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Abstract

Let M be a full Z-module in F a real number field of degree at least 3 with N(a) denoting
the norm of a e F. Given any nonzero number <j> in M we make the plausible conjecture
that one can find a number 0 in M such that N(0) = N(tj>) and the algebraic conjugates
of 0 (not including 0) have ratios arbitrarily near any given numbers consistent with the
complex algebraic conjugates of elements of F. We use the conjecture to give explicit formulas
for some diophantine approximation constants. Without the conjecture our methods lead to
corresponding lower bounds for these constants.

1980 Mathematics subject classification (Amer. Math. Soc): 10 F 10, 10 F 25.

1. Introduction

Two well-known constants are associated with each n-tuple x = (xi,...,xn) of

real numbers.

The simultaneous diophantine approximation constant of x, denoted by c(x),

is the infimum of those c > 0 for which the inequality

max |moXj — rrij\n < c
l<j<n

has infinitely many solutions in integers mo / 0, mi , . . . ,mn.
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The linear form (or dual) approximation constant of x , denoted by c*(x), is

the infimum of those c > 0 for which the inequality

\- mnxn\ max \mAn < c
l<j<n

has infinitely many solutions in integers m 0 , mi,...,mn with mi,...,mn not

all zero.

In Cusick [3] explicit formulas for c(£), c*(£) are given in the case £ = ( f i , £2)

where 1, £1, £2 is a basis for a real cubic field. In this paper we obtain formulas

for c(£), c*(£) where £ = ( £ 1 , . . . , £n) with 1, £ 1 , . . . , £ n a basis for a real number

field of degree n + 1. But these formulas are subject to a conjecture, described

below, on the existence of units with conjugates 'Very nearly" in any given ratio

consistent with complex conjugates.

Wi thout the conjecture the methods used here lead to lower bounds.

2. Unit conjecture

Let F be a real number field of degree n + 1 with s pairs of complex conjugates.

So 0 < 2s < n + 1. We put r = n - 2s and denote (algebraic) conjugates of

a e F by a[0] = a, a ^ j , . . . , ajn] ordered so that

ay] € R, j = 0 , . . . , r ; ay] = a~[g+j] e C, j = r + 1 , . . . , r + s.

N{a) = n>=o Q[j] 1S t n e n o r m °f a-
Any basis (io,..., fxn of F determines a full Z-module

R{M), the coefficient ring of M, is defined by

R(M) = {a£F: aMC M}.

We will write

C r > s = {x.= (xi,...,xn): x3• € R, j = 1 , . . . , r, x3•= xs+j G C,

We can now state the unit conjecture, (U.C.).

(U.C.). Given any x = ( x i , . . . , xn) e CT±S and any e > 0 there exists a unit

a E R.(M) C F with ay] > 0, j — 0 , . . . , r such that
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Observe for the above unit a t ha t N(a) = 1.

In the case 3 = 0, t ha t is where F is a totally real number field, (U.C.) is

equivalent to a conjecture of Adams in [1, page 192]. Adams ' conjecture in tu rn is

a special case of a conjecture of Schanuel (see Ax, [2]). As multiplication by units

plays a vital role in our arguments, and assuming (U.C.) leads to exact results

in all real (algebraic) number fields including those with complex conjugates, it

seems convenient to express the conjecture in the above form.

By a result of Peck [6]—also see Krass [5]—we know (U.C.) holds for the

special case x = ( 1 , . . . , 1) E C + s .

For convenience we express Peck's result in the following lemma.

LEMMA 1. There exists an infinite sequence T = (ik, k = 1,2,.. .) of units
in R(M) such that

(') lk[j} > 0, j = 0 , . . . , r,
(ii) limfc-,00 7fc = oo,

(iii) limfc^oo iklj]/lk[i] = 1, 3 = 2, • • •, n,
where, above, 7fcyj = (^[j] = jth conjugate

Observe that (iii) can be expressed in the form

(iii') lim/t—.oo *yk 7fcyj = 1, 3' = 1 , . . . , n.
We say F, an infinite sequence of units in R(M) satisfying Lemma 1 is a Peck
sequence in R(M).

