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Abstract

Cirrus clouds are keymodulators of Earth’s climate. Their dependencies onmeteorological and aerosol conditions are
among the largest uncertainties in global climate models. This work uses 3 years of satellite and reanalysis data to
study the link between cirrus drivers and cloud properties. We use a gradient-boosted machine learning model and a
long short-term memory network with an attention layer to predict the ice water content and ice crystal number
concentration. The models show that meteorological and aerosol conditions can predict cirrus properties with
R2 = 0.49. Feature attributions are calculated with SHapley Additive exPlanations to quantify the link between
meteorological and aerosol conditions and cirrus properties. For instance, the minimum concentration of
supermicron-sized dust particles required to cause a decrease in ice crystal number concentration predictions is
2 × 10�4 mg/m3. The last 15 hr before the observation predict all cirrus properties.

Impact Statement

We applied explainablemachine learning to predict cirrus clouds and improve process understanding. The results
can validate and improve cirrus cloud parameterizations in global climate models, essential for climate change
projections and support assessing cirrus-based climate engineering methods.

1. Introduction

Cirrus clouds consist of ice crystals and occur at temperatures below �38°C in the upper troposphere
(Sassen et al., 2008). Like all other clouds, they influence the Earth’s radiative budget via the reflection of
solar radiation and absorption and emission of terrestrial infrared radiation into space (Liou, 1986).
Depending on the cloud microphysical properties (CMPs), namely ice water content IWC and ice crystal
number concentrationNi, the cloud radiative effect of cirrus varies significantly and ranges from a cooling
effect at lower altitudes for optically thick cirrus to a warming effect at high altitudes for optically thin
cirrus (Heymsfield et al., 2017). However, due to the high spatiotemporal variability of cirrus, different
formation pathways, and the nonlinear dependence on environmental conditions and aerosols,
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constraining CMP and hence the cloud radiative effect remains an active field of study (Gasparini et al.,
2018; Gryspeerdt et al., 2018; Krämer et al., 2020). An improved process understanding of cirrus CMP
will help to reduce uncertainties in global climate models and climate change projections and assess
climate intervention methods targeted at cirrus clouds. This study aims to quantify the impacts of
individual cirrus drivers on the CMP. We approach this task with a two-stage process. First, we train a
black-box machine learning (ML) model to predict IWC and Ni, given the input of meteorological
variables and aerosol concentrations. Next, we calculate the individual contributions to the predictions for
each input feature using post hoc feature attribution methods from the emerging field of eXplainable AI
(XAI) (Belle and Papantonis, 2020). Using XAI methods to understand and discover new physical laws
via ML has been discussed in recent publications and is increasingly adopted in the atmospheric science
community (McGovern et al., 2019; Ebert-Uphoff and Hilburn, 2020). We train and explain a gradient-
boosted regression tree on instantaneous data and a long short-termmemory (LSTM) network (Hochreiter
and Schmidhuber, 1997) with an attention layer on time-resolved data. The former is aimed to yield better
interpretability, while the latter incorporates temporal information of the predictors. The remainder of this
paper is structured as follows: A brief background about cirrus drivers is presented in Section 2, followed
by a description of the data set, ML models, and feature attribution methods in Section 3. Section 4
presents the prediction performance of theMLmodels and the corresponding feature attributions. Finally,
the results are summarized and discussed in Section 5.

2. Cirrus Driver

Previous studies have found that cirrus CMP are mainly controlled by the ice crystal nucleation mode
(Kärcher et al., 2006), ice origin (Krämer et al., 2020), meteorological variables such as temperature and
updraft speeds, and aerosol environment (Gryspeerdt et al., 2018). There are two possible nucleation
modes—homogeneous and heterogeneous nucleation. Homogeneous nucleation is the freezing of
supercooled solution droplets below�38°C and high ice supersaturations (Koop et al., 2000). It strongly
depends on updraft velocity, producing higher Ni with increasing updrafts (Jensen et al., 2016).
Heterogeneous nucleation occurs via crystalline or solid aerosols acting as ice-nucleating particles that
can significantly lower the energy barrier needed for ice nucleation (Kanji et al., 2017). Dust is considered
the most important ice-nucleating particle (Kanji et al., 2017) and is hence often the only ice-nucleating
particle considered in global climate models. The availability of ice-nucleating particles can lead to fewer
but larger crystals by suppressing homogeneous nucleation (Kuebbeler et al., 2014).

