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Abstract

In this paper, we study two-person nonzero-sum games for continuous-time Markov
chains with discounted payoff criteria and Borel action spaces. The transition rates are
possibly unbounded, and the payoff functions might have neither upper nor lower bounds.
We give conditions that ensure the existence of Nash equilibria in stationary strategies.
For the zero-sum case, we prove the existence of the value of the game, and also provide
a recursive way to compute it, or at least to approximate it. Our results are applied
to a controlled queueing system. We also show that if the transition rates are uniformly
bounded, then a continuous-time game is equivalent, in a suitable sense, to a discrete-time
Markov game.

Keywords: Nonzero-sum game; discounted payoff criterion; Nash equilibrium; controlled
Q-process

2000 Mathematics Subject Classification: Primary 91A15; 91A25

1. Introduction

Nonzero-sum stochastic dynamic games have been widely studied in the literature. The
existing works can be roughly classified into two main groups. The first deals with discrete-
time stochastic Markov games (see, for example, [4], [14], [17], [20], [22], and their references);
the other with stochastic differential games (e.g. [10], [18], and [24]). In this paper, we study
a third class of nonzero-sum stochastic games; namely, continuous-time stochastic Markov
games in which the state process evolves according to a continuous-time Markov chain, the
players can select their actions continuously in time, and the transition rates may be unbounded.
The study of the third class of games is motivated by some applications of stochastic games to
queueing systems, telecommunication networks, and other areas; see, for example, [19], [21],
[23], [25], and their references.

More precisely, we consider nonzero-sum games for continuous-time Markov chains with
a discounted payoff criterion and Borel action spaces, allowing unbounded transition rates and
payoff functions that might have neither upper nor lower bounds. We give conditions under
which the existence of Nash equilibria in stationary strategies is obtained by using Fan’s fixed-
point theorem and the optimality equations for the discounted payoff criterion. In the zero-sum
case, we furthermore provide a recursive way to compute, or at least to approximate, the value
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of the zero-sum game. We illustrate our strategy class with an example in which the players can
select their actions continuously in time, and apply our results to a controlled queueing system.

Finally, we also show that if the Markov chain’s transition rates are uniformly bounded, then
the continuous-time game is equivalent to a discrete-time Markov game in the sense that both
games have the same set of Nash equilibria.

The rest of the paper is organized as follows. In Sections 2 and 3, we introduce the game
model and the family of admissible strategies, respectively. The optimality criterion we are
concerned with is presented in Section 4. Our main results are stated in Section 5 and illustrated
with an example in Section 6. The proofs are all postponed to Section 8, after some technical
preliminaries in Section 7. We conclude, in Section 9, with some general remarks.

2. The game model

In this section, we introduce the continuous-time two-person nonzero-sum stochastic game
model

{S,A,B,KA,KB, q, r1, r2}, (2.1)

where S is the state space, a denumerable set, and A and B are the action spaces for players 1
and 2, respectively. The action spaces are assumed to be Borel spaces. The sets KA ⊂ S × A

and KB ⊂ S × B are Borel sets that represent the constraint sets for the two players. That is,
for each state i ∈ S, the i-section in KA, namely

A(i) := {a ∈ A : (i, a) ∈ KA},
represents the set of admissible actions for player 1 in the state i and, similarly, the i-section in
KB ,

B(i) := {b ∈ B : (i, b) ∈ KB},
stands for the family of admissible actions for player 2 in the state i. Let

K := {(i, a, b) : i ∈ S, a ∈ A(i), b ∈ B(i)}, (2.2)

which is a Borel subset of S × A× B.
The function q in (2.1) is the matrix [q(j | i, a, b)] of the game’s transition rates, satisfying

q(j | i, a, b) ≥ 0 for all (i, a, b) ∈ K and i �= j . This matrix is assumed to be conservative,
that is ∑

j∈S
q(j | i, a, b) = 0 for each (i, a, b) ∈ K, (2.3)

and stable, that is

q(i) := sup
a∈A(i), b∈B(i)

qi(a, b) < ∞ for each i ∈ S,

where qi(a, b) := −q(i | i, a, b) for all a ∈ A(i) and b ∈ B(i). Moreover, q(j | i, a, b) is a
measurable function on A × B for each fixed i, j ∈ S. Finally, rk : K → R := (−∞,∞) is
the payoff function for player k = 1, 2.

The game is played as follows. The players continuously observe the current state of the
game. Whenever the game is in state i ∈ S at time t ≥ 0, they independently choose actions
at ∈ A(i) (player 1) and bt ∈ B(i) (player 2) according to some rules. As a consequence of this,
the following happens: (i) player k (k = 1, 2) receives an immediate payoff rk(i, at , bt ), and
(ii) the system moves to a new state j �= i with a possibly inhomogeneous transition probability
function determined by the transition rates q(j | i, at , bt ). Thus, the goal of the players is to
individually maximize, in the sense of Definition 4.1, below, their expected rewards.
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3. Strategies

We will use the following notation. If X is a Borel space, we denote by B(X) its Borel
σ -algebra, and by P(X) the Borel space of probability measures on X, endowed with the
topology of weak convergence. A randomized Markov strategy for player 1 is a family π1 =
(π1
t , t ≥ 0) of stochastic kernels such that: (i) for each t ≥ 0 and i ∈ S, π1

t (· | i) is a probability
measure on A such that π1

t (A(i) | i) = 1, and (ii) for every E ∈ B(A) and i ∈ S, π1
t (E | i) is

a Borel-measurable function in t ≥ 0. We denote by�M
1 the family of all randomized Markov

strategies for player 1. Moreover, a strategy π1 = (π1
t , t ≥ 0) ∈ �M

1 is called stationary if, for
each i ∈ S, there is a probability measure π1(· | i) ∈ P(A(i)) such that

π1
t (· | i) ≡ π1(· | i) for all t ≥ 0.

