Annals of Glaciology 25 1997
(©) International Glaciological Society

Use of 1ice-sheet normal modes for initialization and

modelling small changes

Ricuarp C. A. HINDMARSH,
British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, England

ABSTRACT. Linearizations about two horizontal-dimensional ice sheets are pro-
posed as methods of generating normal mode initializations for ice-sheet models and for
computing the short-term response. Linearized models can be generated directly from
balance-flux calculations without the need for tuning the rate factor.

A linearized model is compared with the Eismint Benchmark, and the normal modes
for two coarse Antaretic digital elevation models are computed and compared. Volu-
metric relaxation spectra are presented. The slowest mode has a time constant compar-

able to that computed from scale theory.

INTRODUCTION

This paper is concerned with linearization techniques as a
way of estimating the glaciological response to changes in
the accumulation rate on ice sheets. That is, changes in the
accumulation rate result in changes in ice-sheet geometry,
which in turn produce changes in the movement of the ice.
Linearized methods have, of course, some disadvantages in
modelling the non-linear evolution equations for ice sheets,
but also have advantages in that the model does not require
specification of the rate factor in the viscous law. In this
sense, the model is closer to the data than “matched” non-
linear models. Linearization techniques have previously
been applied to modern ice sheets (e.g. Oerlemans, 1981;
Hindmarsh, 1992; Drewry and Morris, 1992; Van der Veen,
1993), but these have only been of ordinary differential
cquations (zero-dimensional (0-1)models). This paper pre-
sents the first computations of the normal modes of an
observed ice sheet.

The disadvantages of this method relate principally to
an inability to describe changes in ice-stream flow, which is
expected to be non-linear. The disadvantage is more appar-
ent than real, as research methods remain far from creating
adequate models of basal and lateral processes in ice
streams, and models of ice streams, incorporating what are
believed to be the relevant dynamical features, can only
provide conjectural prognoses.

The advantages of lincarized techniques relate to ease of

use for non-glaciologists, and the fact that no model tuning
is necessary. That is, in non-linear models (e.g. Huybrechts,
1992) the accumulation rate and the viscous properties are
parameterized and tuned in order to obtain a good fit
between observed and computed heights. This was an

appropriate response a few years ago, but the progress of

satellite altimetry since then (Bamber and Huybrechts,
1996) has made ice-sheet clevation the most accurately
known of all the ice-sheet descriptors. Lincarization meth-
ods permit prognostic calculations to be made without
knowing the rate factor, as the rate equation stems ulti-
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mately from the mass accumulation. Thus, no tuning is ne-
cessary and computations of ice-sheet geometry evolution
can be compared directly with observations,

Morcover, a practical consequence is that no estimate is
required of slow changes in response to, for example, the end
of the Last Iee Age before the response to changes in forcing
can be estimated. One aim of the work described here is the
production of ice-sheet models deseribing a short-term res-
ponse that can be used in models of other parts of the
climate system.

It should be emphasized that linearized models are
rational approximations— that is, they come equipped
with their own error bars. For small perturbations, lincar-
ized methods are accurate and the order of magnitude of
the error term can be computed.

The paper will discuss issues of normal mode initializa-
tion and spatial [iltering of data. The non-linear ice-sheet
equations and their linearizations in two horizontal dimen-
sions (2HD), are reviewed and compared to results from the
non-lincar Eismint Benchmark (Huybrechts and others,
1996). Finally, the modes of a recal 2HD ice sheet (the Ant-
arctic ice sheet) are computed.

NORMAL MODE INITTIALIZATIONS OF ICE SHEETS

Normal modes are the eigenfunctions and eigenvalues that
ensue from setting up a linear(ized) model and solving a
related eigenvalue problem. The “normal” pertains to the
canonical nature of these modes. Each mode has an asso-
ciated e-folding time constant, and the spatial structure of
each mode is different. Essentially, shorter spatial-length
scales are expected to relax faster (have a shorter e-folding
time constant).

Normal modes are widely used in geophysics and geo-
physical fluid dynamics. Despite being a classical technique,
they have not been used widely in glaciology. An important
usc in meteorology has been the filtering of meteorological
data in order to initialize models with data that do not excite
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non-physical numerical modes.

As explained above, ice-sheet-model geometry, when
compared to real data, represents a trade-off between the
tuning of the rate factor and the parameterization of the
accumulation-rate distribution. An obvious issue is whether
normal mode techniques can be exploited to initialize ice-
sheet models. In particular, the advent of satellite altimetry
has produced very accurate elevation data that need to be
included in ice-sheet models if dynamics are to be inferred
from observations.

When observed elevations are used in non-linear ice-
sheet models, it is found that smaller-scale structure is
relaxed out quickly, sometimes causing numerical problems
(Oerlemans and Van der Veen, 1984). Current observations
of basal topography are nowhere near the same plan-view
resolution, meaning that errors in the thickness cause com-
puted and spurious ice-flow anomalies, resulting in the nu-
merical smoothing described above.

