

where 𝐾F := 𝑑 (F)
2 𝑖ℓ

(
𝑆,

( [𝑛]
𝑘

) )
and 𝐾G := 𝑑 (G)

2 𝑖ℓ
(
𝑆,

( [𝑛]
𝑛−𝑘

) )
. By [FR87, Lemma 4.1], we have

|SF | �
𝑑 (F)

2

(
𝑛

2ℓ − 𝛼

)
and |SG | �

𝑑 (G)
2

(
𝑛

2ℓ − 𝛼

)
. (9.8)

Moreover, for every 𝐴 ∈
( [𝑛]

2ℓ
)
, set

◦ F𝐴 := {𝐹 ∈ F : ℓ � |𝐹 ∩ 𝐴| � ℓ + 𝛼} and G𝐴 := {𝐺 ∈ G : ℓ � |𝐺 ∩ 𝐴| � ℓ + 𝛼},

and define the family

A :=
{
𝐴 ∈

(
[𝑛]
2ℓ

)
: |F𝐴 | � 𝐾F and |G𝐴 | � 𝐾G

}
. (9.9)

Claim 9.3. We have

|A| � max

{
|SF |
2
(2ℓ
𝛼

) , |SG |
2
(2ℓ
𝛼

) } � 1
4

( 𝑛
2ℓ−𝛼

)(2ℓ
𝛼

) exp
(
− 𝜀(𝛿)

2

)
. (9.10)

Proof of Claim 9.3. We set S∗F := {𝑆 ∈ SF : ∃𝑆′ ∈ SG with |𝑆′ \ 𝑆 | � 𝛼}, and we observe that (SF \
S∗F ,SG) ∈ Forbid(𝑛, {2ℓ− 2𝛼}). Also note that 𝜀(𝛿) � ℓ

28 586 604 , and so, by (9.7), 𝛼 = min{2ℓ− 2𝛼, 𝛼}.
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(In fact, 𝛼 is significantly smaller than ℓ.) By part (i) of Proposition 7.1, we obtain that7

|SF \ S∗F |( 𝑛
2ℓ−𝛼

) · |SG |( 𝑛
2ℓ−𝛼

) � 50
(2ℓ − 𝛼) (𝑛 − 2ℓ + 𝛼)

𝑛
exp

(
− 𝛼2

582 (2ℓ − 𝛼)

)
. (9.11)

Plugging (9.4) and (9.8) into (9.11), we see that

|SF \ S∗F |
|SF |

� 200
(2ℓ − 𝛼) (𝑛 − 2ℓ + 𝛼)

𝑛
exp

(
𝜀(𝛿) − 𝛼2

582 (2ℓ − 𝛼)

)
; (9.12)

since 𝜀(𝛿) − 𝛼2

582 (2ℓ−𝛼) < −𝜀(𝛿), this in turn implies that |S∗F | �
|SF |

2 . Next, for every 𝑆 ∈ S∗F , we select
𝐴 ∈

( [𝑛]
2ℓ

)
and 𝑆′ ∈ SG such that 𝑆, 𝑆′ ⊆ 𝐴, and we observe that for each such A, there exist at most

(2ℓ
𝛼

)
such S’s. Therefore,

|A| � |SF |
2
(2ℓ
𝛼

) . (9.13)

With identical arguments, we verify that |A| � |SG |
2(2ℓ𝛼)

. The last inequality in (9.10) follows from the
previous estimates, (9.4) and (9.8). The proof of Claim 9.3 is completed. �

Next, set

𝛽 :=
√

23 582 𝑇 𝛼
(9.7)
=

√
24 583 𝑇

√
ℓ 𝜀(𝛿) (9.3)= 𝛿

60 ln
(
𝑛
𝛿

) , (9.14)

and note that 116𝛼 � 𝛽 � ℓ
30 and 10𝛽 ln

(
𝑛
𝛽

)
� 𝛿. (Indeed, 𝑇 = max{ℓ, 𝑘 − ℓ} � ℓ � 𝛼, and so, by

(9.14), we see that 𝛽 � 116𝛼; however, since 𝛿 � min{ℓ, 𝑘 − ℓ} � ℓ, by (9.14) again, we obtain that
𝛽 � ℓ