Wernli et al. (2016) and Krämer et al. (2020) showed that the history of the air parcel leading up to a
cloud significantly influences cirrus CMP. Two main categories with respect to the ice origin were
identified: Liquid-origin cirrus form by freezing cloud droplets, that is, originating from mixed-phase
clouds at temperatures above �38°C and leading to higher IWC, in situ cirrus form ice directly from
the gas phase or freezing of solution droplets at temperatures below �38°C and lead to thinner cirrus
with lower IWC. Besides the ice origin, the air parcel’s exposure to changing meteorological and
aerosol conditions upstream of a cloud observation can impact the cirrus CMP. For instance, a high
vertical velocity occurring prior to a cloud observation may increase IWC and Ni (Heymsfield et al.,
2017). In this study, we focus on the meteorological variables and aerosol environment as cirrus
drivers. Nucleation mode and ice origin are classifications that are themselves controlled by the cirrus
drivers.

3. Methods and Data

3.1. Data

This study combines satellite observations of cirrus clouds and reanalysis data of meteorology and
aerosols to predict IWC and Ni. We use the DARDAR-Nice (Sourdeval et al., 2018) product for satellite-
based cirrus retrievals. The DARDAR-Nice product combines measurements from CloudSat’s radar and
CALIOP’s lidar to obtain vertically resolved retrievals for IWC and Ni for ice crystals >5 μm in cirrus
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clouds. DARDAR-Nice also provides information about each layer’s distance to the cloud top. Add-
itionally, we calculate a cloud thickness feature, which provides information about the vertical extent of a
cloud. To represent cirrus cloud drivers, we use the ERA5 (Hersbach et al., 2018) and MERRA2 (Global
Modeling and Assimilation Office, 2015) reanalysis data sets for meteorological and aerosol drivers,
respectively. All data sources are colocated on a 0.25°× 0.25°× 300 m spatial and hourly temporal
resolution corresponding to the original ERA5 resolution. Due to the narrow swath of the satellite
overpass (i.e., low spatial coverage) and long revisiting time (16 days), studies about the temporal
development of cirrus clouds and their temporal dependencies on driver variables are not possible given
only instantaneous DARDAR-Nice data colocated with driver variables.

CMPs are not only determined by their instantaneous environmental variables but undergo a temporal
development in which they are exposed to changing atmospheric states such as shifts in temperature,
updraft velocities, and aerosol environment. Thus, we add a temporal dimension to our data set by
calculating 48 hr of Lagrangian backtrajectories for every cirrus cloud observation in the DARDAR-Nice
data set with LAGRANTO (Sprenger and Wernli, 2015). An individual trajectory is calculated for every
cirrus layer in an atmospheric column. For instance, for a 900 m thick cloud consisting of three 300 m
layers, three individual trajectories are calculated and initialized simultaneously and identical latitude/
longitude but at different height levels. LAGRANTOuses ERA5wind fields for the trajectory calculation.
All meteorological and aerosol variables are traced along the trajectory. These variables represent the
changingmeteorology and aerosol environment along the air parcel upstreamof a cirrus observation in the
satellite data. Figure 1 exemplarily displays the satellite overpass (gray), cirrus cloud observations (red),
and the corresponding backtrajectories (blue).

To account for seasonal and regional covariations, we include categorical variables representing the
different seasons (DJF, MMA, JJA, SON) and regions divided in 10° latitude bins into the data set.
Additionally, the surface elevation of the ground below an air parcel is included to incorporate the
influence of orographic lifting. Since an air parcel can travel throughmultiple 10° latitude bins in 48 hr and
is exposed to varying topographies, both latitude bin and surface elevation are also traced along the
trajectory. Finally, we use the land water mask provided by the DARDAR-Nice dataset. Please refer to
Sourdeval et al. (2018) for more information. All used data variables are specified in Table 1. The last
column in the table indicates whether the variable is available along the backtrajectories or just at the time
of the satellite observation. We chose to study a domain ranging from 140°W to 40°E and 25°N to 80°N.

Figure 1. Illustrative example of data for 1 hr. DARDAR-Nice satellite observations along the satellite
overpass are displayed as gray dots. A vertical profile of 56 300 m thick vertical layers is available for
each satellite observation. To keep the diagram uncluttered, only one vertical level is shown. Red crosses
mark observations containing cirrus clouds. Blue dashes represent the corresponding 48 hr of
backtrajectories calculated for each cirrus observation. Along each trajectory, meteorological and
aerosol variables are traced.
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This study area covers a wide range of climate zones and topographies. In the vertical direction, we
consider 56 vertical layers of 300 m thickness covering heights between 4,080 and 20,580 m. Since we
only consider cirrus clouds in this study, all data above�38°C are omitted. The tropics are excluded from
this study as convective regimes often drive liquid-origin cirrus clouds in this region, and convection is
not well represented at this horizontal resolution. Due to gaps in the satellite data, we focus on the period
between 2007 and 2009. Since sunlight can adversely affect the quality of satellite retrievals, we only
consider nighttime observations.