An obvious question is whether normal-mode initializa-
tion techniques can be used in some form in ice-sheet mod-
elling, with the specific objective of ensuring that
observations are used as an initial state, rather than some
trade-off between ignorance of accumulation, rate factor,
ice-sheet thickness and the need to maintain numerical sta-
bility.

Because the ice-sheet equation represents an initial value
problem, any measured data are physically consistent.
Anomalous roughness and topographic sinks (e.g. the
Vostok depression) could simply be relaxing out. Under an
assumption of steady state, the origin of many features
becomes more problematical, but can still, in principle, be
explained by local variations in the poorly known basal
topography or, in a more contrived way, by local variations
in the rate factors for internal deformation or for sliding,
Topographic depressions can arise as a result of locally en-
hanced basal melting, or may conceivably occur as a result
of “Stokes effects”, where, for example, small-scale varia-
tions in the basal topography result in local failure of the
shallow-ice approximation (e.g. Johannesson, 1992).

Small-scale (wavelength of a few grideells) surface
roughness, that is not reflected in causatory variation in
the rate factor or the basal topography, is relaxed out by
the action of non-linear solutions. Balance-flux calculations
and ensuing linearizations are not affected by this problem
provided topographic depressions are dealt with by setting
basal melting to be larger than the accumulation.

Such noisy data can be dealt with in several ways when
initializing models:

(a) Accept the data as a valid zeroth-order approximation
and compute a set of eigenfunctions and eigenvalues. It
could transpire that even the low wave-number eigen-

functions are noisy.
(b) Smooth heuristically and compute the normal modes.

(¢) Seleet a smooth zeroth-order solution on an error mini-
mization criterion and compute the normal modes
(Hindmarsh, in press).

In the latter two cases there will be a residual between
the zeroth-order solution and the data. This can be reduced
by fitting the residual with the normal modes: this is a nor-
mal mode initialization as commonly used in other geo-
sciences (c.g. Daley, 1992). The more modes used, the
smaller the wavelength of feature that can be modelled.
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The remaining variation is filtered by using [unctions that
have a close relation to ice-sheet physics rather than by an
arbitrary smoothing.

Clearly, if option (a) produces smooth normal modes,
then it is the simplest option. Provided sink-holes are elimi-
nated from the observed data, then the computed normal
modes do not appear noisy. It is possible that holes could be
reconstituted by using the normal modes, but testing the
efficacy of this technique is outside the immediate aims of
this paper. We shall see that option (a) is possible.

THE ICE-SHEET EQUATION AND ITS LINEARIZA-
TIONS

Notation is summarized in Table 1. When considering the
mechanics of ice sheets a reduced model is normally used
(Hutter, 1983; Morland, 1984; Fowler, 1992), obtained from a
scaling of the Stokes equations. The scaling yields simple
functional forms for the vertical variation of the stress field
and a considerable computational saving. Further manipu-
lation of the reduced model results in the ice-sheet equation:

H = V.(CT '”\Vsr’_lv.e) +a (1)

where H(x,y.t) is the thickness of the ice sheet, s(x, y. 1) is
the upper surface and a is the surface mass-balance ex-
change. Boundary conditions for this model are:
HH(x,V(x).t) =0, (2)
where y = V(x), the prescribed margin. This corresponds
to the Vialov- Nye calving condition, where the ice thickness
at the margin is less than the maximum thickness. More
advanced models, to be considered in future work, would
have non-zero thickness at the grounding line and a moving
grounding line. This has already been treated in a linear-
ized [ashion for one horizontal dimension (IHD) by Hind-
marsh (1996a).
These evolution equations describe the evolution of ice-
sheet thickness where the flow mechanism is either internal
deformation according 1o a non-linearly viscous [low law or

Table 1. Notation

Variable Meaning

a Accumulation rate

o Spatial modes of §: Fourier transform of T
h Vector over £ of Hy

i Spatial mode index

k Fourier mode index

0 Point index

m Non-lincar diffusion index

q Flux ol ice

5 Ice-sheet clevation

Sk S TFourier component for point £ at frequency & vector over £
t Time

(@44 Space coordinates

C Rate factor

3 Figenfunctions of £

E Matrix of eigenvectors

F Discretization of £

G Discretized Green's function corresponding to £
H lee-sheet thickness

L Linear-perturbation operator

A Vector of mode amplitudes

v Flow/sliding-law index

A Eigenvalues

1 Matrix of cigenvalues
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sliding according to aWeertman-type law, The analyses car-
ried out in this paper are not limited to these situations.