30 .) Moreover, for every 𝐴 ∈
( [𝑛]

2ℓ
)
, set

𝑦𝐴 := |{(𝐹, 𝐺) ∈ 𝐼ℓ (F ,G) : (𝐹, 𝐺) ∈ F𝐴 × G𝐴 and |𝐹 ∩ 𝐺 ∩ 𝐴| = ℓ − 𝛽}|. (9.15)

For every (𝐹, 𝐺) ∈ 𝐼ℓ (F ,G), we can bound the number of 𝐴 ∈ A for which (𝐹, 𝐺) contributes to 𝑦𝐴
by counting the ways we can first select 𝐹 ∩ 𝐺 ∩ 𝐴, then 𝐹 ∩ ([𝑛] \ 𝐺) ∩ 𝐴, then ([𝑛] \ 𝐹) ∩ 𝐺 ∩ 𝐴,
and finally ([𝑛] \ 𝐹) ∩ ([𝑛] \ 𝐺) ∩ 𝐴. In particular, we have∑

𝐴∈A
𝑦𝐴 � 𝑖ℓ (F ,G)

(
ℓ

ℓ − 𝛽

) ∑
0�𝑖, 𝑗�𝛼

(
𝑘 − ℓ
𝑖 + 𝛽

) (
𝑛 − 𝑘 − ℓ
𝑗 + 𝛽

) (
ℓ

𝑖 + 𝑗 + 𝛽

)
. (9.16)

Claim 9.4. Given our starting assumption that (9.5) does not hold true, we may select 𝐴0 ∈ A such that

𝑦𝐴0 �
(
2ℓ
ℓ

) (
𝑛 − 2ℓ
𝑘 − ℓ

)
exp

(
− 𝛿

3

)
. (9.17)

Proof of Claim 9.4. First observe that

◦ 𝑖ℓ
( ( [𝑛]
𝑘

)
,
( [𝑛]
𝑛−𝑘

) )
=

(𝑛
𝑘

) (𝑘
ℓ

) ( 𝑛−𝑘
𝑛−𝑘−ℓ

)
=

(2ℓ
ℓ

) (𝑛−2ℓ
𝑘−ℓ

) ( 𝑛
2ℓ

)
.

Next, using (i) our starting assumption that (9.5) does not hold true, (ii) the fact that 𝛼 + 𝛽 � 2𝛼 + 𝛽 �
1
2 min{ℓ, 𝑘 − ℓ, 𝑛 − 𝑘 − ℓ}, and (iii) the fact that the function 𝑥 ↦→

(𝑦
𝑥

)
is increasing for 𝑥 � 𝑦

2 , we obtain
that

7If 2ℓ − 𝛼 > 𝑛
2 , then (9.11) follows by applying Proposition 7.1 to the complementary families.
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∑
𝐴∈A

𝑦𝐴 � 𝛼2
(
ℓ

𝛽

) (
𝑘 − ℓ
𝛼 + 𝛽

) (
𝑛 − 𝑘 − ℓ
𝛼 + 𝛽

) (
ℓ

2𝛼 + 𝛽

) (
2ℓ
ℓ

) (
𝑛 − 2ℓ
𝑘 − ℓ

) (
𝑛

2ℓ

)
exp(−𝛿). (9.18)

Therefore, by (9.10), there exists 𝐴0 ∈ A such that

𝑦𝐴0 �
(
2ℓ
ℓ

) (
𝑛 − 2ℓ
𝑘 − ℓ

)
4𝛼2

(2ℓ
𝛼

) ( 𝑛
2ℓ

)( 𝑛
2ℓ−𝛼

) (
𝑘 − ℓ
𝛼 + 𝛽

)
×

×
(
𝑛 − 𝑘 − ℓ
𝛼 + 𝛽

) (
ℓ

2𝛼 + 𝛽

) (
ℓ

𝛽

)
exp

( 𝜀(𝛿)
2
− 𝛿

)
. (9.19)