3.2. Prediction models

Weaim to predict IWC andNi of cirrus cloudswithmeteorological and aerosol variables, a regression task
from an ML perspective. By adding latitude bin, season, and surface elevation to the input features, we
account for regional, seasonal, and topographic variability. We approach the regression task with
(a) instantaneous and (b) time-resolved input data. The former has the advantage of training the ML
model on a tabular data set that best suits the explainability methods described in the next section. The
latter data set enables the model to incorporate the temporal dependencies of cirrus drivers on the cirrus
CMP but is more difficult to interpret. Note that only the input data has a temporal dimension, namely the
backtrajectories.

3.2.1. Instantaneous prediction model
We train a gradient-boosted regression tree using the XGBoost algorithm (Chen and Guestrin, 2016),
which typically outperforms more complex deep-learning models on tabular data (Shwartz-Ziv and
Armon, 2021). A separate XGBoost model is trained for each target variable.

3.2.2. Time-resolved prediction model
Given the temporally resolved backtrajectory data of cirrus drivers xt with t∈ �48,0½ � (sequential
features) and static features xstatic, like cloud thickness and distance to cloud top, we predict the target
variables IWC and Ni at t = 0, that is, the time of the satellite observation, using a single multi-output
LSTM architecture (Hochreiter and Schmidhuber, 1997). From an ML perspective, this is a many-to-one

Table 1. Summary of data used in this study.

Variable Source Backtrajectory

Target variables Ice crystal number concentration (Ni) (mg/m3) DARDAR-Nice ✗
Ice water content (IWC) (cm�3)

Predictor variables Temperature (K) ERA5 ✓

Vertical velocity (Pa/s)
Horizontal wind speed (m/s)
Dust aerosolsa (DUsub, DUsup) (mg/kg) MERRA2 ✓

Sulfate aerosols (SO4) (mg/kg)
Distance from cloud top (m) DARDAR-Nice ✗
Cloud thickness (m)
Land water mask
Surface elevation (m)

ERA5
✓

Region (10° latitude bins) ✓

Season ✗

Note.Lagrangian backtrajectories were calculated 48 hr back in time for each cirrus observation. Variables with✓ in the last column are available along
backtrajectories (hourly data). Variables with ✗ are only available at the satellite overpass.
aDust concentrations are divided in particles smaller than 1 μm (DUsub) and particles larger than 1 μm (DUsup).
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regression problem. LSTMs are neural networks that capitalize on temporal dependencies in the input
data. The LSTM encodes the sequential features into a latent representation called hidden state ht (1).

ht =LSTM xtð Þ, t∈ �48,0½ �, (1)

ut = tanh Whtþbð Þ, (2)

αt =
exp utuð ÞP
t exp utuð Þ , (3)

z=
X

t

αtht: (4)

Then, the output of the LSTM is fed to a simple attention mechanism that determines the relative
importance of each timestep in the sequential input data for the final prediction. The attention mechanism
provides a built-in approach to interpreting the ML model’s prediction for the temporal dimension. It
comprises a single fully connected layer and a context vector u. First, a latent representation ut of ht is
created by passing ht through the attention layer (2), then the importance of each timestep αt is calculated
by multiplying ut with the context vector u. We normalize the importance weights αt by applying the
softmax function (3) so that all attention weights sum up to 1. Next, the weighted sum z of the importance
weights αt and the LSTMhidden state ht is calculated (4). The attention layer, as well as the context vector
u, are randomly initialized and learned during the training through backpropagation together with the
weights of the LSTM and other fully connected layers. To make the final prediction y∈ℝ2

þ, z is
concatenated with the static input features xstatic and fed through a set of fully connected layers.
Figure 2 visualizes the whole architecture consisting of LSTM, attention layer, fully connected layers,
and finally, a linear layer.

3.2.3. Experimental setup
To train and evaluate the ML models, we split the data into 80% training, 10% validation, and 10% test
data. Each cloud layer containing cirrus clouds is considered an individual sample, that is, a cloud
consisting of 3300 m layers is considered as three different samples. To prevent overfitting due to
spatiotemporally correlated samples in training and test sets, samples from the same month are put in the
same split. In total, the data set consists of 6 million samples. Due to the large spread in scales, the target
variables and aerosol concentrations are logarithmically transformed. The categorical features are one-hot

LSTM

Attention Layer

Fully Connected +
ReLU

Linear

Figure 2. Architecture of the LSTM-based model with integrated attention method to predict IWC andNi

of cirrus clouds with the temporal data set. ReLU, rectified linear unit.
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encoded. For the XGBoost model, no further pre-processing is required. For the LSTM model, we
standardize the continuous sequential and static features by removing the mean and dividing them by the
standard deviation of the training samples. The hyperparameters of the models are tuned using Bayesian
optimization. Fifty hyperparameter configurations are tested per model during the optimization. The final
hyperparameters are displayed in Supplementary Appendix A.