3. Preliminaries

We now fix a = (on,..., an) e Fn such that 1, « i , . . . , an is a (rational) basis
for F. Our next theorem gives formulas for c(a) and c*(a) but we first need
some notation.

In matrix definitions we use exclusively i as a row index and j as a column
index.

Writing <XQ = 1 we construct the n + 1 by n + 1 matrix

A = ( a , [ i ] ) , < * > [ , • ] = ( « j • ) [i], i , j = 0 , . . . , n .

It is well known det ^ 4 ^ 0 . Note rows of A are obtained by conjugation re-
spectively of (1, oti,..., an) and this row conjugate structure induces a column
conjugate structure on the inverse of A. So we may write

A ' 1 = U = (uiy]), « t ( j ] = («i) [ i ]> i,j = 0,...,n.

Of course Ui = UM], i = 0,...,n. UQ, • • •, un is called the dual basis of the basis
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Associated with A and U are the n by n matrices

^1 = (ai[t] - « J ) ' l ^ *' 3 < n,
Ui = («t[i]), 1 <i, j <n.

Since aO[,] = 1, i = 0 , . . . , n, it easily follows that det A\ = det A, and f/i =
•A^1. By our conjugate ordering conventions for any x G Rn we have xt/i G Cr>s,
and /lix* G Cr<s. For any y = ( j / i , . . . , j/n) € C ' s we define

From now on M denotes the module with basis 1, a i , . . . , an and M* its dual
module. Namely, recalling c*o = 1

M = \ ^ mion'- mi el, i = 0, . . . , n } ,

M* = <2_j™iui- m el, i = 0,...,n\.
[i=O J

We will need to consider the signs of real conjugates of nonzero elements
of F. <J(X) the signature of x = ( x i , . . . , x n ) G C*'s is defined as o~(x) =
( sgnxi , . . . ,sgnxr) where sgnx = x/ |x | = ± 1 , all real nonzero x. The signa-
ture set E, with 2r elements, is

E = {CT= ( e i , . . . , e r ) : e, = ± 1 , j = l,...,r}.

For any a 6 F, Q / 0, we write rather loosely a(a) — (sgn a ^ j , . . . , sgn ajr]) G E.
For each signature a G E we define

na = min{\N(0)\: 0eM, 0^0, and a{0) = a},

n*a = mm{\N(0)\: 0 G M*, 0 * 0, and a{0) = a).

We note (proof omitted) that !]„ and rfa are well defined strictly positive numbers
for each a G E.

The formulas for the diophantine approximation constants are now stated.
Note ||x|| = maxi<j<n \XJ\, for x = (x\,..., xn) G Rn.

THEOREM 1. For a = ( a x , . . . , a n ) wi</i 1, a i , . . . , a n a basis for F a rea/
number field of degree n+l

(i) c(a) > rnin^gE {r/^/maxfpCxf/t): x G R", ||x|| = 1, and a{xUt) = a}},
(ii) c*{a) > mino-eE {^/maxlj/^ix*): x G Rn, ||x|| = 1, and <r(Aix*) = a}}.
Furthermore, under the assumption of (U.C.)
(i') c{a) = min^gs{r?;/max{ff(xf/1): x G R", ||x|| = 1, and <r(x[/i) = a}},
(ii') c*(a) = min^esl^/maxl^^ix*): x G Rn, ||x|| = 1, and a{Ai^) =

a}}.
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4. Proof of (i) and (i') of Theorem 1

By m e z«+i w e mean m = (m0,... ,mn) € Zn + 1 . Clearly we need only
consider elements of Z"+1 = {m € Zn + 1: mo / 0}. Motivated by the definition
of c(a) we write

h(m) = |mo|1/n(mi -moai,...,mn -moan), for m e Z"+1.

