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Abstract

In this paper we consider an MIMIc queue modified to allow both mass arrivals when the
system is empty and the workload to be removed. Properties of queues which terminate
when the server becomes idle are firstly developed. Recurrence properties, equilibrium
distribution, and equilibrium queue-size structure are studied for the case of resurrection
and no mass exodus. All of these results are then generalized to allow for the removal of
the entire workload. In particular, we obtain the Laplace transformation of the transition
probability for the absorptive MIMIc queue.
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1. Introduction

Markovian queue theory is a basic and important branch of queueing theory. It interweaves
the general theory of queueing models and the general theory and applications of continuous­
time Markov chains and has become a very successful and fruitful research field. There are
numerous works in the literature; see, for example, Asmussen [3] and Gross and Harris [15] for
queueing models, and Anderson [1] for applications of continuous-time Markov chains. See
also Chen [9], [10], which contain much new material concerning continuous-time Markov
chains.

Markovian queueing models with state-independent and state-dependent controls have also
attracted considerable research interest. For a recent work in this direction, see Chen et al. [8].
In these models, arbitrary inputs are allowed when the queue is empty. Usually, this is due to the
consideration of improving working efficiency. Gelenbe [13] and Gelenbe et al. [14] introduced
the particularly interesting concept of negative arrivals; see also Bayer and Boxma [4] and Jain
and Sigman [16]. Parthasarathy and Krishna Kumar [18] allowed arbitrary input when the
queue is empty, and Chen and Renshaw [6], [7] introduced the possibility of removing the
entire workload. Di Crescenzo et at. [11] considered the first effective catastrophe occurrence
time of a birth-death process. Dudin and Karolik [12] investigated a BMAP/SMlI system
which is exposed to disaster arrivals. The MtlMltlN queue with catastrophes can be seen in
Zeifman and Korotysheva [19]. From a practical point of view, models with disasters are
quite interesting, for example, the work of hardware influenced by breaks and occasional
power disappearance, the work of communication systems influenced by computer viruses or
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The MIMic queue with mass exodus and mass arrivals when empty 991

intentional external interventions, deletion of transactions in databases, the operation of air
defense radars, etc. More detailed information about the real and potential applications and
corresponding descriptions can be found in [2].

It is worth noting that Di Crescenzo et al. [11] considered the Laplace transform of the
probability density function of the catastrophe's first occurrence time, while in this paper we
investigate the extinction, recurrence, and ergodicity properties of a modified MIMIc queue.
Also note that in [6] and [8] the queues with a single server in the system were discussed. In this
paper we consider c-servers in the system, it is a natural generalization of the models considered
in [6] and [8]. Since there is more than one server in the system, the method in [6] and [8] fails
and we have to find alternative techniques and methods to treat it. Moreover, in order to consider
the recurrence properties, equilibrium distribution, and equilibrium queue-size structure of the
modified MIMIc queue, we have to first show all the Laplace transformations of the transition
probability for the absorptive MIMIc queue. However, it is very difficult to obtain the transition
probability or transition function for a general Markov process.

The infinitesimal behavior of our model is described by a q-matrix Q = {qij; i, j ~ O}
which splits into

if i 2:: 1, j = i-I,

if i 2:: 1, j = i,

if i ~ 1, j = i + 1,

otherwise,

Q = Q* + Qs + Qd,

h Q* {*.. O} Q {(s).. O}were = qi j; I, } 2:: , s = qi j ; I, } 2:: ,and Qd

conservative q-matrices which are given as follows

min(i, c)a

* -b - minu, c)a
qij = b

o

l- h if i = 0, j = 0,

qi~) = Oh j if i = 0, j 2:: 1,

otherwise,

IfJ if i ~ 1, j = 0,

qij) = 0-f3 if; 2:: 1, j = i,
otherwise,

(1.1)

{ (d ) .. O} IIqij ; I, } > are a

(1.2)

(1.3)

(1.4)

respectively. Here a > 0, b > 0, fJ ~ 0, and h j ~ 0, j 2:: 1 with 0 ::: h := E~lh j < 00.