3.3. Explainable AI

We apply post hoc feature attribution methods to the trained models. For each sample, the marginal
contribution of each feature toward the prediction is calculated. By combining explanations for all
samples, we can gain insight into the internal mechanics of the model and, eventually, an indication of
the underlying physical processes. We focus on the instantaneous predictive model and only briefly
interpret the temporal model by analyzing the attention weights. We use SHapley Additive exPlanations
(SHAP) (Lundberg and Lee, 2017) using the TreeSHAP (Lundberg et al., 2020) implementation to
calculate feature attributions. SHAP is a widely applied XAI method based on game-theoretic Shapley
values. For each feature, SHAP outputs the change in expected model prediction, that is, if a feature
contributes to an increase or decrease in the prediction.

To evaluate the quality of black-box ML model explanations, it is customary to calculate faithfulness
and stability metrics. The notion of faithfulness states how well a given explanation represents the actual
behavior of the ML model (Alvarez Melis and Jaakkola, 2018), and stability measures how robust an
explanation is toward small changes in the input data (Alvarez Melis and Jaakkola, 2018; Agarwal et al.,
2022). In this study, we use Estimated Faithfulness (Alvarez Melis and Jaakkola, 2018), which measures
the correlation between the relative importance assigned to a feature by the explanation method and the
effect of each feature on the performance of the predictionmodel. Higher importance should have a higher
effect and vice versa. Explanation stability is evaluated using relative input stability (RIS) and relative
output stability (ROS) (Agarwal et al., 2022). Implementation details of the XAI evaluation metrics are
described in Supplementary Appendix B. To further validate our explanations, we compare them with
LIME (Ribeiro et al., 2016) and baseline with randomly generated attributions. LIME is another popular
XAI method that calculates feature attributions by fitting linear models in the neighborhood of a single
sample.

4. Results

We first present the predictive performance of the XGBoost and LSTM-based models. The feature
attributions of the XGBoost model are discussed. Finally, we analyze the weights of the attention layer in
the LSTM-based model to understand which timesteps are important for the prediction tasks.

4.1. Cirrus cloud prediction performance

The prediction performance of the ML models and a linear baseline regression are displayed in Table 2.
Both ML models outperform the baseline, and the LSTM-based model performs best overall with 0.49
(0.40) R2, and root mean squared error of 0.35 (0.33) for IWC (Ni). This shows that the backtrajectories
contain useful information for cirrus cloud prediction. Like the LSTM-based model, the XGBoost model
can capture nonlinear relationships in the data. Thus, it is fair to continue focusing on that model formodel
explainability.

4.2. Feature attributions with SHAP

Figure 3 shows that SHAP explanations aremore stable and have higher faithfulness than the other feature
attributionmethods and are thus best suited for our study. For each feature, themean absolute SHAP value
aggregated over all test samples is displayed in Figure 4 for IWC (left) andNi (right). It can be seen that the
vertical extent of the cloud and the position of the cloud layer within the cloud are important predictors for
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both CMP. As expected from theory, temperature, and vertical velocity are the main drivers for the
prediction. Aerosol concentrations play only a minor role in the prediction.

Figure 5 allows amore detailed analysis of the SHAP values. Here, we aggregated the SHAP values for
each feature along the range of occurring feature values. Increasing updrafts (i.e., negative vertical

Table 2. Performance metrics evaluated on independent test data for the regression task of predicting
cirrus CMP using meteorological and aerosol variables.

Model Input data

IWC Ni

RMSE R2 RMSE R2

Linear regression (baseline) Instantaneous 0.44 0.24 0.45 0.19
XGBoost Instantaneous 0:40±0:01 0:38±0:02 0:42±0:01 0:35±0:02
LSTM Temporal 0:35±0:03 0:49±0:04 0:33±0:02 0:42±0:03

Note. Each model was trained 10 times; the values in the table represent the mean and standard deviation over the 10 model runs. Performance metrics
are calculated on log-transformed values of target variables.
Abbreviations: CMP, cloudmicrophysical property; IWC, ice water content; LSTM, long short-termmemory;R2, coefficient of determination; RMSE,
root mean squared error.