We say h(m) is an approximation vector for a. It is a standard result that
there are infinitely many m e Z"+1 so that

||h(m)|| = max | m o | 1 / n K - m oa j | < 1.
l<j<n

We introduce the notation Uj = (uo[j]>- • • iun[i])* = Jth column of U, j =
0, . . . , n and often write Uo = u = (uo, ...,ttn)*. An important identity is

(1) h(m)-C/1 = |m 0 | 1 / n (m-u 1 , . . . ,m-u n ) , f o r m e Z ; + 1

where
n

m • u3• = J2 mi^] = (m • u)(i], j = 0,..., n.
i=0

To prove (1) observe, writing ao = (1, a i , . • •, a n ) , and noting AU = I

« • U\ = (a0 - « i , . . - , a 0 un) - (uo[i]i--->uo[n]) = -{uo[i},--- ,Wo[n])

and
( m i , . . . , m n ) -C/! = ( m - u 1 , . . . , m - u n ) - mo(uO[i],- • • ,uo[n])

which implies (1).
The identity (1) establishes a relationship between the approximation vector

h(m) and the conjugates of u> = m • u e M*. Ultimately using (U.C.), the
conjecture defined in Section 2, to obtain a "suitable" unit 7 € %(M*), we will
have rp — 70; = m ' • u € M* for which the entries of (m' • u i , . . . , m ' • u n ) =
{ip[i],.. •,ip[n]) determine an "appropriate" approximation vector h(m') .

By (1) and the definition in Section 3 of the map g

(2) g(h(m) • f/i) = ft K | 1 / n | m • u,| = |mo/m • u| \N(m • u)|.

We will construct infinite subsets of Z " + 1 for which in (2) above |mo/m • u | =
l + o(l).

For u ^ 0 in M* and T = (-7*;, k = 1,2,...) a Peck sequence in £(M*) we
define

Z[w;r] = { m f c € Z n + 1 : lku> = mk • u, fc=l,2,...}.

For mfc = (mfco,••••,^/tn) G Z[w;F] we will show

(3) m/to / 0, for all sufficiently large k.
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By our definitions

rriko = 0 ^ (mkl,...,mkn) — (7*[i]W[i],...,'yfc[n]W[n])C/f *.

But by Lemma 1 lk[j]^y] ~* 0, as k —• oo, j = 1 , . . . , n. So if rriko = 0 and k
sufficiently large we must have mfc = 0 6 Z n + 1 contradicting 7 * ^ 0 and proving
(3).

Next we show there exists J > 1 so that

(4) ||h(mfe)|| < J, formfceZ[w;r].

By the definition of Z[u; T] and properties of T

(b) |nifcu| —> oo, as k —• oo,
(c) For any 6 > 0, and all sufficiently large k

mfc • Uj/mfc • u i = W[j]/w[i] + 6kj, \Skj\ < 6, j = 2 , . . . ,n .

We rewrite (c) in the form
(d) |mf e 0 | 1 / n (mf c - u i , . . . ,mfc -u n ) = pk(u + U[i]fa) where w = (uw,...,w[n]),

4 = (0,5fc2, • • • ,Skn) and pk = /

By (d) and identity (1)
(e) h(mf c) • Ui = pk{ui
We need to show

Note by (c) that
n n

U |mfc • Uj/mk • ui| = (1 + 0(6)) J ] |«M/wu]|.

But n

^ = n I™* U J | = i m f c • u /m*°i • imfcoi • imfc • u i i n n imfc • u i
j=0 3=1

So by above and definition of pk
n

V = (1 + O{S))\mk • u/mfc0| |/3fc|n ] 1 Ki l -

Then (f) follows if we can show mfco/mjt • u = O(l) . We suppose mfcO/nifc • u
O(l) . So for any J' > 1,

(g) |mfc0/mfc • u| > J1 for some mfc G Z[w; T\.

By (a), (b) and (c) it easily follows that for any e > 0,

\mk • Uj\ < e, j = 1 , . . . , n, all sufficiently large fc
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and so

|nifc • Uj/mfco| < £> j = 1 , . . . , n , all sufficiently large k.

We write

mfc • Uj/mfco = £kj, j = 0 , . . . , n , and ek = (eko,•••,£fcn)-

For J' > e~l we have by (g) and above t h a t

| | e f c | | < e for some mfc € Z[w;T].