We denote this policy by (π1(· | i), i ∈ S). The set of all stationary policies for player 1 is
denoted by �s

1. The sets of all randomized Markov strategies �M
2 and all stationary strategies

�s
2 for player 2 are defined similarly, with P(B(i)) in place of P(A(i)). Thus, we see that

�s
1 = ∏

i∈S P (A(i)) and �s
2 = ∏

i∈S P (B(i)) are also Borel sets.
For each pair of strategies (π1, π2) := ((π1

t , π
2
t ), t ≥ 0) ∈ �M

1 × �M
2 , the associated

transition rates and payoff functions are defined, respectively, as follows: for each i, j ∈ S and
t ≥ 0,

q(j | i, t, π1, π2) :=
∫
B

∫
A

q(j | i, a, b)π1
t (da | i)π2

t (db | i), (3.1)

rk(t, i, π
1, π2) :=

∫
B

∫
A

rk(i, a, b)π
1
t (da | i)π2

t (db | i). (3.2)

In particular, when π1 and π2 are both stationary, we write the left-hand sides of (3.1) and
(3.2) as q(j | i, π1, π2) and rk(i, π1, π2), respectively. In addition, the associated Q-matrix
is Q(t, π1, π2) := [q(j | i, t, π1, π2)].

Any transition function p(s, i, t, j, π1, π2) (with i, j ∈ S and t ≥ s ≥ 0) for which
{Q(t, π1, π2), t ≥ 0} are the transition rate matrices is called a Q-process. To guarantee the
existence of such processes, we will restrict ourselves to control strategies in the classes �1
and �2 defined as follows.

Definition 3.1. For k = 1, 2,�k is any subset of randomized Markov strategies for player k
such that �k contains �s

k and satisfies either

�1 := {π1 ∈ �M
1 :

q(j | i, t, π1, π2) is continuous in t for each fixed i, j ∈ S and π2 ∈ �M
2 }

or

�2 := {π2 ∈ �M
2 :

q(j | i, t, π1, π2) is continuous in t for each fixed i, j ∈ S and π1 ∈ �M
1 },

as appropriate.

Observe that �1 ×�2 contains �s
1 ×�s

2 and, as the matrix [q(j | i, a, b)] is conservative
and stable, that Q(t, π1, π2) is also conservative and stable. Hence, for each π1 ∈ �1 and
π2 ∈ �2, the existence of a Q-process is indeed guaranteed but, as is well known [1], [2], [16],
it is not necessarily unique. Thus, to guarantee the uniqueness of a Q-process, throughout this
paper we make the following assumption.
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Assumption 3.1. There exist a sequence {Sm,m ≥ 1} of subsets of S, a nonnegative function
R ≥ 1 on S, and positive constants c and d such that

1. Sm ↑ S and supi∈Sm q(i) < ∞ for each m ≥ 1;

2. limm→∞[infj �∈Sm R(j)] = ∞; and

3.
∑
j∈S q(j | i, a, b)R(j) ≤ cR(i)+ d for all (i, a, b) ∈ K (the set defined in (2.2)).

Remarks 3.1. (a) For the case of uniformly bounded transition rates (i.e. supi∈S q(i) < ∞ as
in, for example, [19], [21], and [23]), Assumptions 3.1.1 and 3.1.2 are not required because
they are only used to guarantee the uniqueness of a Q-process. For the case of unbounded
transition rates, Assumption 3.1 is a variant of hypotheses used in [5], [6], [7], [8], [9], and [15]
for continuous-time Markov decision (or control) processes. Thus, sufficient conditions and
examples satisfying Assumption 3.1 can be given as in the latter references, for instance.

(b) Under Assumption 3.1, it follows from Lemma 7.1, below, that a Q-process with transition
rate matricesQ(t, π1, π2) is unique and honest (i.e. regular). Thus, we denote by {x(t, π1, π2)}
the associated, and possibly inhomogeneous, Markov process with the given transition rates
Q(t, π1, π2), and write the unique and honest transition function as p(s, i, t, j, π1, π2).
Furthermore, for each initial state i ∈ S at time s, we use Eπ

1,π2

s,i to denote the probability
expectation operator determined by p(s, i, t, j, π1, π2).

4. Discounted payoff criteria

For each (π1, π2) ∈ �1 × �2, (s, i) ∈ S̄ := [0,∞) × S, and a fixed discount factor
α > 0, the discounted payoff criterion V kα (s, i, π

1, π2), k = 1, 2, is defined as

V kα (s, i, π
1, π2) := Eπ

1,π2

s,i

[∫ ∞

s

e−α(t−s)rk(t, x(t, π1, π2), π1, π2) dt

]
. (4.1)

For the criterion (4.1) to be well defined and finite, we make the following assumption.

Assumption 4.1. With c and R as in Assumption 3.1,

1. either c ≤ 0, or α − c > 0 when c > 0; and

2. there exist nonnegative constants M1 and M2 such that

|rk(i, a, b)| ≤ M1 +M2R(i) for all (i, a, b) ∈ K and k = 1, 2.

Remark 4.1. Assumption 4.1.2 holds trivially if the payoff functions rk are uniformly bounded
(i.e. sup(i,a,b)∈K, k=1,2 |rk(i, a, b)| < ∞). In Section 6, we give an example for which both
Assumptions 3.1 and 4.1 hold and the payoff functions and transition rates are all unbounded.

We now introduce our optimality criterion.

Definition 4.1. A pair of strategies (π∗1, π∗2) ∈ �1 ×�2 is called a Nash (or noncooperative)
equilibrium for the discounted criterion (4.1) if

V 1
α (s, i, π

∗1, π∗2) ≥ V 1
α (s, i, π

1, π∗2) for all (s, i) ∈ S̄ and π1 ∈ �1 (4.2)

and
V 2
α (s, i, π

∗1, π∗2) ≥ V 2
α (s, i, π

∗1, π2) for all (s, i) ∈ S̄ and π2 ∈ �2. (4.3)

In the zero-sum case, i.e. when r1 = −r2, a Nash equilibrium is also known as a saddle point.
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Our aim is to establish, under certain assumptions, the existence of a Nash equilibrium
(π∗1, π∗2) in the set �s

1 ×�s
2 of pairs of stationary strategies.

