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Abstract

Let M be a full Z-module in F a real number field of degree at least 3 with N(a) denoting
the norm of a € F. Given any nonzero number ¢ in M we make the plausible conjecture
that one can find a number 8 in M such that N(8) = N(¢) and the algebraic conjugates
of B (not including #) have ratios arbitrarily near any given numbers consistent with the
complex algebraic conjugates of elements of F. We use the conjecture to give explicit formulas
for some diophantine approximation constants. Without the conjecture our methods lead to
corresponding lower bounds for these constants.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 F 10, 10 F 25.

1. Introduction

Two well-known constants are associated with each n-tuple x = (z;,...,2,) of
real numbers.

The simultaneous diophantine approximation constant of x, denoted by ¢(x),
is the infimum of those ¢ > 0 for which the inequality

—ma
Imol 2 Imoz; — m;|" <¢

has infinitely many solutions in integers mqg # 0, my,...,my,.
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The linear form (or dual) approximation constant of x, denoted by ¢*(x), is
the infimum of those ¢ > 0 for which the inequality

|n
|mo + miz1 + - + mpzy| 1I_I<_1f'5xn |mj|™ < ¢

has infinitely many solutions in integers mg, my,...,m, with my,...,m, not
all zero.

In Cusick [3] explicit formulas for ¢(€), ¢*(€) are given in the case € = (1, &2)
where 1, £, & is a basis for a real cubic field. In this paper we obtain formulas
for c(€), c* (&) where £ = (£1,...,&,) with 1,&5,. .., &, a basis for a real number
field of degree n + 1. But these formulas are subject to a conjecture, described
below, on the existence of units with conjugates “very nearly” in any given ratio
consistent with complex conjugates.

Without the conjecture the methods used here lead to lower bounds.

2. Unit conjecture

Let F be a real number field of degree n+1 with s pairs of complex conjugates.
So0<2s <n+1 Weputr=n-—2sand denote (algebraic) conjugates of
a € F by oq) = a, a1, - - ., o[n) ordered so that

aj; €R, 7=0,...,7; ajj) = Q[s44) € C, j=r+1,...,r+s.

N(a) =[1}-o a5 is the norm of .

Any basis ug,. ..,y of F determines a full Z-module
M= {Zmiui: m; € Z, i=0,...,n}.
i=0

R(M), the coefficient ring of M, is defined by
R(M)={a€F: aM C M}.
We will write
C™ ={x=(21,...,2n): 2; €ER, j=1,...,7, z; =Ts4; €C,
j=r+1,...,r+ s},
C={x=(z1,...,20,) €C™%: 2; #£0, 7 =1,...,n},
CP={x=(z1,...,2,) €CL°% 2; >0, j=1,...,7}.
We can now state the unit conjecture, (U.C.).
(U.C.). Given any x = (z1,...,2,) € C}° and any € > 0 there ezists a unit
a€ R(M) CF with of;y > 0,5 =0,...,r such that

a[j]/a[1]=$j/$1 + €5, lEj(<€, J=2,...,n
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Observe for the above unit o that N(a) = 1.

In the case s = 0, that is where F is a totally real number field, (U.C.) is
equivalent to a conjecture of Adams in [1, page 192]. Adams’ conjecture in turn is
a special case of a conjecture of Schanuel (see Ax, [2]). As multiplication by units
plays a vital role in our arguments, and assuming (U.C.) leads to exact results
in all real (algebraic) number fields including those with complex conjugates, it
seems convenient to express the conjecture in the above form.

By a result of Peck [6]—also see Krass [5]—we know (U.C.) holds for the
special case x = (1,...,1) € C}°.

For convenience we express Peck’s result in the following lemma.

LEMMA 1. There ezists an infinite sequence I' = (v, k =1,2,...) of units
tn R(M) such that

(l) k(5] >0, j=0,~"’ry

(ii) limk_.oo Y = 00,

(lll) lmlk—boo ’7’6[]]/’7/0[1] =1, ] = 2, vy My
where, above, Yx[;1 = (Yk)[;] = Jth conjugate of .

Observe that (iii) can be expressed in the form

(iil') limg—oo v/ " Wkg) = 1, 5 = L, .., 7.
We say I, an infinite sequence of units in R(M) satisfying Lemma 1 is a Peck
sequence in R(M).