The quantity C' is directly related to cither a weighted
vertical average rate factor Ay defined below in Equation
(6) of the rate factor Ay used in the viscous relationship:

E= Ayr" (3)
where E is a second invariant of the deformation rate and 7
is a second invariant of the deviator stress (Glen, 1935) or
comes from a sliding relation of the form:

(4)

i
up = ‘4H h

(Weertman, 1957). We construct the [ollowing quantitics for
use in the general evolution equation:

Uz{n o — n+ 2
g Ol e+1

2eal 7, Internal deformation

C:

The dervation of the evolution Equation (1) using the
shallow-ice approximation is standard (Hutter, 1983; Mor-
land, 1984: Fowler, 1992). A further standard derivation,
which, in the present notation, can be found in Hindmarsh
(1996a) vields a formula for the ice flux ¢

¢ = —CH"|Vs|" 8,5 (5)
where:
— ? 1 w1 e — i)
Ai=w+2) [ Q-0 A, ¢=22 (6)
0 H
If'instead we are dealing with sliding, then:
¢ =u"H = —CH”']VSV_l('],.is. (7)

and use of the continuity equation:

OH +V.q(H.0,H.0,H) =a (8)

results in the non-linear diffusion type Equation (1), Linear-
izations are computed by expanding H and a in a serics
H:M]+[LH| +,

a'= ay + pay + ooy

and truncating at first order. The Taylor expansion of ¢,, for
example, yields:

Gr =qos T M1y = qll.r+

dq,

" dq,

1, da, H

g,
OH

a,H,

Hy

H

1
Hy,

Specifically, we can compute:

o i n—1¢
0}_] H”= ?”H{Jl”_lfv-‘inf I().r, s0 = —mgin/ Hy
dq; m n—i 2 :
W]H H“: Hy" |V i(IV’Snl 8ij+ (n—1)0, -‘sua,-,m)
bij (n—1)0; s
i at', S0 |V50|3
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and we can see that the zeroth order and first-order equa-
tions are:

V-q, =ay - dHy (9)
OH, =—-V-:q +uaj, (10)
qi1 = Gin mih |, St 0 110, éf”a”ﬁ“ d, Sl}.
Hy dy, 80 [Vsg S ’
(11)

Boundary conditions are the crude approximation of fixing
the clevation at the margin of the ice sheet. Moving bound-
aries can be incorporated into linearizations (Hindmarsh,
1996a) but the technical difliculties of extending this
approach to two horizontal dimensions mean that it is worth
investigating the fixed margin problem first in order to as-
sess the potential of linearization techniques. Ablating mar-
gins are not considered in this paper.

The zeroth-order solution can be identified with the
long-term trend (e.g. the response to pre-industrial climate
conditions) and the first-order solution with the faster res-
ponse to perturbation. The long-term trend could of course
be steady state. If the technique were being applied rigor-
ously time should be expanded in two time-scales, but the
complexities of the required notation outweigh the henelits,
so the procedure is justified heuristically by saying that the
perturbation is expected to grow over time-scales where the
zeroth-order solution hardly changes, and a “snap-shot™ can
be taken of the profile to compute the coefllicients in Equa-
tion (9)

The curious way of writing the zeroth-order equation is
to emphasize that ignorance of accumulation rate and rate
of change of surface profile have exactly the same signili-
cance. It is assumed that a; is known, in the sense that the
response to a postulated change in the accumulation rate is
being evaluated.

A significant feature of the perturbation equation is the
absence of the rate factor in the first-order equation. The
time dimension is introduced into the ice-sheet equation by
the accumulation rate of snow and through the rate factor.
In a strain-rate controlled flow, such as is assumed here, the
ice sheet exists to discharge the snowfall, and the time-scales
are sct by meteorological factors. The ice-sheet geometry
adjusts so as to set the rheological time-scale equal to the
meteorological time-scale. Where there are internal oscilla-
tions in the ice sheet, the fast and slow phases correspond to
stress-controlled flows, and the perturbation equation will
not apply. In any case, the perturbation equation is a linear
equation and cannot have limit cycle solutions such as those
described by Payne (1995,

By setting @) = 0 the linear equation can be put into
homogencous form. A separation of variables technique
can be used to generate solutions to the homogeneous form
using an cigenvalue expansion, which can subsequently be
used to construct solutions to the inhomogencous form.
The theory is reviewed below. In general, the eigenproblem
has to be solved numerically. There are potential problems
associated with singular behaviour at the divide and margin.

Hindmarsh (1996b. in press) has considered perturba-
tions about the THD Vialov—Nye (VN) (Vialov, 1958; Nve,
1959) solution, which is computed by setting  H = 0 and
a = a,n, C' = C,,p, both constants, into the plane-flow ver-
sion of Equation (1) and integrating the resulting ordinary
differential equation (ODE). Hindmarsh (in press) treated
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the singularities at margin and divide accurately by using
Frobenius expansions (see also Fowler, 1992). In the 2HD
calculations reported here, Taylor expansions are used at
the margin and at the divide. Calculations for IHD, based
on the principles described below for 2HD, show that this
makes very little difference to the computed eigenvalues or
eigenfunctions. This presumably arises as a result of the ro-
bustness of Sturm—Liouville systems to model perturbation
(Pryce, 1993). Taylor, rather than Frobenius, expansions are
almost universally used in ice-sheet modelling when the
non-linear problem is treated.