5. Existence of Nash equilibria

To ensure the existence of a Nash equilibrium, in addition to Assumptions 3.1 and 4.1 we
also need the following conditions.

Assumption 5.1. 1. For each i ∈ S, A(i) and B(i) are compact.

2. The payoff function rk(i, a, b) is continuous in (a, b) ∈ A(i) × B(i) for each i ∈ S and
k = 1, 2.

3. For each i ∈ S, the function
∑
j∈S q(j | i, a, b)u(j) is continuous in (a, b) ∈ A(i)× B(i)

for each bounded function u on S and also for u = R, as in Assumption 3.1.

4. There exist a nonnegative function R′ on S and constants c′ > 0, d ′ ≥ 0, and M ′ > 0 such
that

q(i)R(i) ≤ M ′R′(i)∑
j∈S

q(j | i, a, b)R′(j) ≤ c′R′(i)+ d ′

for all (i, a, b) ∈ K , with R as in Assumption 3.1.

Remark 5.1. Assumptions 5.1.1–5.1.3 consist of standard continuity–compactness hypotheses
for continuous-time Markov control processes; see, e.g. [5], [6], [7], [8], [9], [11], [12], [15],
[23], and [26]. Assumption 5.1.4 is necessary for the application of Dynkin’s formula, and it
can be dropped when q(i) is bounded in i ∈ S. On the other hand, if the rk(i, a, b), k = 1, 2,
are uniformly bounded in K , then the continuity condition for u = R in Assumption 5.1.3 is
not required.

To state our results, we need the following notation. For the function R ≥ 1 in Assump-
tion 3.1, we define the weighted supremum norm ‖ · ‖R for real-valued functions u on S by

‖u‖R := sup
i∈S

{R(i)−1|u(i)|};

we define the Banach space

B(S) := {u : ‖u‖R < ∞};

and we define the operator T on B(S) as

T u(i) := sup
φ∈P(A(i))

inf
ψ∈P(B(i))

{
r1(i, φ, ψ)

α +m(i)
+ m(i)

α +m(i)

∑
j∈S

[
q(j | i, φ, ψ)

m(i)
+ δij

]
u(j)

}
(5.1)

for all i ∈ S and u ∈ B(S), where m(i) is such that m(i) > q(i) for all i ∈ S.
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Theorem 5.1. Suppose that Assumptions 3.1, 4.1, and 5.1 hold. Then the following statements
also hold.

(a) There exists a pair (π∗1, π∗2) ∈ �s
1 ×�s

2 such that

αV 1
α (i, π

∗1, π∗2)

= sup
π1∈�s

1

{
r1(i, π

1, π∗2)+
∑
j∈S

q(j | i, π1, π∗2)V 1
α (j, π

∗1, π∗2)

}
for all i ∈ S,

(5.2)

αV 2
α (i, π

∗1, π∗2)

= sup
π2∈�s

2

{
r2(i, π

∗1, π2)+
∑
j∈S

q(j | i, π∗1, π2)V 2
α (j, π

∗1, π∗2)

}
for all i ∈ S.

(5.3)

(b) The pair (π∗1, π∗2) obtained in part (a) is a Nash equilibrium. Moreover, a pair of
strategies (π∗1, π∗2) ∈ �s

1 ×�s
2 is a Nash equilibrium if and only if (5.2) and (5.3) are

satisfied.

(c) If, in addition, r1 = −r2 (i.e. the zero-sum case), then the function

V (i) := sup
π1∈�1

inf
π2∈�2

V 1
α (s, i, π

1, π2) = inf
π2∈�2

sup
π1∈�1

V 1
α (s, i, π

1, π2) for all i ∈ S,
(5.4)

which is called the value of the zero-sum game, is independent of s ≥ 0. Furthermore,
V (·) can be computed to be

V (i) = lim
n→∞ un(i) for all i ∈ S, (5.5)

where un(i) := T un−1(i) for all n ≥ 1, with u0(i) := −[M1/α + dM2/(α(α − c)) +
M2R(i)/(α − c)]. (Here, R(i), c, d , M1, and M2 are as in Assumptions 3.1 and 4.1.)

Proof. See Section 8.

We now show the relationship between discrete- and continuous-time stochastic Markov
games. To this end, we introduce the following notation. Suppose that the transition rates
q(j | i, a, b) are uniformly bounded, i.e. ‖q‖ := supi∈S q(i) < ∞. Then, we can define a
stochastic kernel P(j | i, a, b) on S, givenK and new payoff functions rd

k (i, a, b), as follows:
for each (i, a, b) ∈ K , j ∈ S, and k = 1, 2, let

P(j | i, a, b) := q(j | i, a, b)
1 + ‖q‖ + δij , rd

k (i, a, b) := rk(i, a, b)

α + 1 + ‖q‖ , β = 1 + ‖q‖
α + 1 + ‖q‖ .

(5.6)
From (2.3) and (5.6) we see that P(j | i, a, b) is indeed a stochastic kernel on S, given K .
We now define a discrete-time (two-person nonzero-sum) Markov game model with transition
probabilities P(j | i, a, b), payoffs rd

k (i, a, b), and discount factor β:

{S,A,B,KA,KB, P (j | i, a, b), rd
1 (i, a, b), r

d
2 (i, a, b), β} (5.7)

with S, A, B, KA, and KB as in (2.1).
For the discrete-time model (5.7) with discount factor β (cf. [20] and [22]), we can also

define the discounted payoff criterion and then a Nash equilibrium, as in Section 4.
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Theorem 5.2. Suppose that Assumptions 3.1, 4.1, and 5.1 hold and, in addition, that ‖q‖ < ∞.
Then, the continuous-time model (2.1) and the discrete-time model (5.7) have the same Nash
equilibria. In other words, if a pair of stationary strategies is a Nash equilibrium for one of the
models, then it is so for the other.

Proof. See Section 8.

Remark 5.2. Theorem 5.2 shows the relationship between the two classes of Markov games in
discrete and continuous time, under the condition ‖q‖ < ∞. This condition is very important
because it is used to define the discount factor β for the discrete-time model (5.7). However,
such a condition may of course not hold in general; see Remark 6.1(b), below. Therefore,
in our continuous-time model (2.1) with unbounded transition rates, the existence of a Nash
equilibrium cannot be obtained by introducing a discrete-time model such as (5.7).