3. Preliminaries

We now fix & = (a3, ...,0,) € F* such that 1,ay,...,a, is a (rational) basis
for F. Our next theorem gives formulas for ¢(a) and ¢*(a) but we first need
some notation.

In matrix definitions we use exclusively 7 as a row index and 5 as a column
index.

Writing ap = 1 we construct the n + 1 by n + 1 matrix

A= (aj[i})a o) = (aj)[i]a i,j =0,...,n.

It is well known det A # 0. Note rows of A are obtained by conjugation re-
spectively of (1,a1,...,0y) and this row conjugate structure induces a column
conjugate structure on the inverse of A. So we may write

AT =U= (), wp =Wy, H3=0...,n

Of course u; = u;jg}, ¢ = 0,...,7n. up,...,un is called the dual basis of the basis
Lo1,...,0n.
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Associated with A and U are the n by n matrices
A1 = (o5 — a5), 1<14, j<n,
Ur = (ui5), 1<4, j<n
Since ag;; = 1, 2 = 0,...,n, it easily follows that det A; = det A, and U; =
Al_l. By our conjugate ordering conventions for any x € R™ we have xU; € C"?,
and A;x' € C™°. For any y = (y1,...,¥n) € C"® we define

a(y) = 9(y*) Hlya

From now on M denotes the module w1th basis 1,a1,...,a, and M* its dual
module. Namely, recalling og =1

n
={Emiai: m; €2, i=0,...,n},

=0

n
={Zm,—u,-: m; €1, i=0,...,n}.

i=0

We will need to consider the signs of real conjugates of nonzero elements

of F. o(x) the signature of x = (z1,...,2,) € CV° is defined as o(x) =

(sgnzy,...,sgnz,) where sgnz = z/|z| = £1, all real nonzero z. The signa-
ture set ¥, with 2" elements, is

L={o=(e1,...,e,): 5 ==%1, j=1,...,r}.

For any a € F, a # 0, we write rather loosely o(a) = (sgnayy,...,sgnaj)) € S
For each signature ¢ € ¥ we define

ne = min{|N(8)|: B€ M, B+#0, and o(8) = o},

ns = min{[N(8)|: #€ M*, B#0, and o(f) = o}.
We note (proof omitted) that 7, and #} are well defined strictly positive numbers
for each o0 € .

The formulas for the diophantine approximation constants are now stated.
Note ||x|| = maxi<j<n |z}, for x = (z1,...,2,) € R™.

THEOREM 1. For a = (ay,...,a,) with 1,a,,...,an a basis for F a real
number field of degree n + 1

(i) ¢(e) 2 minges {n;/ max{g(xV1): x €R™, ||x|| =1, and o(xUy) = o}},

(i) ¢*(@) > mingex {7,/ max{g(A1x?): x € R",||x|| =1, and o(A;x*) = 0}}.

Furthermore, under the assumption of (U.C.)

(i') ¢(a) = mingex{n;/ max{g(xV1): x € R",||x|| =1, and o(xU;) = 0}},

(ii') ¢*(a) = mingeg{n,/ max{g(A;x*): x € R*, [|x|| =1, and g(A1x?) =

o}}.
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4. Proof of (i) and (i’) of Theorem 1

By m € Z**! we mean m = (my,...,m,) € Z"*1. Clearly we need only
consider elements of Z?*1 = {m € Z**1: mq # 0}. Motivated by the definition
of c(e) we write

h(m) = |m0|1/"(m1 —moay,...,Mp — Moay), formeZ7+!,

We say h(m) is an approximation vector for a. It is a standard result that
there are infinitely many m € Z7*! so that

()| = max [mol™|m, —moa| < 1.

We introduce the notation u; = (uO[j],...,un[j])’ = jth column of U, 5 =
0,...,n and often write ug = u = (uq, ..., ur)!. An important identity is
(1) h(m) - U; = |mo|*"*(m - uy,...,m-u,), for me Z7+!
where
n
m-uj=Zmiu,-[]-]=(m~u)[]~], j=0,...,n
1=0

To prove (1) observe, writing ag = (1, 3,...,ay), and noting AU =TI

- U1 = (ao ULy, 00" u,.) - (uO[I], ve ,uO[n]) = —('uo[l], .. ,uoln])
and

(ml,...,mn) . U1 = (m-ul,...,m-un) —mo(uo[ll,...,uo[n])

which implies (1).