ZEROTH-ORDER FLUX COMPUTATION CONSIS-
TENT WITH FINITE-DIFFERENCE GRIDS

Given that the perturbation procedure will be carried out
on a finite-difference grid, it is highly desirable that the zer-
oth-order fluxes satisty the conservation equation exactly.
For this reason, efficient shooting procedures (Budd and
Warner, 1996; Rémy and others, 1996) are not used. The pro-
cedure is simply to compute the flux arriving at a gridpoint
from @- and y-direction connections, compute the [lux out
using continuity, and divide it between all the outlet connec-
tions (i.e. to points at a lower elevation) in linear proportion
to their slopes.

Consider the coefficient D = CH{'|Vsg
q = —DVsq. Even though sy and Hy are known, C'is not,
meaning that D is also unknown. A [linite-difference

=1

.. Then,

approximation is:

Si+ 1 = 31.‘;

Qiv1/2, = 1 A
T

for each of the outlet points, where D; is an unknown. The
outlet discharges and D can be solved with the additional
equation:

Qiv1/2g — Gi-1/25 | Qig+1/2 — dij—1/2
AW A,

= -

Balance flux calculations have been used by Rémy and
others (1996) to solve for the rate factor and thence the basal
temperature.

In practice, the grid-centred fluxes are computed by sol-
ving a set of linear equations. These satisfy continuity ex-
actly and also return the quantity D) = CHQ’”|V5“\”_1.

While the method is algorithmically different from that of

Budd and Warner (1996), the two methods seem to be consis-
tent at O(A, ). The purpose of using a different method is to
ensure that the continuity equation is respected exactly at
zeroth order on the finite-difference grid used to solve the
eigenproblem.

THE EIGENVALUE PROBLEM AND ITS DISCRETI-
ZATION

The first-order perturbation Equations (10) and (1) are
conveniently written in operator form:

8, Hy(z,y,t) = LHy(z,y,1) + a;. (12)
H(x,y,t) is written in a separable form:

Hilw;u,t)= T(t) Rz, y)
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and substitution of this into the homogeneous form of Equa-
tion (12) yields:

T(t) LR(z.y)
T(t) R(z,y)
where Ais an cigenvalue. The spatial equation is:
LR(z,y) — AR(x,y) =0, (13)

which has eigenvalue solutions £(., y).

Now, in general it cannot be assumed that the eigenfunc-
tions are orthogonal, and it is also convenient simply to con-
sider eigenfunction expansions truncated after M terms,
and to consider the eigenfunctions evaluated at M points;
this is what emerges [rom solving the algebraic cigenvaluc
problem resulting from the discretization of the operator
L. which is denoted by the matrix F. Suppose that R(x, y)
is represented by M points sampled on the grid; these points
have value ¢, £ = (1, M). Then, the matrix representation
of Equation (13) 1s:

Fr—Ar=20

where the diagonal entries of the matrix A are the cigenva-
. This is an algebraic eigenvalue problem (Wilkinson,

which is satisfied by M linearly independent cigen-
vectors. We construct a matrix E the ith column of which 1s
the ith eigenvector evaluated at M points. Thus, ¢ is an index
ol spatial mode number.

It will be assumed that these cigenfunctions are linearly
independent and form a complete set — there have been no
cases found where this is not true. It may thus be written
that:

Hy =Y T(t)Ei(z,y),0 = Z?‘,(t)a,(;;_-.y)

and, after using Equation (13) the perturbation Equation
(12) becomes:

ZT;S,— = Z MNTEi+a, (z,y) € [-1, 1]2. (14)

By sampling Equation (14) at M points, this equation may
be written as a discretized matrix equation:

ET =EAT +a (15)
where ais the vector of accumulation rate sampled at the M
points. There are thus M linear equations corresponding to
the M points of evaluation, and the elevations at the
sampling points are given by:

h=ET;

where h is the vector of Hy ¢ at the sampling points. By mul-
tiplying Equation (15) by E™', the existence of which is as-
sured by the fact that the eigenvectors are independent, M
mode-evolution equations are obtained:

T=AT+E'a (16)

with the rows of the inverse eigenvector matrix playing the

role of a modal weighting function in space for the accumu-
i ' =4

lation rate. By definition F = EAE™".

At steady state, we have EAT = —a, whence
h=ET=EA'E'a=Ga (17)
where G = —F ! plays a role analogous to a Green’s func-

tion. A refinement is to suppose that N modes have suffi-
ciently slow relaxation (small eigenvalues) that it is
necessary (o consider their dynamic values, while the
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remaining L = M — N modes are regarded as being in
steady state. Then, a quantity hy, can be constructed which
represents that part of the perturbation that relaxes sulli-
ciently quickly to be in equilibrium with the instantaneous
forcing, These are the so-called “slaved” mades, which are
computed according to:

hy,
G, =

= @4, (18a)

=E. A Exipa (18b)

(NFIMLIN+1):M

where colon (“Matlab™) notation is used in the subseripts

(Golub and Van Loan, 1989, p.7). For example, the range of

indices being considered are represented by a : b, with a
single colon by convention representing the total range.