6. Examples

In this section, we apply our results to a controlled queueing system in Example 6.1, and
then illustrate our classes of strategies with Example 6.2.

6.1. Example 6.1

Consider a single-server queueing system in which the state variable denotes the total number
of jobs (in service and waiting in the queue) at each time t ≥ 0. There are ‘natural’ arrival
and service rates, say λ and µ, respectively, in addition to service parameters u(a) controlled
by player 1, and arrival parameters v(b) controlled by player 2. When the state of the system
is i ∈ S := {0, 1, . . . }, player 1 takes an action a from a given set A(i) ⊂ A, which may
increase (u(a) ≥ 0) or decrease (u(a) ≤ 0) the service rate. These actions produce a reward
or cost denoted by c1(a) ≥ 0 or c1(a) ≤ 0, respectively, per unit time. Similarly, when the
state is i ∈ S, player 2 takes an action b, from a set B(i) ⊂ B, that rejects (v(b) ≤ 0) or admits
(v(b) ≥ 0) customers, and these actions result in a reward or cost rate c2(b) ≥ 0 or c2(b) ≤ 0,
respectively. In addition, we assume that player k (k = 1, 2) gets a reward pki or incurs a cost
pki for each unit of time during which the system remains in state i. Here, pk > 0 is a fixed
reward fee, and pk < 0 a fixed cost fee, per customer, for player k.

We now formulate this model as a continuous-time Markov game. The corresponding
transition rates q(j | i, a, b) and payoff functions rk(i, a, b) for player k are as follows. For
i = 0, a ∈ A(0), and b ∈ B(0),

q(1 | 0, a, b) = −q(0 | 0, a, b) := u(a)+ v(b)

and, for i ≥ 1, a ∈ A(i), and b ∈ B(i),

q(j | i, a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

µi + u(a) if j = i − 1,

−(µ+ λ)i − u(a)− v(b) if j = i,

λi + v(b) if j = i + 1,

0 otherwise,

(6.1)

r1(i, a, b) = p1i − c1(a), r2(i, a, b) = p2i − c2(b) for (i, a, b) ∈ K, (6.2)

with K as in (2.2).
The aim now is to find conditions under which there exists a Nash equilibrium in the set of

stationary strategies. To do so, we consider the following conditions.
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Condition 6.1. (a) For each i ∈ S, µi + u(a) ≥ 0 for all a ∈ A(i) and λi + v(b) ≥ 0 for all
b ∈ B(i).
(b) Either 0 ≤ λ ≤ µ, or α > λ− µ when λ > µ.

Condition 6.2. The action setsA and B are metric spaces, andA(i) and B(i) are compact for
each i ∈ S.

Condition 6.3. The functions c1(a), c2(b), u(a), and v(b) are bounded in the supremum norm
and continuous on their respective domains.

Under these conditions, we obtain the following result.

Proposition 6.1. Under Conditions 6.1, 6.2, and 6.3, the above queueing system satisfies
Assumptions 3.1, 4.1, and 5.1. Therefore (by Theorem 5.1), there exists a Nash equilibrium in
the set of stationary strategies.

Proof. We shall first verify that Assumption 3.1 is satisfied. Let Sm := {0, 1, . . . , m}
for each m ≥ 1, R(i) := i + 1 for all i ∈ S, ‖u‖ := supa∈A |u(a)|, ‖v‖ := supb∈B |v(b)|,
‖c1‖ := supa∈A |c1(a)|, and ‖c2‖ := supb∈B |c2(b)|. Then Assumptions 3.1.1 and 3.1.2 are
obviously true and, for each (i, a, b) ∈ K , from (6.1) we have

∑
j∈S

q(j | i, a, b)R(j) = (λ− µ)i − u(a)+ v(b)

≤ (λ− µ)R(i)+ (λ+ µ+ ‖u‖ + ‖v‖), i ≥ 1,
∑
j∈S

q(j | i, a, b)R(j) = u(a)+ v(b)

≤ R(0)+ (λ+ µ+ ‖u‖ + ‖v‖), i = 0.

These inequalities yield Assumption 3.1.3 with c = λ−µ, d = λ+µ+‖u‖+‖v‖, andR(i) =
i + 1. To verify Assumption 4.1, let p∗ := max{|p1|, |p2|}. Then |rk(i, a, b)| ≤ p∗R(i) +
‖c1‖+‖c2‖ for all i ∈ S, which, together with Condition 6.1(b), gives Assumption 4.1. Finally,
from Conditions 6.1–6.3 together with (6.1) and (6.2), we see that Assumptions 5.1.1–5.1.3
hold. Moreover, as in the verification ofAssumption 3.1 (replacingR(i)withR′(i) := (i+1)2),
we also see that Assumption 5.1.4 is satisfied and, so, Assumption 5.1 follows in its entirety.

Remark 6.1. (a) This example improves upon one given in [6] for zero-sum games, in which
(i) the payoff function was assumed to be bounded below and (ii) the condition λ ≤ µ was
necessary.

(b) It should be noted that, in Example 6.1, both the reward and transition rates are unbounded
when λ (or µ) is positive, and that the transition rates are uniformly bounded when λ = µ = 0.

In the following example, we will further show that the players can select their actions
continuously in time.

6.2. Example 6.2

In Example 6.1, take arbitrary actions aik , k = 1, 2, from A(i) and bik , k = 1, 2, from
B(i), for each i ∈ S, and then define the inhomogeneous (randomized) Markov strategies

https://doi.org/10.1239/jap/1118777172 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777172


Continuous-time Markov games 311

π̃1 = (π̃1
t , t ≥ 0) and π̃2 = (π̃2

t , t ≥ 0) as, respectively,

π̃1
t (E | i) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 e−ρit if E = {ai1},
1 − 1

2 e−ρit if E = {ai2},
0 otherwise,

(6.3)

with a fixed constant ρ > 0, and

π̃2
t (E | i) =

⎧⎪⎪⎨
⎪⎪⎩

sin2(it) if E = {bi1},
cos2(it) if E = {bi2},
0 otherwise.