The identity (1) establishes a relationship between the approximation vector
h(m) and the conjugates of w = m -u € M*. Ultimately using (U.C.), the
conjecture defined in Section 2, to obtain a “suitable” unit v € R(M*), we will
have ¢ = yw = m’ - u € M* for which the entries of (m’ - uy,...,m’ - u,) =
(¥11)»- - - »¥[n)) determine an “appropriate” approximation vector h(m').

By (1) and the definition in Section 3 of the map ¢

n

(2) g(h(m) - Uy) = [ Imol*/|m - uj| = |mo/m - u| [N (m - u)].
=1
We will construct infinite subsets of Z7*! for which in (2) above |mo/m-u| =
1+0(1).
Forw#0in M* and T = (4, k= 1,2,...) a Peck sequence in R(M*) we
define

Zw;T)={my € I pw=mg-u, k=1,2,...}.
For my = (myp, ..., Mkn) € Z|w;T] we will show

(3) mygo # 0, for all sufficiently large k.
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By our definitions

mro = 0= (Mg1,...,Mkn) = (’7k[1]w[1], vy ’Yk[n]w[n])Ul—l'
But by Lemma 1 ~k(;w;;) — 0, a8 k —» 00, 7 = 1,...,n. So if mg =0 and k
sufficiently large we must have m; = 0 € Z"*! contradicting % # 0 and proving
(3).
Next we show there exists J > 1 so that
(4) [lh(mg)|| < J, for mi € Z[w;T].

By the definition of Z[w;T] and properties of T
(a) |N(my - u)| = [N(w)| =n, say,

(b) |mgu| — oo, as k — oo,

(c) For any 6 > 0, and all sufficiently large &k

my - uj/mk ‘U = wm/w[l] + 5k]', |6kj| < é, 71=2,...,n.
We rewrite (c) in the form
(d) {muo|V/™(my -y, ..., Mk -u,) = pi{w +wj1)6x) Where w = (w[1),- - -, Wn)),
6k = (0,8k2,...,6kn) and pr = |myo|/mmy - vy fwyy).

By (d) and identity (1)
(e) h(my) - Uy = pi(w + wi1)6k)-
We need to show
(f) o = O(1).
Note by (c) that

[T b - wj/mg - wi| = (14 06)) I lwgsy feopa )

Jj=1 =1
But

n n
n =[] Imi - uj| = jmg - u/myo| - Imeo - Im - wa|* [ ] I - uj/my - uy).
=0 i=1

So by above and definition of pi
n
n=(1+0(6))|mg - u/muo| [ [T lwps)l-
j=1

Then (f) follows if we can show myo/my - u = O(1). We suppose myo/myg - u #
O(1). So for any J' > 1,

(g) |mio/myg -u] > J'  for some my € Zw;T).
By (a), (b) and (c) it easily follows that for any € > 0,

|mg -] < €, 7 =1,...,n, all sufficiently large k
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and so
|mg - uj/mro| <€, j=1,...,n, all sufficiently large k.
We write
mg - W /mgo = €kj, j=0,...,n, and &g = (€ko,.--,Ekn)
For J' > ¢~! we have by (g) and above that
llex]| <& for some my € Z[w;T}.
But for £ > 0 sufficiently small this gives the contradiction
1< lImggmyl| = It mUU~Y| = |lecU~"]| = O(e).

Thus (g) is false and (f) is proven. Finally (4) follows by (e) and (f).
We now prove

(5) fmgo| — oo, as k — oo.
Observe for m € 2711, recalling ap = (1,01, ..., ),
m = mgag + (0,m; — moay, ..., My — Moay).