Here, Gy, can be regarded as the Green’s function for the
slaved modes. The evolution of the remaining N dynamic
modes s given by

Tin = AvanTin + Eqpa (19)

so that:
h= h]. + E:.I;NTI:_\"

In practice, one often does not wish to compute the whole
eigenvalue sequence, and it is a straightforward exercise to
show that:

G-—E yA"!

NN

GL= e (20)

Thus, it is necessary to compute G, the matrix inverse of the
operator matrix F, and those eigenvalues that relax sulli-
ciently slowly that we are interested in their dynamics. Trun-
cations ol such generalised Fourier expansions of ice sheets
have been considered by Hindmarsh (1990), who concluded
that computation of the evolution of a few dynamic modes
represented the evolution of the ice sheet reasonably well.
In IHD the first-order perturbation Equations (10) and
(1) can be written in Sturm-Liouville form and solved
using cither finite-difference methods or shooting methods

(a) Eisbench elevation

s
TR

5 1 ;',"""' 3 ‘:‘;""
m Y / :
“\\ \\\\\\\ .
”;’;v,o \:““\\\ :
i Jb " ‘&k ‘
1 ¢ \

1\\\\\\\ |
y-Position =l = x—Position
(c) Forcing: in—phase component
-0.1

Elevation
&
[=1
B

0 #]I”;,I’rn,,:;:,,,,: <5 N :

i MDD
0 III”"”;’;‘A 1

y—Position =f =l x—Position

Elevation
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(Hindmarsh, in press). The cigenfunctions are orthogonal.
In 2HD, this is not true in general and the perturbation
equation, which includes eross-derivative terms, is disere-
tized using a standard nine-point conservative stencil,
which produces a sparse, non-symmetric matrix. The eigen-
value problem was solved using the ARPACK software
(Sorensen, 1992) which deals specifically with large, sparse,
non-symmetric problems. The software uses Arnoldi itera-
tion (see e.g. Chatelin, 1993), producing the “Ritz values”,
which are approximations to the eigenvalues.

TEST: PERTURBATION TO THE EISMINT BENCH-
MARK

T'he Eismint Benchmarks (EBs) (Huybrechts and others,
1996) are a sct of benchmark experiments designed for the
purpose of model evaluation. The isothermal VN bench-
mark, where uniform accumulation is prescribed on a
square domain with VN margins (i.e. zero thickness and fi-
nite {lux of ice ) are not considered here. It will be considered
in the scaled domain (r,y) € [-1.1] % [~1,1] with unit
accumulation and rate factor C. In this case, the zeroth
order solution is computed and is shown in Figure la. The
zeroth order fluxes are shown in Figure 1b. The results are
in a dimensionless system, the details of which arc unimpor-
tant as relative errors between lincar and non-linear compu-
tations are considered.

Some modes for the perturbation around the Eismint
benchmark are shown in Figure 2. Two of these are volu-
metric modes, while activation of the other two does not
result in volume changes but does produce asymmetry in
the ice sheets. Corresponding accumulation sampling func-
tions are shown in Figure 3. These show broadly similar pat-
terns, necessarily to the extent that the symmetries between
modes and sampling functions are the same, but there are
differences in detail between the eigenfunctions and the

(b) Eisbench fluxes

y-Position =1 =1 x—Position

(d) Forcing: out—of—phase component

y-Position =] =l

x—Position

lig. 1. The EB experiment ( Huvbrechts and others, 1996). (a) The steady-state elevation in scaled units. (b) Absolute dimen-
stonless flux. (¢) In-phase component of elevation for 20 ka forcing; note reverse axis. (d) Out-of-phase component of elevation

Jor 20 ka foreing,
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sampling functions. For example, activation of the slowest
mode requires a proportionately greater amount of accumu-
lation nearer the centre; this feature also occurs in 1HD
(Hindmarsh, in press).

The scaling relation (e.g. Hindmarsh, 1990) shows the
response of the ice-sheet tlucknms to changes in the accu-

1 v
mulation rate is Hy ~ “'f“"ﬂ ! The fact that the accumula-

tion rate is uniform implies that the normalized elevation of

the ice-sheet (i.e. normalized by the maximum elevation) is
unchanged under uniform changes in accumulation, while
the maximum elevation behaves according to this scaling
rule. We can linearize the scale rule:

(]II“ . 1

day

H

m -+ V agy

and this is the behaviour that should be [ollowed by the lin-
carized model: a uniform change in accumulation will lead
to a uniform relative change in elevation according to this
formula.