(6.4)

Moreover, let �1 := �s
1 ∪ {π̃1} and �2 := �s

2 ∪ {π̃2}. By (6.1), (6.3), (6.4), and (3.1), we
see that �1 and �2 satisfy the requirements of Definition 3.1, and that �1 ⊃ �s

1, �1 �= �s
1,

�2 ⊃ �s
2, and �2 �= �s

2.

Remark 6.2. Obviously, when using the inhomogeneous strategies, the players select their
actions continuously in time t ≥ 0.

7. Technical preliminaries

In this section, we present some results needed to prove Theorems 5.1 and 5.2. Some of
these results are already known, but we state them here for completeness and ease of reference.

Lemma 7.1. Suppose that Assumption 3.1 holds. Then the following statements also hold.

(a) For each (π1, π2) ∈ �1 ×�2, the associated Q-process is regular.

(b) If, in addition, Assumption 4.1 holds, then there exist nonnegative constants M3 and M4
(which only depend on the constants c, d, and α) such that, for each (π1, π2) ∈ �1 ×�2
and (s, i) ∈ S̄,

|V kα (s, i, π1, π2)| ≤ M3 +M4R(i) for k = 1, 2. (7.1)

Proof. The lemma follows from [5, Theorems 3.1(a) and 3.2(b)].

In the proof of Theorem 5.1, we will use some results on continuous-time Markov control
processes. To state these results we introduce the following notation. For each i, j ∈ S,
ψ ∈ P(B(i)), and stationary strategies πk = (πk(· | i), i ∈ S) ∈ �s

k , k = 1, 2, let

V 1∗ (i, π2) := sup
π1∈�1

V 1
α (0, i, π

1, π2),

V 2∗ (i, π1) := sup
π2∈�2

V 2
α (0, i, π

1, π2),

q(j | i, π1, ψ) :=
∫
B(i)

∫
A(i)

q(j | i, a, b)π1(da | i)ψ(db), (7.2)

r1(i, π
1, ψ) :=

∫
B(i)

∫
A(i)

r1(i, a, b)π
1(da | i)ψ(db). (7.3)

Taking φ ∈ P(A(i)) rather than ψ ∈ P(B(i)), we define q(j | i, φ, π2) and r2(i, φ, π2)

similarly.
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Lemma 7.2. Suppose that Assumptions 3.1, 4.1, and 5.1 hold. Then the following statements
also hold.

(a) For each pair (π1, π2) ∈ �s
1 ×�s

2 and k = 1, 2,

V kα (s, i, π
1, π2) = V kα (0, i, π

1, π2) =: V kα (i, π1, π2) for all i ∈ S and s ≥ 0.

Moreover, V kα (i, π
1, π2) is the unique solution in B(S) of the equation

αu(i) = rk(i, π
1, π2)+

∑
j∈S

q(j | i, π1, π2)u(j) for all i ∈ S.

(b) For each strategy π2 ∈ �s
2, there exists a strategy π∗1 ∈ �s

1 such that

V 1
α (i, π

∗1, π2) = r1(i, π
∗1, π2)+

∑
j∈S

q(j | i, π∗1, π2)V 1
α (j, π

∗1, π2)

= sup
π1∈�s

1

{
r1(i, π

1, π2)+
∑
j∈S

q(j | i, π1, π2)V 1
α (j, π

1, π2)

}
for all i ∈ S,

and V 1∗ (·, π2) is the unique solution in B(S) of the optimality equation

αu(i) = sup
π1∈�s

1

{
r1(i, π

1, π2)+
∑
j∈S

q(j | i, π1, π2)u(j)

}
for all i ∈ S.

(c) Similarly, for each strategy π1 ∈ �s
1, there exists a strategy π∗2 ∈ �s

1 such that

αV 2
α (i, π

1, π∗2)

= r2(i, π
1, π∗2)+

∑
j∈S

q(j | i, π1, π∗2)V 2
α (j, π

1, π∗2)

= sup
π2∈�s

2

{
r2(i, π

1, π2)+
∑
j∈S

q(j | i, π1, π2)V 2
α (j, π

1, π2)

}
for all i ∈ S,

and V 2∗ (·, π1) is the unique solution in B(S) of the optimality equation

αu(i) = sup
π2∈�s

2

{
r2(i, π

1, π2)+
∑
j∈S

q(j | i, π1, π2)u(j)

}
for all i ∈ S.

(d) For each π1 = (π1
t , t ≥ 0) ∈ �1 and π2 = (π2

t , t ≥ 0) ∈ �2, if there exists a function
u ∈ B(S) such that

αu(i) ≥ rk(t, i, π
1, π2)+

∑
j∈S

q(j | i, t, π1, π2)u(j) for all i ∈ S and t ≥ 0,

then u(i) ≥ V kα (s, i, π
1, π2) for all (s, i) ∈ S̄, with k = 1, 2.

(e) V kα (i, π
1, π2) is continuous in (π1, π2) ∈ �s

1 ×�s
2 for each fixed i ∈ S and k = 1, 2.
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Proof. Part (a) can be proved similarly to Lemma 6.2(c) of [5], whereas part (d) follows
from [5, Lemma 6.2(a)] and parts (b) and (c) follow from [5, Theorem 3.2]. To prove
part (e), it suffices to consider the case k = 1 because the case k = 2 is, of course, similar.
Let (π1

n , π
2
n ) → (π1, π2) and lim supn→∞ V 1

α (i, π
1
n , π

2
n ) =: v(i) for all i ∈ S. Then, there

exists a subsequence {(π1
m, π

2
m)} of {(π1

n , π
2
n )} such that

lim
m→∞V

1
α (i, π

1
m, π

2
m) = v(i) and lim

m→∞ r1(i, π
1
m, π

2
m) = r1(i, π

1, π2) for all i ∈ S,
(7.4)

where the latter equality follows from Assumption 5.1.2 and the definition of weak convergence
of probability measures. From (7.4) and (7.1), we find that

|v(i)| ≤ M3 +M4R(i) for all i ∈ S. (7.5)

Moreover, using part (a), for each i ∈ S and m ≥ 1 we have

αV 1
α (i, π

1
m, π

2
m) = r1(i, π

1
m, π

1
m)+

∑
j∈S

q(j | i, π1
m, π

2
m)V

1
α (j, π

1
m, π

2
m),

which can be expressed as

V 1
α (i, π

1
m, π

2
m) = r1(i, π

1
m, π

2
m)

α − q(i | i, π1
m, π

2
m)

+ 1

α − q(i | i, π1
m, π

2
m)

∑
j �=i

q(j | i, π1
m, π

2
m)V

1
α (j, π

1
m, π

2
m).