Furthermore, denote Q = Q* + Qs.

Definition 1.1. Let Q = (qij; i, j E Z+) be defined in (1.1)-(1.4). The corresponding
transition function P(t) = (Pij (t); i, j E Z+) is called the modified MIMIc queueing process.

This process includes several interesting models as special cases. For example, if c = 1, we
recover the model considered in Chen and Renshaw [6]. Whilst if c = 1 and fJ = 0 (i.e. no
annihilation), h ; = band h j = 0, j ~ 2, we obtain the ordinary MIMII queue.

The structure of this paper is organized as follows. We first introduce some key lemmas
and consider the properties of the stopped MIMIc queue in Section 2, since our later discussion
depends heavily upon them. The MIMIc queue, modified to ensure that arbitrary mass arrivals
may occur when the system is empty, is fully discussed in Section 3. Whilst the effect of
removing the entire workload is studied in Section 4.
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2. The stopped MIMIc queue

L. ZHANG AND J. LI

We first consider the MIMIc queue, modified by terminating the process when it first becomes
empty. The associated q-matrix Q* is given by (1.2). Define the generating functions

B(s) = a - (a +b)s +bs2 , B;(s) = B(s) + (i - l)a(1 - s), i = 1,2, ... , c, (2.1)

and denote
U(s) := Bc(s) = bs2 - (b + ca)s + ca. (2.2)

These are all well defined for s E [-1, 1], whilst as a power series they are Coo functions
with respect to s on (-1,1). Also, B(·) and U(·) are convex functions on [0,1]. The convex
property of U (.) immediately yields the following simple, yet important, result.

Lemma 2.1. The equation U(s) = 0 has the smallest root U = (b + ca - J(b - ca)2)/2b on
[0,1] with U = 1 ifb ::s ca and U = cafb < 1 ifb > ca.

We now define, for any A > 0,

UA(s) := U(s) - AS = bs 2 - (A+ b + ca)s + ca. (2.3)

It is clear that UA( .) is also Coo with respect to s on (-1, 1) and that it is convex on [0, 1]. The
following result can be easily proved.

Lemma 2.2. For any fixed A > 0, the equation UA(s) = 0 has exactly one root

b + ca + A - J(b + ca + A)2 - 4bca
U(A) = 2b

on [0, 1], and 0 < U(A) < 1.

Similar to the proof of [7, Lemma 2.3], we obtain the following lemma.

Lemma 2.3. For u(·) as defined in Lemma 2.2. (i) U(A) E COO(O, (0);

(ii) U(A) is a decreasing function ofA > 0;

(iii) U(A) ~ 0 and AU(A) ~ ca as A~ 00;

(iv) when A 4 0+,

1
1 ifb ::s ca,

U(A) t U = cba < 1 ifb > ca,

where U is the smallest rootofU(s) = 0 on [0,1];

(v) for any positive integer k,

lim 1 - u()..)k = roo k ifb 2: ca,

A~O+ A -- ifb < ca.
ca -b

(2.4)

(2.5)

Let (p7j (t ) ; i, j ~ 0) and (ifJ0(A); i, j ~ 0) be the Q*-function and Q*-resolvent, respec­
tively.
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Theorem 2.1. For any i ~ 0, l/J0(A)(0 ::::; j ::::; c - 1) is the unique solution ofthe following
linear equations:

c-l

-Al/J70(A) - L U(A)k-l [Bc(U(A» - Bk(U(A»]l/J7k(A) = -U(A)i,

k=1

-Al/J70(A) + al/J71 (A) = -8iO,

{-b - a - A)l/J71 (A) + 2al/J72 (A) = -8i1'

l/J0-1 (A)b + (-b - ja - A)l/J'0(A) + (j + 1)al/J0+l (A) = -8ij,

4>7c-3(A)b+ [-b - (c - 2)a - A]4>7c-2(A) + (c - 1)al/J7c-l (A) = -8ic- 2 , (2.6)

where U(A)(A > 0) is the unique root ojU)..{s) = 0 on [0,1].