Calculations with the discretized operator G show that
this behaviour is obtained to round off error for a selection
of m and v. It did not matter whether the zeroth-order
solution was computed using finite-difference techniques or
was analytical solution, obtainable for the cases
(m,v) = (0,1), (3,1) (Hindmarsh and Payne, 1996). This

is because it has been ensured that the zeroth-order solution

an

respects continuity “exactly” (i.e. to round off error).
A more complicated case is periodic forcing of the accu-
mulation rate. Consider a system [orced at several [requen-

cies k= (1, K)

P — BT Z'f“’“ cos(wit + X&)

E ; Time const. 1 142a; Volume 0.12

0.06
TS, i
£ 0.04 . f";‘. N ‘.‘ N
b KBRS N
el KIS
2 .,7?;;’:';,"4:':'0'“:“:\\\““{ N
200 ff;#,;:,,:,:.:o o .\\:‘\ ‘\\e“
RS i
Uyttt \\\\\\\" :
04 I[' 0. 1
1 f' .0 :
1

lfllfzz,,,mm\\\\\\\i\\\\\\ o

y-Position x-Position

Eﬁ: Time const. 452a; Volume 0.055

Elevation

y-Position

x-Position

Elevation

Elevation

which has standard solution

T, = Aiy cos(wit + dir + Xk), (21a)
tan g = ﬂ. (21b)
A
_)\r .i ' Wi Jik
A = J {: : B T fj - (21c)
cos i (A2 + wi) sin ¢y (A7 +w?)
Here,

fi 2/5?{11;-(m.;u)c15
or in matrix notation:

f;,- :Eflf

i Qs

where dg, represents the pointwise Fourier transform of the
accumulation distribution in time. In practice, this formal-
ism is overcomplicated because there is insufficient data,
and the accumulation might be specified as varying uni-
formly in space according to a few selected frequencies.
From the point of view of comparing results, it is more
convenient to carry out a spectral analysis of the results of
the EB, and compare these with the analytical solution pre-
sented above. The elevation at each interior point of the EB
grid forms a time serics the periodogram of which can be
formed (the data are so clean that periodograms suflice).
Since the Eismint experiments are forced at one period only,
only the amplitude and phase information need to be
retrieved at the appropriate frequency. In practice, power
might be expected at harmonic frequencies owing to non-
linear effects (“beats™), but these will be ignored in the fol-
lowing analysis. The error this introduces is not great.
Thus, for each point of the EB grid, at the fundamental
frequency (the [requency of forcing), the spatial variation of
the Fourier components is considered. More specifically,
denote by g the discrete Fourier transform of the elevation
of the points (i, y¢) at a frequency wy, (a more intuitive des-
cription is provided below). For example, Figure lc and d

E; Time const. 803a; Volume 0

0.1
0.05
0 o,_'. o
l;:o, o‘:\\\‘\“““ ‘“ .
-0.05 0, t““““\\ W .
—01 M v,
1 i b
1
0
y-Position -1 -l x-Position
ES; Time const. 493a; Volume 0
0.1
0.05
0 _:__.\\m, s AN \'\‘f

gl

-1

y-Position =1 x—Position

Fig. 2. Eigenfunctions of the EB. Four modes are illustrated: the two lefthand ones are volumetric, while excitation of the fwo
righthand ones results in asymmetry. I number is the mode number.
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Fig. 3. Accumulation-rate distribution which excites the corvesponding mode number. This is computed by inverting the eigenfunc-

tion matrix.

shows the real and imaginary components of sy at the for-
cing period (in this case 20 ka). Table 2 shows the amplitude
ol the Fourier transform of the centre-point elevation at se-

lected multiples of the foreing frequency. The amplitude of

the second harmonic is at most 15% of the first harmonic.
Then, for a given [requency wy the Fourier coeflicients
can be projected onto the discretized eigenvectors E thus;

= BB

where 8, 1s the vector formed from 54 and ¢, formed from

Cik+ 15 a vector of mode coellicients corresponding to the fre-
quency k Amplitude |¢;| and phase information ¢ = arg ¢;
[or each mode i can be computed and compared with the
analytical solution. In practice, this is only applied at the

driving frequency.
It is helpful to consider this visually. The steady-state EB
profile (Fig. la) is subjected to a periodic forcing. The point

Table 2. The Fourier transformation of the centre elevation in
the B for forcings of 20 and 40 ka. Amplitudes for the firsi
JSour harmonics are given, showing that non-linear behaviour
accounts for between 10 and 14% of the signal

Foreing period Harmonic Amplitude
d

20000 | 11 %10

2 12 % 1072

3 18 x 10*

4 39 x 10"

10 000 1 12 g

2 18 x 10°°

3 34 x10°

4 78 x 10"
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clevations are Fourier-transformed to vield the surfaces
shown in Figure lc and d; these are the coeflicients 5.
These surfaces can be represented, quite efliciently, as a ser-
ies of the eigenfunctions from the linearization and shown
in Figure 2. The coeflicients ¢, multiplying the eigenfunc-
tions in this series are obtained by computing the inner pro-
duct of the surfaces in Figure lec and d (the Fourier
coefTicients ol the forcing of the Eismint experiment) with
the sampling functions shown in Figure 3.