Hence, by (7.4), (7.5), Assumption 5.1, and Lemma 8.3.7 of [13], we obtain

v(i) = r1(i, π
1, π2)

α − q(i | i, π1, π2)
+ 1

α − q(i | i, π1, π2)

∑
j �=i

q(j | i, π1, π2)v(j),

that is,

αv(i) = r1(i, π
1, π2)+

∑
j∈S

q(j | i, π1, π2)v(j),

which, together with the ‘uniqueness of solutions’ in part (a), implies that

lim sup
n→∞

V 1
α (i, π

1
n , π

2
n ) = v(i) = V 1

α (i, π
1, π2) for all i ∈ S. (7.6)

Similarly, we obtain

lim inf
n→∞ V 1

α (i, π
1
n , π

2
n ) = V 1

α (i, π
1, π2) for all i ∈ S. (7.7)

Thus, from (7.6) and (7.7),

lim
n→∞V

1
α (i, π

1
n , π

2
n ) = V 1

α (i, π
1, π2) for all i ∈ S,

and part (e) follows for k = 1.
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Lemma 7.3. Suppose that Assumptions 3.1, 4.1, and 5.1 hold. Then the following statements
also hold.

(a) The functions rk(i, π1, π2) and
∑
j∈S q(j | i, π1, π2)V kα (j, π

1, π2) are continuous in
(π1, π2) ∈ �s

1 ×�s
2 for each fixed i ∈ S and k = 1, 2.

(b) If a real-valued function f (π1, π2) is continuous in (π1, π2) ∈ �s
1 × �s

2, then the
function f ∗(π1) on �s

1, defined as

f ∗(π1) := sup
π2∈�s

2

f (π1, π2),

is continuous in π1 ∈ �s
1.

Proof. (a) By Assumptions 5.1.2 and 5.1.3, we see that rk(i, π1, π2) and q(j | i, π1, π2)

are continuous for each i, j ∈ S. Thus, by Assumption 5.1.1, the desired conclusion follows
from our Lemma 7.2(e) and Lemma 8.3.7 of [13].

(b) Since S is denumerable, byAssumption 5.1.1 we know that�s
2 = ∏

i∈S P (B(i)) is compact.
Thus, f ∗(π1) is well defined for each π1 ∈ �s

1. Similarly, by Assumption 5.1.1 we see that
�s

1 ×�s
2 is also compact. Hence, f is uniformly continuous on the compact metric space

�s
1 ×�s

2 and, so, part (b) follows from well-known facts.

Finally, we recall Fan’s fixed-point theorem.

Lemma 7.4. (Fan’s fixed-point theorem.) Let X be a locally convex topological linear space
and Y a compact convex set in X. Let F(Y ) be the family of all closed convex (nonempty)
subsets of Y . Then, for any upper-semicontinuous point-to-set transformation f from Y to
F(Y ), there exists a point y0 ∈ Y such that y0 ∈ f (y0).

Proof. See [3].

Remark 7.1. It is clear that the compact sets �s
1 and �s

2 are convex. Moreover, by (3.1) and
(3.2), the function

π1 �→ rk(i, π
1, π2)+

∑
j∈S

q(j | i, π1, π2)u(j) (7.8)

is convex in π1 ∈ �s
1 for any fixed π2 ∈ �s

2, u ∈ B(S), i ∈ S, and k = 1, 2. (This convexity
is also true, of course, if we consider (7.8) as a function of π2 ∈ �s

2 for fixed π1 ∈ �s
1.)

8. Proof of Theorems 5.1 and 5.2

8.1. Proof of Theorem 5.1

8.1.1. Proof of part (a). For each fixed π2 ∈ �s
2, Lemma 7.3 gives the existence of a strategy

π∗1 ∈ �s
1 such that

r1(i, π
∗1, π2)+

∑
j∈S

q(j | i, π∗1, π2)V 1
α (j, π

∗1, π2)

= sup
π1∈�s

1

{
r1(i, π

1, π2)+
∑
j∈S

q(j | i, π1, π2)V 1
α (j, π

1, π2)

}
for all i ∈ S.
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Thus, the set

f (π2) :=
{
π∗1 ∈ �s

1 : r1(i, π∗1, π2)+
∑
j∈S

q(j | i, π∗1, π2)V 1
α (j, π

∗1, π2)

= sup
π1∈�s

1

{
r1(i, π

1, π2)+
∑
j∈S

q(j | i, π1, π2)V 1
α (j, π

1, π2)

}
for all i ∈ S

}

(8.1)

is nonempty. Similarly, given any π1 ∈ �s
1, the set

f (π1) :=
{
π∗2 ∈ �s

2 : r2(i, π1, π∗2)+
∑
j∈S

q(j | i, π1, π∗2)V 2
α (j, π

1, π∗2)

= sup
π2∈�s

2

{
r2(i, π

1, π2)+
∑
j∈S

q(j | i, π1, π2)V 2
α (j, π

1, π2)

}
for all i ∈ S

}

(8.2)

is nonempty. Moreover, by Lemma 7.3(b), f (π1) and f (π2) are compact sets while, by
Lemma 7.2(a)–(c) and Remark 7.1, they are convex. We now define the multifunction

� : �s
1 ×�s

2 → 2�
s
1×�s

2 by (π1, π2) �→ f (π2)× f (π1),

and show that it is upper semicontinuous. Let {π1
n , π

2
n } and {π∗1

n , π
∗2
n } be such that, for all

n ≥ 1,

(i) {π1
n , π

2
n }, {π∗1

n , π
∗2
n } ∈ �s

1 ×�s
2,

(ii) limn→∞(π1
n , π

2
n ) = (π1, π2) and limn→∞(π∗1

n , π
∗2
n ) = (π∗1, π∗2), and

(iii) (π∗1
n , π

∗2
n ) ∈ �(π1

n , π
2
n ).