Proof. By the Kolmogorov forward equations, we have

-Al/J70(A) + al/J71 (A) = -8iO,

(-b - a - A)l/J71 (A) + 2al/J72(A) = -8il'

4>7c-l (A)b + (-b - ca - A)l/J7c(A) + ca4>7c+l (A) = -8ic,

4>0-1 (A)b + (-b - ca - A)l/J'0(A) + cal/J0+1 (A) = -8ij, j ~ c + 1. (2.7)

Thus,

00 c-l 00

AL 4>0 {A)Sj - si = L sk-l Bk{S)l/J7k{A) + Be{s) L 4>0{A)Sj-l.

j=O k=1 j=c

Since AU(A) = Be(U(A», we then have

c-l
-Al/J70(A) - LU(A)k-l[Bc(U(A» - Bk(U(A»]4>7k(A) = -U(A)i. (2.8)

k=1

Combining (2.8) with the first c - 1 equations of (2.7), we obtain the unique 4>0 (A), i ~ 0, 0 ~

j ~ c - 1. Thus, the proof is complete.

Remark 2.1. As usual, it is very difficult to obtain the transition probability or transition
function Pu (t) for a general Markov process. We find it particularly noteworthy that we
can obtain the resolvent 4>0 (A), i ~ 0, 0 =s j ::::; c - 1 of the transition probability P'0 (t) from
Theorem 2.1. Furthermore, by carefully checking the proof of Theorem 2.1 and using (2.7),
we obtain all the resolvent l/J0(A), i :::: 0 of the transition probability P0 (t).
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By the Kolmogorov forward equation <1>* (A)(AI - Q*) = I and Lemma 2.2, we obtain the
following theorem.

Theorem 2.2. The generating functions ofthe Q*-resolvent take the form

00

Li(A, s) := L4J'0(A)Sj
j=O

U(S)4J70(A) + L%:} 4J7k(A)sk[U(s) - Bk(S)] - si+l
= UA(s)

i ~ 0, (2.9)

where U(s) and UA(s) are defined in (2.2) and (2.3), respectively, and 4J7k(A), i 2: 0, 1 ~ k ~

c - 1, can be obtained by Theorem 2.1. In particular, LO(A, s) = I/A, that is, 4J~O(A) = I/A,
whilst, for i, j ~ 1,

(2.10)

where U(A), A > 0 is the unique root ofUs; (s) = 0 on [0, 1]and thereby possesses the properties
ofLemma 2.3.

Similar to that considered in [17, Lemma 3.1], we immediately obtain the following lemma.

Lemma 2.4. For any i ~ 0, we have

k ~ 1. (2.11)

Let {Xt; t ~ O} denote the Q* -process. Define the extinction time as

TO := !inf{t > 0; x, = O} if x, = 0 for some t > 0,
00 if X, > 0 for all t > 0,

and Wk(t) := lP'r(TO ::s t I Xo = k). From (2.10), we immediately obtain the following
conclusion.

Lemma 2.5. Suppose that the Q*-process tXt; t ~ O} starts from Xo = k > O. Then the
Laplace transform ofwk(t) is

rOO -i: U(A)k - Lf~f 4Jki(A)U(A)i-l(c - i)a(1 - U(A»
10 e IP'r(ro :::: t I Xo = k) dt = A '

where U(A) is the unique root of UA(s) = 0 on [0, 1] and thereby possesses the properties in
Lemma 2.3, and 4JZ;(A), k ~ 1,1 ::s i ::s c - 1, can be obtained by Theorem 2.1.