But for e > 0 sufficiently small this gives the contradict ion

1 < Hm^nifcll = Hm^mfef/f/-1!! = I M ^ H = O(e).

Thus (g) is false and (f) is proven. Finally (4) follows by (e) and (f).
We now prove

(5) |mfc0| —> oo, as k —• oo.

Observe for m € Z"+1, recalling ao = (1, a i , . . . , an) ,

(0,m1 - m0ati,... ,mn -moan).

But a0 • u = 1, as AU = / , and so m • u = mo + Z)>=i(mj ~ moaj)uj and for
(fixed) J > 1,

||h(m)||<J=>
3 = 1

In fact, putting m = mfc, we have by (4) and above, since |mfc • u | —• oo, as
k —• oo,

(6) lim mfco/mfc • u = 1.
A:—*oo

Then (5) immediately follows.

We now define for each a € £ and J > 1,

Z{a, J) = {m € Z?+1: ||h(m)|| < J, and a(m • u) = a},

W(<x, J) = {m € Z(a, J): \N(m • u)| = T/*}.

For fixed u 6 E let w G M* with <r(w) = a and |JV(w)| = r?*. (That w exists
has been noted earlier.)

By (3), (4) and our definitions there exists J > 1 such that ^[w;F] is an
infinite subset of W(a, J) and so there exists m € W{o, J) C Z{a, J) with |mo|
arbitrarily large. Then, as we proved (6) but now letting |mo| -^oowe have

(7) mo/m • u —> 1 as |mo| —> oo, for m e Z(a, J).

Then by (2), (7) and definition of W(a, J)

(8) </(h(m) • Ui) —y r?*, as \mo\ —> oo, for m € W(a, J).

https://doi.org/10.1017/S1446788700032122 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032122


318 T. W. Cusick and S. Krass [8]

Also by the discreteness of norm values there exists e 0 > 0 such tha t

(8') g(h(m)-C/1)>(l + eoK, for m e Z{a,J) - W{a,J) with |mo|

sufficiently large.
For each a € £ the surface Ka in Rn is defined by

Ka = {x€ Rn: a(xf/i) = a, and ff(xtfi) = r/*}.

We put

K=[JK<T.

Given A > 0 we say x is inside \K = {Ay: y € K} if px € AK for some p > 1.
We have proved above the following lemma.

LEMMA 2. For any a in S, J > 1 suc/i t/iat W(<7, J ) is on infinite set, and
£ with 0 < £ < 1,

(i) h(m) is inside (1 + £)K fcut not inside (1 - e)K for all m G M̂ (<7, J ) wi</i
|mo| sufficiently large.

(ii) </iere exists e0 > 0, not dependent on e, such that h(m) is not inside
(1 4- £o)K for all m € Z(er, J ) — W(<r, J) with \TUQ\ sufficiently large.

Lemma 2 and the following Lemma 3 go back to the thesis of the second
author [4]. Observe Lemma 2 does not depend on (U.C).

LEMMA 3. Let a e E and x e Ka- C K. Then, assuming (U.C), for any
£ > 0 there exist J > 1 and infinitely many m € VF(<T, J ) suc/i t/iat

PROOF. Put y = {yu... ,yn) = xUi € Cl's. As x € K,,, «r(y) = o-(xf/i) =
CT. Let V 7̂  0 in M* with IT(V') = cr and \N(ip)\ = rfa. Observe that since

Then, assuming (U.C.) for any 6' > 0 there exists a unit 7 in £(M*), with
l[j] > 0, j = 1 , . . . , r, such that

(9) 2!2l
7 [ ]

We put OJ = 'yip. Then

w = (w[ij , . . . , w[n]) = [u[!] /yi )y + 6'

where <$' =
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For any Peck sequence in JZ(M*), T, there exists, by (4) above, J > 1 such
that