We wish to show that (π∗1, π∗2) is in �(π1, π2). To this end, note that, by (iii),

r1(i, π
∗1
n , π

2
n )+

∑
j∈S

q(j | i, π∗1
n , π

2
n )V

1
α (j, π

∗1
n , π

2
n )

= sup
π1∈�s

1

{r1(i, π1, π2
n )+

∑
j∈S

q(j | i, π1, π2
n )V

1
α (j, π

1, π2
n )} (8.3)

for all n ≥ 1. Furthermore, by (ii) and Lemma 7.3, letting n → ∞ in (8.3) gives

r1(i, π
∗1, π2)+

∑
j∈S

q(j | i, π∗1, π2)V 1
α (j, π

∗1, π2)

= sup
π1∈�s

1

{
r1(i, π

1, π2)+
∑
j∈S

q(j | i, π1, π2)V 1
α (j, π

1, π2)

}
,

which means that π∗1 is in f (π2). Similarly, we find that π∗2 ∈ f (π1) and, so, (π∗1, π∗2) ∈
�(π1, π2). Thus, the mapping� is indeed upper semicontinuous. It follows, from Lemma 7.4,
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that there exists a pair (π∗1, π∗2) ∈ �s
1 ×�s

2 such that (π∗1, π∗2) ∈ f (π∗2)× f (π∗1), which,
together with (8.1), (8.2), and Lemma 7.2(a), implies that

αV 1
α (i, π

∗1, π∗2)

= sup
π1∈�s

1

{
r1(i, π

1, π∗2)+
∑
j∈S

q(j | i, π1, π∗2)V 1
α (j, π

∗1, π∗2)

}
for all i ∈ S (8.4)

and

αV 2
α (i, π

∗1, π∗2)

= sup
π2∈�s

2

{
r2(i, π

∗1, π2)+
∑
j∈S

q(j | i, π∗1, π2)V 2
α (j, π

∗1, π∗2)

}
for all i ∈ S. (8.5)

Hence, part (a) follows.

8.1.2. Proof of part (b). We first fix π∗2 ∈ �s
2. By (3.1), (3.2), (7.2), (7.3), and (8.4), we have

αV 1
α (i, π

∗1, π∗2)

≥ r1(i, φ, π
∗2)+

∑
j∈S

q(j | i, φ, π∗2)V 1
α (j, π

∗1, π∗2) for all φ ∈ P(A(i)), i ∈ S.

(8.6)

Thus, for each π1 = (π1
t , t ≥ 0) ∈ �1, since π1

t (· | i) ∈ P(A(i)) for all i ∈ S and t ≥ 0, by
(3.1), (3.2), and (8.6) we have

αV 1
α (i, π

∗1, π∗2)

≥ r1(t, i, π
1, π∗2)+

∑
j∈S

q(j | i, t, π1, π∗2)V 1
α (j, π

∗1, π∗2) for all i ∈ S,

which, together with parts (a) and (d) of Lemma 7.2, gives

V 1
α (s, i, π

∗1, π∗2) = V 1
α (i, π

∗1, π∗2) ≥ V 1
α (s, i, π

1, π∗2) for all (s, i) ∈ S̄ and π1 ∈ �1.

From this we recover (4.2). Similarly, by (3.1), (3.2), (7.2), (7.3), and (8.5), we see that (4.3)
is also satisfied. Thus, (π∗1, π∗2) is a Nash equilibrium. On the other hand, if (π∗1, π∗2) is
a Nash equilibrium, then by parts (b) and (c) of Lemma 7.2 we see that (5.2) and (5.3) are
satisfied. Thus, we have completed the proof of part (b).

8.1.3. Proof of part (c). Suppose that r1 = −r2. By parts (a) and (b) of Lemma 7.2, (5.2), and
(5.3) we know that (5.4) is true. Thus, to complete the proof of part (c) it only remains to verify
(5.5). The operator T in (5.1) is obviously monotone. Furthermore, by Assumptions 5.1 and
4.1.2, u0 and un = T nu0 are well defined for each n ≥ 1. Thus, under Assumptions 3.1.3 and
5.1.2 straightforward calculations give, for each i ∈ S,

u1(i) ≥ −M1 +M2R(i)

α +m(i)
− m(i)

α +m(i)

[
M1

α
+ dM2

α(α − c)
+ M2R(i)

α − c
+ M2(cR(i)+ d)

(α − c)m(i)

]

= M1

α
+ dM2

α(α − c)
+ M2R(i)

α − c

= u0(i). (8.7)
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Therefore,
u0 ≤ u1 ≤ · · · ≤ un ≤ · · ·

and, so, un ↑ u∗ for some function u∗ ≥ un for all n ≥ 0. Hence, assuming for a moment that
u∗ is in B(S), we have T u∗ ≥ T un = un+1 for all n ≥ 1, which gives

T u∗ ≥ u∗. (8.8)

On the other hand, to prove that u∗ ∈ B(S), it suffices to show that

|un(i)| ≤ M1

α
+ dM2

α(α − c)
+ M2R(i)

α − c
for all n ≥ 0 and i ∈ S.