Now we claim that

4𝛼2
(2ℓ
𝛼

) ( 𝑛
2ℓ

)( 𝑛
2ℓ−𝛼

) (
𝑘 − ℓ
𝛼 + 𝛽

) (
𝑛 − 𝑘 − ℓ
𝛼 + 𝛽

) (
ℓ

2𝛼 + 𝛽

) (
ℓ

𝛽

)
�

(
𝑛

𝛽

)5
. (9.20)

To this end, notice that (2ℓ
𝛼

) ( 𝑛
2ℓ

)( 𝑛
2ℓ−𝛼

) =

(
𝑛 − 2ℓ + 𝛼

𝛼

)
, (9.21)

and consequently,(2ℓ
𝛼

) ( 𝑛
2ℓ

)( 𝑛
2ℓ−𝛼

) (
𝑘 − ℓ
𝛼 + 𝛽

) (
𝑛 − 𝑘 − ℓ
𝛼 + 𝛽

) (
ℓ

2𝛼 + 𝛽

) (
ℓ

𝛽

)
�

(
𝑛

𝛼

) (
𝑛

𝛼 + 𝛽

)2 (
𝑛

2𝛼 + 𝛽

) (
𝑛

𝛽

)
. (9.22)

Moreover, by (2.6) and the fact that 2𝛼 + 𝛽 � ℓ
10 �

𝑛
4 ,( 𝑛

𝛼+𝛽
)2 ( 𝑛

2𝛼+𝛽
)(𝑛

𝛽

)3 �
(50
24

)3
26𝛼 log2 (𝑛) , (9.23)

and similarly, since 𝛼 � 𝛽
116 , (𝑛

𝛼

)(𝑛
𝛽

) � 25
24

√
𝛽

𝛼
2−

𝛽
2 log2 (𝑛) . (9.24)

After observing that

𝛽

2
log2(𝑛) > 2 log2 (2𝛼) + 6𝛼 log2(𝑛) +

1
2

log2

( 𝛽
𝛼

)
+ log2

(25
24

)
+ 3 log2

(50
24

)
, (9.25)

we conclude that (9.20) is satisfied.
Summing up, we see that there exists 𝐴0 ∈ A such that

𝑦𝐴0 �
(
2ℓ
ℓ

) (
𝑛 − 2ℓ
𝑘 − ℓ

) (
𝑛

𝛽

)5
exp

( 𝜀(𝛿)
2
− 𝛿

)
. (9.26)

The claim follows from this estimate together with (2.6), and invoking the choices of 𝜀(𝛿) and 𝛽 in (9.3)
and (9.14), respectively. �
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Let 𝐴0 ∈ A be as in Claim 9.4. We will show that

|F𝐴0 |
𝑦𝐴0

> 2 and
|G𝐴0 |
𝑦𝐴0

> 2. (9.27)

Indeed, by (9.9) and the choices of 𝐾F and 𝐾G , we have

|F𝐴0 |
𝑦𝐴0

�

(2ℓ−𝛼
ℓ

) (𝑛−2ℓ+𝛼
𝑘−ℓ

)
2
(2ℓ
ℓ

) (𝑛−2ℓ
𝑘−ℓ

) exp
( 𝛿
3
− 𝜀(𝛿)

)
(9.28)

and

|G𝐴0 |
𝑦𝐴0

�

(2ℓ−𝛼
ℓ

) (𝑛−2ℓ+𝛼
𝑛−𝑘−ℓ

)
2
(2ℓ
ℓ

) ( 𝑛−2ℓ
𝑛−𝑘−ℓ

) exp
( 𝛿
3
− 𝜀(𝛿)

)
. (9.29)

Noticing that (2ℓ−𝛼
ℓ

)(2ℓ
ℓ

) � 2−𝛼 (9.30)

and using the previous two estimates and the choice of 𝛼 in (9.7), we see that (9.27) is satisfied.
We introduce the families

DF :=
{
𝐹 ∈ F𝐴0 : ∀𝐺 ∈ G𝐴0 (|𝐹 ∩ 𝐺 | ≠ ℓ or |𝐹 ∩ 𝐺 ∩ 𝐴0 | ≠ ℓ − 𝛽)