Theorem 2.3. Consider the Q* -process {Xt ; t ~ OJ. Denote the extinction probability ek =
lP'r(TO < 00 I Xo = k) = limt~oo PkO(t), k ~ 1, and mi(k) = 1000

Pki(t) dt, i ~ 1.

(i) Ifb ::s ca, then for any k 2: 1, ek = 1,.
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ifb~ca,

ifb < ca,

(ii) ifb > ca, thenfor any k ~ 1, ek and m, (k), 1 :s i :s c - 1, is the unique solution ofthe
following linear equations:

c-l

ek = uk - Lmi(k)ui-1(c - i)a(1 - u),
;=1

am i (k) = ei ,

(-b - a)mI(k) + 2amz(k) = -8kI,

bm c-3(k) + [-b - (c - 2)a]mc-z(k) + (c - l)amc-I(k) = -8kc-Z, (2.12)

where U is the smallest root of U (s) = 0 on [0, 1] with U = 1 if b :s ca and U < 1 if
b > ca. Moreover, all the m, (k), k ~ 1, i ~ 1, can be obtained.

(iii) The mean extinction time is

JE(ro I Xo=k)= {:~b[k+ ~mi(k)(C-i)a]

wheremi(k),I:s . : c -1, can be obtained by (2.12).

Proof Using Lemma 2.4, Lemma 2.5, (2.4), and (2.11), in combination with the Tauberian
theorem, yields

ek = lim A(jJkO(A)
A~O+

c-I

= lim (U(A)k - LcPki(A)U(A)i-I(c - i)a(1 - U(A)))
A~O+

i=1

1 if b :s ca,
c-l

uk - L mi(k)ui- 1(c - i)a(1 - u) < 1 if b > ca;
i=1

(2.13)

thus, Theorem 2.3(i) is proven. By (2.4), (2.11), and letting A ~ 0+ in every equation of
(2.6), we immediately obtain (2.12). Combining (2.12) with (2.7), we obtain all the m, (k), k ~

1, i ~ 1, which completes the proof of Theorem 2.3(ii).
Using the Tauberian theorem once again and in conjunction with (2.4) and (2.5), we obtain

JE(ro I Xo = k) =100

IP'r(ro > t I Xo = k) dt

. 1 - A4>kO(A)
= hm

A~O+ A

_1_ [k +~m, (k)(c - i)a] if b < ca,
ca - b LJ

i=1

00

thus, Theorem 2.3(iii) is proven. The proof is complete.

ifb ~ ca;
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3. The MIMIc queue with resurrection

We now extend the process by allowing mass arrivals of size j to occur at rate hj when the
queue is empty and fJ = O. So the q-matrix is Q = Q* + Qs, where Qs is given by (1.3). In
addition to the generating functions B(s), Bi(S), and U(s) defined in (2.1) and (2.2), we need
to define

00

H(s) := LhjSj.

j=l

Obviously, H (s) is well defined on [-1, 1] and H (1) = h > O. Moreover, denote

00

J.tl = H'(I) = L jh ],
j=1

(3.1)

note that J.L 1 is not currently presumed to be finite.
Let R('A) = {rij('A); i, j ~ O} denote the Q-resolvent. Similar to the proof of [7, Theo­

rem 3.1], using the resolvent decomposition theorem (see [5]), we have the following conclu­
sion.

Theorem 3.1. For R('A) = {rij('A); i, j ~ OJ, we have

[

00 00 ]-1
roo('A) = 'A + 'A L L hil/Ju('A) ,

i=1 j=I

(3.2)

riO('A) = rOO ('A)al/J71 (A), i ~ 1,
00

rOj(A) = roo(A) L hil/J'0(A),
;=1

j ~ 1, (3.3)

00

rij (A) = l/J'0 ('A) + riO('A) L hkl/Jkj (A),
k=1

i, j ~ 1,

where <1>* ('A) = {l/J'0('A); i, j ~ O} is the Q*-resolvent given in Theorem 2.2.