This, however, follows by induction, by an argument similar to that resulting in (8.7).
Next, we will show that (8.8) holds with equality. Indeed, for each fixed n ≥ 1, i ∈ S, and

φ ∈ P(A(i)), we have already proved that un is in B(S) while, by Assumption 5.1.1, P(B(i))
is compact. Thus, by Lemma 7.3, there exists ψ∗

n ∈ P(B(i)), which may depend on i and φ,
such that

un+1(i) ≥ inf
ψ∈P(B(i))

{
r1(i, φ, ψ)

α +m(i)
+ m(i)

α +m(i)

∑
j∈S

[
q(j | i, φ, ψ)

m(i)
+ δij

]
un(j)

}

= r1(i, φ, ψ
∗
n )

α +m(i)
+ m(i)

α +m(i)

∑
j∈S

[
q(j | i, φ, ψ∗

n )

m(i)
+ δij

]
un(j). (8.9)

SinceP(B(i)) is compact, without loss of generality we may suppose thatψ∗
n → ψ∗ inP(B(i)).

Therefore, as u0 ≤ un ↑ u∗ ∈ B(S), by the ‘extended Fatou lemma’, i.e. Lemma 8.3.7(b) of
[13], and our Lemma 7.1(b), by letting n → ∞ in (8.9) we obtain

u∗(i) ≥ r1(i, φ, ψ
∗)

α +m(i)
+ m(i)

α +m(i)

∑
j∈S

[
q(j | i, φ, ψ∗)

m(i)
+ δij

]
u∗(j)

≥ inf
ψ∈P(B(i))

{
r1(i, φ, ψ)

α +m(i)
+ m(i)

α +m(i)

∑
j∈S

[
q(j | i, φ, ψ)

m(i)
+ δij

]
u∗(j)

}
. (8.10)

As (8.10) holds for all φ ∈ P(A(i)) and i ∈ S, we conclude that

u∗ ≥ T u∗,

which, together with (8.8), gives u∗ = T u∗, i.e.

αu∗(i) := sup
φ∈P(A(i))

inf
ψ∈P(B(i))

{
r1(i, φ, ψ)+

∑
j∈S

q(j | i, φ, ψ)∗u(j)
}

for all i ∈ S.

This equality and Lemma 7.4 imply the existence of (π̄1, π̄2) ∈ �s
1 ×�s

2 such that

αu∗(i) = sup
φ∈P(A(i))

{
r1(i, φ, π̄

2)+
∑
j∈S

q(j | i, φ, π̄2)u∗(j)
}

= inf
ψ∈P(B(i))

{
r1(i, π̄

1, ψ)+
∑
j∈S

q(j | i, π̄1, ψ)u∗(j)
}
. (8.11)
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If we now we fix π̄2 then, for any strategy π1 = (π1
t ) ∈ �1, we have π1

t (· | i) ∈ P(A(i)) for
all t ≥ 0 and i ∈ S. Hence, from (3.1), (3.2), and (8.11), we find that

αu∗(i) ≥ r1(t, i, π
1, π̄2)+

∑
j∈S

q(j | t, i, π1, π̄2)u∗(j) for all (t, i) ∈ S̄.

This inequality and Lemma 6.2(a) of [5] yield

u∗(i) ≥ V 1
α (s, i, π

1, π̄2) for all π1 ∈ �1 and (s, i) ∈ S̄,
which in turn implies that

u∗(i) ≥ sup
π1∈�1

inf
π2∈�2

V 1
α (s, i, π

1, π2) for all (s, i) ∈ S̄. (8.12)

A similar argument, replacing π̄2 with π̄1, gives

u∗(i) ≤ inf
π2∈�2

sup
π1∈�1

V 1
α (s, i, π

1, π2) for all (s, i) ∈ S̄. (8.13)

From (8.13), (8.12), and (5.4), we obtain the desired result (5.5) with V (·) = u∗(·).
8.2. Proof of Theorem 5.2

First, letRd(i) := R(i)+d/c for all i ∈ S. Since the model (2.1) is conservative (see (2.3)),
by Assumption 3.1 and (5.6) we have

∑
j∈S

P (j | i, a, b)Rd(j) = 1

1 + ‖q‖
∑
j∈S

q(j | i, a, b)
(
R(j)+ d

c

)
+ Rd(i)

≤ 1

1 + ‖q‖ (cR(i)+ d)+ Rd(i)

= κRd(i) for all (i, a, b) ∈ K,
where κ := (c + 1 + ‖q‖)/(1 + ‖q‖). Since α > c, we have

κβ = c + 1 + ‖q‖
1 + ‖q‖

1 + ‖q‖
α + 1 + ‖q‖ = c + 1 + ‖q‖

α + 1 + ‖q‖ < 1.

Then, as in the proof of Theorem 5.1(b), but now using Theorem 8.3.6 of [13], there exists a
Nash equilibrium (π∗1, π∗2) for the model (5.7). On the other hand, since (5.2) and (5.3) are
equivalent to

V 1
α (i, π

∗1, π∗2)

= sup
π1∈�s

1

{
rd

1 (i, π
1, π∗2)+ β

∑
j∈S

P (j | i, π1, π∗2)V 1
α (j, π

∗1, π∗2)

}
for all i ∈ S

and

V 2
α (i, π

∗1, π∗2)

= sup
π2∈�s

2

{
rd

2 (i, π
∗1, π2)+ β

∑
j∈S

P (j | i, π∗1, π2)V 2
α (j, π

∗1, π∗2)

}
for all i ∈ S,

respectively, by Theorem 5.1(b) and Theorem 8.3.6 of [13] we see that Theorem 5.2 holds.
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9. Concluding remarks

In the previous sections, we have studied two-person nonzero-sum games for continuous-
time Markov chains with discounted payoff criteria. Under reasonably mild assumptions, we
have shown that the game has a stationary Nash equilibrium. In particular, the transition
and reward rates may be unbounded provided that they satisfy the ‘growth’ conditions in
Assumptions 3.1.3 and 4.1.2. For the zero-sum case, we proved the existence of the value of the
game, and also provided a recursive way to compute it, or at least to approximate it. Despite
our assumptions, we believe that our formulation and approach are general enough to provide
a way to analyse other important problems, such as games with an average payoff criterion,
which is an important optimization criterion in many applications (e.g. telecommunication
systems). To the best of the authors’ knowledge, such games have not been previously studied
for continuous-time Markov chains. Research on this topic is in progress.

To conclude, we should mention that similar results for N -person nonzero-sum games can
be obtained using our proof techniques, with obvious (notational) changes.
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