Z[u;T]CW(a,J).
Choosing in (c) above 0 < 8 < 8' we substitute for w in (e), recalling, y = xlli,

to get

(10) h{mk)=fa + 6'k

where p'k = PkU[i]/yi = |mfc0|1 /nmfc • m/j / i and S'k = pk{6' +U[i]6k) • U^1.
As shown in (f) pk = O(l) and so | |^ | | = O{8'). We can, in fact, use (9), (6)

and r/* = |7V(mjfu)| = Il?=i \Vj\to show p'k = l+O(6'), the proof then following
from (10) by choosing b' > 0 sufficiently small. But since p'k — PkW[i]/yi = O(l)
and <7(h(mfc) • Ui) = <r(xf/i) = a the proof follows from (i) of Lemma 2 using
(10) and (5) above for sufficiently large A; and sufficiently small 8' > 0.

We now complete the proof of (i) and (i') of Theorem 1. For each a € E let

Ua = {x € Rn: a(xUi) = a, and g(xJ7i) = 1}.

Observe
\r — „*!/»)/
<><r — 'la no-

We also define for t > 0 the box in Rn

Bt = {xeR n : | |x | | n <<}.

It follows from Lemma 2 and the definition of c(a)

c(a) > sup{t: (each point of)St is inside K}

= min inf{t: Bt fl Ka is not empty }

= mininf{||x||n: x € Ko}

= mininf{<| |r?r1 / nx| |n: r ? r 1 / n x e Va}

= min»;;inf{||x||n: x € ^ f f } .

By Lemma 3, and assuming (U.C.) equality holds and

c(a) = minr)* inf{||x||n: x g ) / , } .

But
inf{||x||n: x e ^ } = inf{||x||n: ff(xt^i) = l,

= inf{||x||"/g(x^1): x € , (

by homogeneity,

= inf{l/g(x[/x): x e R n , | | x | | = l,a{xlli) = <r},

by homogeneity,

= l/max{ff(xC/1): x € R", ||x|| = 1,<T(X£/I) = a},

by homogeneity.
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This completes the proof of (i) and (i') of Theorem 1.

5. Proof of (ii) and (ii') of Theorem 1

The proof may be brief where it follows that for (i) and (i') of Theorem 1.
In this section m = (mo,. . . , mn)* 6 z n + 1 with m the projection on m defined

by m = (mi, . . . ,m, , ) ' . We need only consider elements of

Z?»+1 = j m <= Zn + 1: ||m|| = ^ a x |m,-| > 0 j .

Recalling a0 — 1 we write

«i = (<*o[t]. • • •, «n[i]) = *th row of A, i = 0 , . . . , n.

S o f o r m e Z ? + \

«i • m = Y^ aj[i]irij = tth conjugate oi ao ia£ M.
3=0

We often write for m,mfc 6 Z.+1,

4> = </>(m) = oo • m, and </>* = </>(mfc) = a0 • mfc.

The dual approximation vector of m € Z"+x is defined by

h*(m) = |tt0 • m\1/n(rnu... ,mB)* = |<^|1/n5i, <f> = <A(m).

It is a classical result that infinitely many dual approximation vectors exist with
||h(m)|| < 1.

The following identity—analogous to (1)—is easily shown

(11) A1-h*(m)

Thus

(12)
3 = 1

Infinite subse t s of ZJJ+1 where I l ? = i |1 ~ $/0[ i ] l = 1 + o ( l ) a re cons t ruc ted .
For CJ / 0 in M a n d F = (7^ , k = 1,2,...) & Peck sequence in £ ( )

Trivially for mfc = (mfc0,..., m/tn)4 € Z* [«; F]

(13) mfc ^ 0 € Zn, for (nearly) all it.

We will show there exists J > 1, so that

(14) ||h*(mfc)|| < J, foimkeZ*[w;T}.
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Clearly for mfc € Z*[w;F], with <pk = <t>(mk),
(a) [N(4>k)\ = |AT(«)l,
(b) <t>k = w/iffc -> 0, as k -^ oo,
(c) For any <5 > 0 and all sufficiently large k,

</>k[j]/<i>k[i] = w[il/w[iJ + 4 j , |4y | < ^, ; = 2 , . . . , n.