Using Theorem 3.1 we now consider the recurrence properties of the modified MIMIcqueue
determined by our current q-matrix Q.
Theorem 3.2. For the modified MIMic queueing process with q-matrix Q, we have

(i) the process is recurrent if and only if b ~ ca;

(ii) the process is positive recurrent if and only if b < ca and J.L I < 00, where u.I is defined
by (3.1).

ProofofTheorem 3.2(i). Since the process is irreducible, it is recurrent if and only if

lim roo('A) = 00,
A~O+

and so by (3.2) if and only if

00 00

lim Lhi L'Al/J'0('A) = O.
A~O+. 1 . 1

1= J=

(3.4)
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So from (2.10), we see that (3.4) holds if and only if

lim (U(A)i - I:et>:k(A)U(Al-1(c - k)a(1- U(A))) = 1 for all i ~ 1,
A~O+ k=l

which, by (2.13), is equivalent to b :::; ca.

997

ProofofTheorem 3.2(ii). Again using irreducibility and (3.2), the process is positive recur­
rent if and only if limA~o+ ArOO(A) > 0, i.e. if and only if limA~o+ L~l hiL~1l/J0 (A) < 00.

Comparison with (2.4), (2.5), (2.10), and (2.11) theri shows that the process is positive recurrent
if and only if b < ca and JLl = L~l ih, < 00. The proof is complete.

Having determined conditions for our modified MIMIc queue to be positive recurrent, we
are now in a position to determine the equilibrium distribution through the generating function
n(s) := L~oJrjsj.

Theorem 3.3. Under the positive recurrence conditions given in Theorem 3.2, that is, b < ca
and JL 1 < 00, the equilibrium generating function n (s) takes the form

where

[ ]

e-l
s(h - H(s)) 1

n(s) = JTo 1 + + -- L JTksk(C - k)a(l - s),
U(s) U(s) k=l

(3.5)

[

e-l ]-1
Jro=(ca-b) ca-b+JL1+L rk(c-k)a ,

k=1

arl = h,

(-b - a)rl + 2ar2 = -hI,

Jrk = JrOrk, k ~ 1,

bre-l + (-b - cayr, + care+l = -he,

brj-l + (-b - cayr] + carj i.; = -h j, j 2: c + 1. (3.6)

Proof. Noting that n j = limA~o+ "ArOj (A) for all j > 0, let us first consider j = O.
Paralleling the proof of Theorem 3.2, we see that

[
e-l ]-1

JTo = lim ArOO(A) = (ca - b) ca - b + JLl + L rk(c - k)a ,
A~O+

k=l

whilst for j 2: 1, from (3.3), it follows that
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whence, by (2.11) and letting A -+ 0+ in every equation of (2.7), we immediately obtain (3.6).
Thus, on applying (2.9) and (2.10), we have

n(s) = JrO[l + lim i» f<P~(A)Sj]
A~O+. 1 . 1

1= J=

[ ]

c-ls(h - H(s)) 1
= Jro 1+ + -- LJrkSk(C - k)a(1 - s).

U(s) U(s) k=l

The proof is complete.

Remark 3.1. Known queueing probability generating functions can be easily extracted from
this general conclusion as special cases. For example, if hI = b, hk = 0, k 2: 2, and let
p = bfa, then we recover the ordinary MIMIc queue; since h = b, J.lI = b, and H(s) = bs,
(3.5) reduces to

c-l

n(s)= a LJTki(c-k),
ca - bs k=O

where

[L
C pk pc+l ]-1

Jro- -+---
- k! c!(c-p) ,

k=O

If c = 1, then we obtain the solution determined by Chen and Renshaw [6].

From (3.5), we obtain the following corollary which illustrates other important queueing
features.