The accumulation-rate variation specified in the EB is
large (2 =0.3+0.2ma
perturbation which is associated with oscillation of the first

Y but the maximum error in the
(slowest) mode is 7%. This can be seen [rom Table 1, which
lists the components ¢ (Several have been omitted
because symmetry enforces ¢;;. to be zero for uniform accu-
mulation). For forcing at 40 000 years, the error in the com-
puted amplitude for the first few non-zero modes reaches
10% but the dominating contribution comes from the first
mode where the error is 6%. Phase lags are around 7/2 for
both models. For forcing at 20000 years, where the ampli-
tude deviation is smaller. the accuracy is higher. On to these
errors should be added the errors arising [rom ignoring the
higher harmonies, making the total error about 20%.

These errors are not negligible but the EB is a fairly se-
vere test with accumulation amplitude two-thirds of the
mean accumulation, somewhat larger than those experi-
cnced during the Ice Age by either the Antarctic or the
Greenland ice sheets. The smaller perturbation associated
with the shorter period forcing has a smaller error.

NORMAL-MODE ANALYSIS OF SOME ANTARCTIC
DEMs

Two Antarctic digital elevation models (DEM), both with
80 km grids (Budd and Smith, 1982, 1985; Bamber and Huy-
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brechts, 1996) with associated grids of basal elevation and
surface accumulation rate were used. Balance fluxes were
calculated and the normal modes computed. These coarse
grids were used because it is still a formidable computa-
tional task to compute all the modes for finer grids, and it
seemed desirable to compute all the modes in smaller test
cases rather than truncating arbitrarily with finer grids.
The Bamber and Huybrechts (1996) elevation grid is more
accurate than the Budd and Smith (1985) grid, but there is
an issuc of the sensitivity of the slower modes to data uncer-
tainty. In both computations the accumulation data from
Budd and Smith (1985) are used. Hindmarsh (in press) has
discussed the robustness of one-dimensional (1-1D) perturba-
tions to the ice-sheet equation. In this case, a Sturm-Liou-
ville equation is obtained and the robustness of their spectra
to model (not solution) perturbation is well understood
(Pryce, 1993). While Sturm-Liouville forms cannot be
obtained in higher dimensions, the robustness property is
expected to be maintained.

Balance fluxes and normal modes were computed in the
manner described above using ¥ = 3,m = 5, correspond-
ing to internal deformation according to a Glen (1955) rheol-
ogy. A puzzling feature was the presence of eigenvalues and
vectors with non-zero imaginary parts. The non-zero parts
of the eigenvalues were at most no more than a few per cent
ol the corresponding real parts. There are several possible
causes for this but, il one considers the ice-sheet equation in
the [-D form

BH = ay(c*(.s — b)™|0,s

v— lar”) + (L,

and expands:
8H = C(s — b)'”a,.(|ea_,..q|""a_,_.s)+
'm,(|8_,.s\”7l(’)_rs) (C’(s - b)”‘*) (85 — B:b) +a,

then, if |0;b| = |0, 5|,
&H = —‘rn,(|0_,.s\”_ldrs) (C(s — )" "')a,b +a,

which is a [irst-order hyperbolic equation. In such a case,
one is less surprised to see complex eigenvalues and they
may therefore arise [rom rugose basal topography. The
argument of the cigenvalues (i.e. Iin(A)/Re(A)) is plotted
in Figure 4. Complex cigenvectors only occur when com-
plex eigenvalues exist. Iigure 4 shows that this problem only
exists for higher-mode numbers. The following discussion
refers to the real parts of the modes.

The six slowest modes for cach case are shown in Figures
5 and 6, together with associated time constants and vo-
lumes relative to the slowest mode. The results are broadly
similar and the percentage differences between the com-
puted time constants are smaller than the uncertainty in
the rheological indices ¥ and m.

A significant result is that these low-order modes are
smooth, despite the use of accurate data in the MSSL data-
set. Thus, the process of computing the normal modes in
effect filters the data in the sense that small-scale spatial var-
1ation is only excited by small-scale forcing.

These modes are clearly East Antarctic modes and
relate to the fact that the time constants for East Antarctica
are greater than for West Antarctica owing to the low accu-
mulation rates (e.g. Hindmarsh, 1990). Evidently, the
Lambert Basin splits the glaciodynamic response of East
Antarctica asunder. The temptation should be resisted to
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Fig. 4. The argument of the ergenvalue plotted against mode
number. Non-zero arguments are a numerical artefact. They
do not appear in modes of < order 100,

conclude that coarse grids are suflicient to compute the nor-
mal modes of an ice sheet. The analysis of Budd and Warner
(1996) shows how flow is directed into streams and it can be
seen [rom the perturbation Equation (11) that spatial varia-
tions in the zeroth-order discharge might well have a signil-
icant eflect.

The accumulation-rate sampling distributions (i.c. the
rows of E7!) are shown in Figure 7. Their spatial structure
is broadly similar to the modes, as is the case in IHD (Hind-
marsh, in press), but owing to their non-orthogonality, do
not excite only the corresponding mode, as compared to
the orthogonal functions that appear in IHD.