}
,

DG :=
{
𝐺 ∈ G𝐴0 : ∀𝐹 ∈ F𝐴0 (|𝐹 ∩ 𝐺 | ≠ ℓ or |𝐹 ∩ 𝐺 ∩ 𝐴0 | ≠ ℓ − 𝛽)

}
,

D∗F :=
{
𝐵 ⊆ 𝐴0 : |{𝐹 ∈ DF : 𝐹 ∩ 𝐴0 = 𝐵}| > 𝐾F

22ℓ+2

}
,

D∗G :=
{
𝐵 ⊆ 𝐴0 : |{𝐺 ∈ DG : 𝐺 ∩ 𝐴0 = 𝐵}| > 𝐾G

22ℓ+2

}
.

Note that |DF | > 𝐾F
2 and |DG | > 𝐾G

2 , and so, there are |𝐷F | > 𝐾F
2 pairs (𝐹, 𝐵) such that 𝐹 ∩ 𝐴0 = 𝐵.

For every 𝐹 ∈ DF , we have that ℓ � |𝐹 ∩ 𝐴0 | � ℓ + 𝛼; therefore, there are at most 22ℓ−1 such choices
for 𝐵 = 𝐹 ∩ 𝐴0. However, for every such B, there at most

(𝑛−2ℓ
𝑘−ℓ

)
choices for 𝐹 ∈ 𝐷F . Hence,

𝐾F
2

<
𝐾F
23 + |𝐷

∗
F |

(
𝑛 − 2ℓ
𝑘 − ℓ

)
, (9.31)

and similarly for G. Consequently, we have

|D∗F | >
1
4
𝐾F(𝑛−2ℓ
𝑘−ℓ

) and |D∗G | >
1
4

𝐾G( 𝑛−2ℓ
𝑛−𝑘−ℓ

) (9.32)

that implies that

|D∗F | · |D∗G | � 24ℓ+1 exp(−2(𝜀(𝛿) + 2𝛼)) > 24ℓ+1 exp
(
− 𝛽2

582ℓ

)
. (9.33)

By Theorem 1.1 applied for ‘𝑝 = 𝑝′ = 1
2 ’, there exist 𝐵1 ∈ D∗F and 𝐵2 ∈ D∗G such that |𝐵1 ∩ 𝐵2 | = ℓ− 𝛽.

Next, set 𝑥 := |𝐵1 | − ℓ, X := {𝐹 \ 𝐴0 : 𝐹 ∈ DF and 𝐹 ∩ 𝐴0 = 𝐵1} and 𝑦 := |𝐵2 | − ℓ, Y := {𝐺 \ 𝐴0 :
𝐺 ∈ DG and 𝐺 ∩ 𝐴0 = 𝐵2}. Observe that 0 � 𝑥, 𝑦 � 𝛼 and

|X | � 𝐾F
22ℓ+2 and |Y | � 𝐾G

22ℓ+2 . (9.34)
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Therefore, by our assumption on 𝛿 and the choice of 𝛼 and 𝛽,

|X | · |Y | �
(
𝑛 − 2ℓ
𝑘 − ℓ − 𝑥

)
·
(

𝑛 − 2ℓ
𝑛 − 𝑘 − ℓ − 𝑦

)
· 1

210 ·
1
4ℓ
· 𝑒𝛼 · exp

(
− 2(𝜀(𝛿) + 2𝛼)

)
>

(
𝑛 − 2ℓ
𝑘 − ℓ − 𝑥

)
·
(

𝑛 − 2ℓ
𝑛 − 𝑘 − ℓ − 𝑦

)
· 50𝑛 · exp

(
− 𝛽2

582 (𝑘 − ℓ − 𝑥)

)
. (9.35)

By part (i) of Proposition 7.1, there exist 𝐻1 ∈ X , 𝐻2 ∈ Y such that |𝐻1 ∩ 𝐻2 | = 𝛽. It follows that
(𝐵1 ∪ 𝐻1, 𝐵2 ∪ 𝐻2) ∈ (F𝐴0 × G𝐴0) ∩ (DF ×DG), which clearly leads to a contradiction. �
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