Corollary 3.1. The equilibrium queue size, N, has expectation

[
bu., 2JLI + H//(I)] c-l [b k]

lE(N) = Jro - + Jrk(C - k)a - --
(b - ca)2 2(b - ca) L (b - ca)2 b - ca

k=l

if and only if H" (1) is finite. The equilibrium waiting queue size, L w, has expectation

[ bu., 2J.ll + H"(I) ] c-l [( b k)]lE(Lw ) = Jro +c + Jrk(c-k) a -- +1 -c
(b-ca)2 2(b-ca) E (b-ca)2 b-ca

if and only if H"(I) is finite. Here, Trk, 0 ~ k ~ c - 1, is given in Theorem 3.3.

4. The MIMIc queue with resurrection and mass exodus

In this section we consider the general case that f3 > 0, the q-matrix Q now takes the form
of (1.1), i.e. Q = Q* + Qs + Qd, where Qs and Qd are defined by (1.3) and (1.4). Let
R("A) = {rij (A); i, j ~ O} denote the Q-resolvent. Note that the properties of this process are
substantially different from those developed for the f3 = 0 case in Section 3. Using the resolvent
decomposition theorem (see Chen and Renshaw [5]), we obtain the following theorem.
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Theorem 4.1. For R(A) = {rij(A); i, j ~ OJ, we have

roo(A) = [A + At t hi<P~(A + f3)rl

,

i=1 j=1

riO(A) = rOO (A)[ a<P71 (A+ f3) + f3 t <P7k(A + f3)l
k=1

i ~ 1,

999

(4.1)

(4.2)

00

rOj (A) = rOO (A)L hi¢0 (A+ fJ),
i=1

j ~ 1,

00

Ti j (A) = ¢;j (A+ fJ) + n» (A) L hk¢;j (A+ fJ),
k=l

i, j ~ 1, (4.3)

where <I>*(A) = {¢;j(A); i, j ~ O} is the Q*-resolvent given in Theorem 2.2.

On paralleling (2.10) with f3 > 0, we have

~ * 1 - U(A + fJ)i + L%:} ¢7k(A+ fJ)U(A + fJ)k-l(c - k)a(1 - U(A + fJ))
L....<Pik(A + f3) = A+ f3 .
k=l

Since

where
c-l

M, (A) = L ¢7k(A+ fJ)U(A + fJ)k-l (c - k)a(l - U(A + fJ)),
k=1

then it follows that (4.2) has the much simpler form

AU(A+ f3)i - AM; (A) + f3
rio(A) = roo(A) .

A+fJ

Moreover, (4.1) reduces to a simple expression involving H(s); namely,

(4.4)

rOO(A) = [A + _A_ (H(I) - H(u(A + e»
A+fJ

+I:U(A+ f3)k-1 (c - k)a(l - U(A+ f3)) t hi <P7k (A+ f3))rl

.

k=1 ;=1

(4.5)

Paralleling Section 2, define the extinction time TO = inf{t > 0; X, = O} with TO = 00 if
X, > 0 for all t > 0, and recall that

ek = JP>r(ro < 00 I Xo = k), Wk(t) = JP>r (ro ~ t I Xo = k)

denote the extinction probability and distribution function of TO, starting from Xo = k,
respectively.
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Theorem 4.2. Ifh = 0 and f3 > O. Then, for any k ~ 1,

100

e-AtPr('ro ::: t I Xo = k) dt

= _1_(!!.- +u(A+,Bl- I:lf>ki(A+,B)U(A+,B)i-l(c-i)aO-U(A+,B»),
J.... + f3 J.... i=1

(4.6)

where u(J....) is the unique root of VA (s) = 0 on [0, 1] and l/Jki (A), k 2: 1, 1 :s i :s c - 1, is
obtained by Theorem 2.1. Moreover, ek = 1, k = 1,2, ... , and the mean extinction time is
finite and given by

c-l
IE('ro I Xo = k) = ~(1 - u(fJ)k + L<Pki(fJ)U(fJ)i-l(c - i)a(l- U(fJ»). (4.7)

f3 i=1

Proof. The Laplace transform (4.6) is precisely (4.4), since for our current case roo(J....) =
I/A. Hence,

. fJ + AU(A + fJ)k - ALf::! <Pki (A+ fJ)U(A + fJ)i-l (c - i)a(l - U(A + fJ»
ek = hm = 1.