Figure 3. XAI evaluation metrics for SHAP, LIME, and a random baseline feature attribution of the
XGBoost model. For the stability metrics RIS (a) and ROS (b), lower values indicate more stable
explanations, that is, more robust toward small changes of the feature values. Estimated faithfulness
(c) indicates whether features with high importance attributed by the feature attribution method are
important for the prediction performance, where 1 denotes perfect estimated faithfulness.

(a) (b)

Figure 4.Mean absolute SHAP values of each feature for IWC (a) and Ni (b). The higher the value, the
higher the contribution to the prediction, that is, the more important the feature.
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Figure 5. (a–f) Partial SHAP dependence plots for representative features showing themean SHAP value
per feature value for IWC in blue color and Ni in red color as solid lines. The shaded area represents the
standard deviation. Additionally, the marginal distribution of the feature is displayed in gray above each
plot, and the marginal SHAP value distributions are displayed on the right of each plot. Note that the
absolute SHAP values of IWC and Ni are not directly comparable as the SHAP value indicates the
contribution of a feature to the prediction value, and the two variables have different yet similar
distributions. The plots show only feature values with at least 5,000 occurrences in the test data set.
(g)Mean of attention weight per timestep. Attention weights are learned during the training process of the
LSTM model and represent the relative importance of the input data per timestep.

e19-8 Kai Jeggle et al.

https://doi.org/10.1017/eds.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.14


velocities (a)) are increasing the model predictions for IWC andNi. Horizontal wind speed (e) has a near-
linear contribution to the predictions with a positive impact for wind speeds exceeding 25/ms. Horizontal
wind speed is not considered much in cirrus driver literature but could be a good indicator for dynamical
systems such as warm conveyor belts. For temperature (b), a positive dependency is found for IWC and a
negative dependency for Ni. At temperatures between 230 and 235 K, there is still a strong positive
dependency for IWC, while the curve for Ni is flattening out. This could indicate that in this temperature
range, keeping all other conditions the same, the main processes are growing or colliding ice crystals
instead of the formation of new ice crystals. Looking at cloud thickness, it can be observed that vertically
thicker clouds increase CMP regardless of where the cloud layer is positioned in the cloud. A strong
decrease in CMP is visible for cloud layers at the top of the cloud, with a more pronounced effect for IWC
(d). This suggests that the entrainment of dry air at the cloud top is a dominant process for cirrus, causing
the ice crystals to shrink and partially sublimate. Dust >1 μm slightly decreases the predictions when
surpassing a concentration of 2×10�4 mg/m3, with a stronger effect forNi. The physical effect acting here
could be the suppression of homogeneous nucleation.

4.3. Interpretation of attention weights

Figure 5g displays the mean attention weight per timestep of the attention layer of the LSTM model.
Compared to the post hoc feature attribution with SHAP, the attention weights are learned during the
training process in the attention layer. The weights indicate how important the model considers a given
timestep for the prediction. Results suggest that all necessary information for cirrus prediction is
encapsulated in the last 15 hr before the observations, with more information the closer the timestep to
the observation.

5. Conclusion

This work shows that ML is well suited to capture the nonlinear dependencies between cirrus drivers and
CMP. We applied a twofold approach by training an XGBoost model on instantaneous cirrus driver data
and an LSTM model with an attention layer on temporally resolved cirrus driver data. The LSTM-based
model yielded the best predictive performance, suggesting that the history of an air parcel leading up to a
cirrus cloud observation contains useful information. By analyzing the weights of the attention layer, we
can show that only the last 15 hr before the observation is of interest. Furthermore, we calculate post hoc
feature attributions for the XGBoost model using SHAP values. The analysis of SHAP values enables us
to quantify the impact of driver variables on the prediction of CMP.While the physical interdependencies
aremostly already known and discussed in the literature, our study can convert qualitative estimates of the
dependencies to quantitative ones, such as the slope of the temperature dependency or the dust aerosol
concentration needed to see an impact on the CMP.We also demonstrate the importance of vertical cloud
extent and cloud layer position to the CMP, apart frommeteorological and aerosol variables. Our study is
limited by the imperfect prediction of cirrus CMP, reducing the accuracy of the feature attributions. The
authors assume that subgrid-scale processes in reanalysis data, like small-scale updrafts and satellite
retrieval uncertainties, reduce predictive performance. In conclusion, ML algorithms can predict cirrus
properties from reanalysis and macrophysical observational data. Model explainability methods, namely
SHAP and attention mechanisms, are helpful tools in improving process understanding.
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