Volumetric spectra (i.e. the eigenfunction volume
plotted against its associated time constants) are shown in
Figure 8. The slowest modes have time-steps of around
10 000 years, which can be predicted from the scale relation-
ship H/a(2n + 2). The volumetric spectrum indicates the
relaxation time-scales of volumetric significance. The
modes with short time constants do, in sum of absolute mag-
nitude, represent a considerable volume but these modes are
associated with spatial length scales smaller than likely varia-
tion in the accumulation rate and will not therefore be acti-
vated significantly. Thus, most of the volumetric response

Table 3. The amplitudes of some spatial modes in the EB con-
Siguration for forcings of period 20 and 40 ka, compared with
the linear solutions. The linear amplitudes depend on the for-
cing period bul the effect ts loo small lo be seen at the quoted
accuracy

Forcing period Muode number Mode amplitude

Linear amplitude

Jor linear solution EB amplitude
da
20000 l 23 1.0
6 028 0.93
13 0,099 .06
17 0,089 092
10 000 I 23 093
2 0.28 0.90
3 0.099 0.96
1 0.089 0.90
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M, T =6109

70 70 70
60 60
50 50
40 40
30 30
20 20
10 10
20 40 60! 20 40 60 20 40 60
MJ: 'l'c = 5976a Mqi TL_ = 4980a Mb: Tc =4685a
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60 60 60
50 50 50
40 40 40
30 30 30
20 20 20
10 10 10
20 40 60 20 40 60 20 40 60

Fig. 5. Six stowest modes computed from the MSSL dataset ( Bamber and Huybrechts, 1996). Associated time constants and
relative volumes are indicated. Contour interval 0.2; black and white contours are of opposite sign.

seems to be concentrated between 1000 and 10 000 years. This
is consistent with conclusions obtained by Huybrechts (1992)
using a non-linear thermomechanically coupled model.

[t is possible, using the procedure described in Equations
(18) to (20), to compute the response of the ice sheet to
changes in the accumulation rate. The eigenfunctions can

be used to decompose the spatial distribution of the accu-
mulation and the evolution split between fast, slaved modes
(with high wave-number spatial variability) the instanta-
neous contribution of which is described by Equation (18a)
and the slow, large spatial-scale modes the evolution of
which is described by the dynamical Equation (19). In this

M: T =9891a M,:T_=8014a M,: T = 5845a
70 70 70
60 60
50 50
40 40
30 30
20 20
10 10
20 40 60 20 40 60 20 40 60
M, T =5534a Mg T = d834a M,: T_=4408a
70 ] 70 70
60 60
50 50
40 40
30 30
20 20
10 10
20 40 60 20 40 60 20 40 60

Fig. 0. Six slowest modes compuled from the UM dataset ( Budd and others, 1982). Associated time constants and relative volumes
are indicated. Contour interval 0.2; black and white contours are of opposite sign.
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M,: T =5976a M,; T, = 4980a

70 70 70
60 60
50 50
40 40
30 30
20 20
10 10
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Fig. 7. Distribution of accumulation that optimally excites the corresponding mode, MSSL dataset.These accumulation distribu-
tons will excite other modes as they are not orthogonal. Contowr interval 0.2; black and while contours are of opposite sign.

Volumetric relaxation spectrum for Antarctica
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Fig. 8 Volumetric spectrum: mode volume plotted against the
assoctated time constanl. MSSL data plotted in heavy line,
UM datasel in dotted line.

way, the spatial structure associated with the fast modes can
be retained in the evolution calculation. In non-linear
models, data inconsistencies associated with the fast modes
tend to cause numerical problems (e.g. Oerlemans and Van
der Veen, 1984) and data inconsistencies are relaxed out by
running the model. Space limitations preclude further dis-
cussion of this important application.

CONCLUSIONS

Of the three options discussed for initialization, the easiest
one, which uses observed clevations in the zeroth-order
solution, seems to be a feasible way of initializing models.
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This is because the smaller-scale structure in the zeroth-
order solutions is not manifested in the low-order modes of
the perturbed solution. The practical consequence of this is
high accuracy. Normal-mode analyses permit small spatial
structure to be retained in models without being relaxed
out, where it is due to data inconsistency or causing numer-
ical instability. There remains a problem of how to deal with
sink holes.

The normal modes of two Antarctic DEMs have been
computed. The differences in clevation cause relatively
small variations in the spectrum and the qualitative features
of the cigenfunctions remain similar for slower modes. The
e-folding relaxation time constant for East Antarctica is
around 10 000 years. The volumetric aspect of the relaxation
of Antarctica has been computed, with the most significant
response occurring on time-scales between 1000 and 10 000
years. What causes the spatial structure of the modes is not
obvious and requires further investigation. Better physics, in
particular the representation of grounding-line motion and

of sliding, should be available in the future.
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