A~O+ A+ fJ
By using (4.6) and the Tauberian theorem, we obtain (4.7). The proof is complete.

We now consider the h > 0 case. First, by Theorem 2.1, we give the following important
lemma.

Lemma 4.1. For (p7j(t); i, j ~ 0) and (l/J0(J....); i, j ~ 0) given in Section 2, denote L j(J....) =
L~1 hi<P0 (A), j 2: O. Then L j (A), 0 :s j .s c - 1, is the unique solution of the following
linear equations

c-l

-ALO(A) - L u(A)k-l [Bc(U(A» - Bk(U(A»]Lk(A) = -H(U(A»,
k=l

-ALO(J....) + al., (A) = 0,

(-b - a - A)LI (J....) + 2aL2(J....) = -hI,

Lc-3(J....)b + [-b - (c - 2)a - A]Lc-2(J....) + (c - l)aLc-1 (A) = -hc- 2 ,

where U(A), A > 0, is the unique root of U>..(s) = 0 on [0, I]. Moreover, all the L j(A), j 2: 0,
can be obtained.

Theorem 4.3. Ifh > 0, then the Q-process is always positive recurrent.

Proof On using (4.5) it is easy to see that limA~o+ roo(A) = 00, and so the Q-process is
recurrent. Positive recurrence then follows by taking the limit of (4.5) to form

t~~poo(t) = ,B[,B+H(l)-H(U(,B»+I:Ld,B)U(,B)k-I(C-k)a(l-U(,B»r
l

> O. (4.8)
k=l

The proof is complete.
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The following theorem gives the equilibrium distribution {1l'j; j :::: O} of the Q-process.

Theorem 4.4. The equilibrium distribution of the Q-process is given by

[
s(H(u(fJ» - H(S»] L~:i 1l'k(C - k)a[sk(1 - s) - su(fJ)k-l(1 - u(fJ»]

IT(s) = Jro 1+ Up(s) + Up(s) ,

(4.9)
where UfJ(s) is defined in (2.3) and

[ c-l ]-1
1l'o = fJ fJ + H(I) - H(u(fJ» + LLj(fJ)u(fJ)k-l(c - k)a(1 - u(fJ» ,

k=1

1l'j = 1l'OLj({3), j :::: 1, and Lj({3), j :::: 1, can be obtained by Lemma 4.1.

Proof First note that (4.10) is precisely (4.8), whilst, for j :::: 1,

(4.10)

(4.11)

since tl>7J()...) is a continuous function of )... > O. Whence, from (2.9), (2.10), and (4.11), we
obtain (4.9), which completes the proof.

Having obtained the equilibrium distribution, we immediately derive the following corollary
regarding the queue size.

Corollary 4.1. The equilibrium queue size, N, has expectation

(H(u(fJ» - h - JLl)(-fJ) - (H(u(fJ» - h)(b - ca - fJ)
lE(N) = Jro fJ2

L%:} 1l'k(C - k)a[fJ + u(fJ)k-l(1 - u(fJ))(b - ca)]

+ fJ2

and the equilibrium waiting queue size, L w , has expectation

[
(H (U(fJ) ) - h - JLl)(-fJ) - (H(u(fJ)) - h)(b - ca - fJ) ]

lE(Lw ) = Jro fJ2 + c

L%:~ 1l'k(C - k)[a({3 + u({3)k-l (1 - u(fJ))(b - ca) + fJ2]
+ fJ2 - c,

where 1l'k,0 .::s k .::s c - 1, is given in Theorem 4.4.
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