Employing here (b) as well as (c) we have

(d) \<t>k\1/n(4>k[i) ~ <t>k, • • •, 4>k{n) ~ <f>k)1 = Pfc(w + w(1]rffc) + o ( l ) , w h e r e

w = (w[i],...,w[n])*, 6k = (0,6k2,...,6kn)
t

and

By (d) and (11)

(e) Ai -h*(mfc) = ^fc(w + o;[1]4) + o(l). Clearly, as 7fc/n7fc[i) ~> h as k -* oo.
(f) ^ = 0(1), and (14) follows immediately from (e).
Observe ||mfc|| = O(l) «• ||mfc|| = maxo<j<n |mfcj| = O(l), as mfc0 =

- a • mfc + o(l). So, as there are infinitely many mfc € ^*[w; F],

(15) ||Hifc|| —>oo, as A; —• oo.

For each a e E and J > 1, we define

Z*(a,J) = {m € ZJ+1: ||h*(m)|| < J, and a(a0 • m) = a},

W*(a, J) = {me Z*(a, J): \N(a0 • m)| = »?,,}.

For fixed a E E let w e M with a(w) = <r and |JV(w)| = r/a. By (13) and (14)
there exists J > 1 such that

Z*[UJ;T} CW*(a,J) C Z*(a,J).

We need to show

(16) J i m <t>/ij,b] = 0 , j = 1 , . . . , n, for </> = 4>(m), m € Z*(<r, J ) .
| [m||>oo

Suppose (16) is false. Then there exists 6 > 0 so that for any K > 1

|0/0[j]| > (5, at least one j = 1 , . . . , n, some <$> = 0(m) with ||m|| > K.

Without loss of generality we suppose j' = 1 and then

But then

J=2 j=0

Then for at least one j = 2 , . . . , n, say j = 2,
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and so

But 4> = 0(m), m e Z*(a, J) with ||ffi|| > K and so

I0I1/" < J/||m|| < J/K.

Substituting in the right side of the previous inequality

\4>\1/n\4>w\ > {K/J^+W-VMWI*-1).

But by (11) since | | h * ( m ) | | = O ( l ) we must have \(j>\1/n(p[2) = O ( l ) which

is contradicted by the above inequality as K may be arbitrarily large. This

contradiction proves (16). Then by (16)

(17) J J | l - 0 / 0 w [ — 1 , as | |m | | -oo , for0 = *(m), meZ*{o,J).
3 = 1

By (12), (17) and our definitions of W*(a, J), Z*{a, J)

(18) ff(Ai • h*(m)) -+ria, as ||m|| -» oo, for m e W*{a, J)

and there exists SQ > 0 such that

(18') g(A1-h
m{m))>(l + e0)ria, for m € Z*{a, J) - W*{a, J)

with ||m|| sufficiently large.

For each a g E the surface K* is defined by

K; = {x G Rn: CT(^IX) = a, and

We put /C* = L U E <<?• We have proved

LEMMA 4. For any a in E, J > 1 swc/i t/ia< W *̂(CT, J) is an infinite set, and
e with 0 < e < 1.

(i) /i*(m) is inside (1 + e)/C* 6ut not inside (1 - e)JC* for all m e W*(a, J)
with ||tn|| sufficiently large.

(ii) (ftere ea;ts<s £0 > 0 not dependent on e, such that h*(m) is not inside
(1 + eo)K* for all m e Z*(a, J) - W*(a, J) with ||m|| sufficiently large.

Lemma 4 is the analogue of Lemma 2. We give Lemma 5, the analogue of
Lemma 3, without proof since its proof is virtually identical to the proof of
Lemma 3.

LEMMA 5. Let a e E and x e K* C K. Then, assuming {U.C.), for any
e > 0 there exists J > 1 and infinitely many m e W*{a, J) such that
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Finally we observe (ii) and (ii') of Theorem 1 follow from Lemmas 4 and 5 by
precisely the same arguments proving (i) and (i') of Theorem 1 from Lemmas 2
and 3.
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