But @p-u=1,as AU = I, and so m-u = mo + }_7_, (m; — moe;)u; and for
(fixed) J > 1,

< (J/lmol /™) Y lusl-

j=1

n
Z("‘j — Mmooy )u;

=1

|Ib(m)j| < J =

In fact, putting m = m;g, we have by (4) and above, since |my - u| — oo, as
k — oo,
(6) lim mgo/mg -u=1.
k-—o00
Then (5) immediately follows.
We now define for eachc € X and J > 1,
Z(0,J) = {m € Z?*!: ||h(m)|| < J, and o(m - u) = 0},
W(o,J)={me€ Z(o,J): IN(m-u)|=mn}.
For fixed 0 € T let w € M* with o(w) = ¢ and |N(w)| = ;. (That w exists
has been noted earlier.)
By (3), (4) and our definitions there exists J > 1 such that Zw;T] is an
infinite subset of W (o, J) and so there exists m € W(o,J) C Z(0, J) with |myg|
arbitrarily large. Then, as we proved (6) but now letting |mg| — oo we have

) mo/m-u—1 as|mg|— oo, forme Z(o,J).
Then by (2), (7) and definition of W (o, J)
(8) g(h(m) -U1) — n;, as|mo| — oo, formeW(o,J).
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Also by the discreteness of norm values there exists g9 > 0 such that
(8) gh(m)-U;) > (14+¢e0)n;, forme Z(o,J)—W(o,J) with |myg|

sufficiently large.
For each o € ¥ the surface K, in R™ is defined by

Ks = {x € R™: o(xU;) =0, and g(xU,) =7, }.

K= K.

o€
Given A > 0 we say x is tnside AK = {Ay: y € K} if px € AK for some p > 1.
We have proved above the following lemma.

We put

LEMMA 2. For anyo in 2, J > 1 such that W(a,J) is an infinite set, and
ewithl<e<l,

(i) h(m) s inside (1 +€)K but not inside (1 — €)K for allm € W(a, J) with
|mg| sufficiently large.

(i) there exists €9 > 0, not dependent on e, such that h(m) s not inside
(14 &0)K for allm € Z(o,J) — W(o,J) with |mg| sufficiently large.

Lemma 2 and the following Lemma 3 go back to the thesis of the second
author [4]. Observe Lemma 2 does not depend on (U.C.).

LEMMA 3. Leto € T and x € K, C K. Then, assuming (U.C.), for any
€ > 0 there exist J > 1 and infinitely many m € W (o, J) such that

|Ih(m) —x|| <e.

PROOF. Put y = (y1,...,yn) = xU; € C°. As x € Ky, o(y) = o(xU;) =
o. Let ¥ # 0 in M* with o(¥) = o and |N(¥)| = n}. Observe that since
o(y) =o(¥) =0,
M>O, j=1...,r
Y191
Then, assuming (U.C.) for any 6’ > 0 there exists a unit v in R(M*), with
1 > 0,5 =1,...,r, such that

V5] w[I]yJ' ' / ' .
9 = = 46, 6l <é, 7=2,...,n.
©) M Yy i !

We put w = 4. Then
w= (wm, Ce ,w[n]) = (w[ll/yl)y + &
where §' = ’7[1](0, ’(Z)[I](Sé, e ,w[n](%).
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For any Peck sequence in R(M*), T, there exists, by (4) above, J > 1 such

that
Z[wT) CW(o,J).

Choosing in (¢) above 0 < § < ¢’ we substitute for w in (e), recalling, y = zUj,
to get
(10) h(mg) = pix + 6
where pf = prw(1}/y1 = |mxo|"/™my - u1/y; and & = pi (6’ + wiyéx) - Ur .

As shown in (f) px = O(1) and so ||6;|| = O(6’). We can, in fact, use (9), (6)
and n; = [N(mg-u)| = ]'[;'=1 ly;| to show pf = 14+0(¢"), the proof then following
from (10) by choosing 6’ > 0 sufficiently small. But since p}, = prw(1)/y1 = O(1)
and o(h(myg) - U;) = o(xU;) = o the proof follows from (i) of Lemma 2 using
(10) and (5) above for sufficiently large k¥ and sufficiently small §' > 0.

We now complete the proof of (i) and (i’) of Theorem 1. For each o € ¥ let

H, = {x € R": o(xU;) = 0, and g(xU;) = 1}.
Observe
Ko =34/ ¥y
We also define for ¢t > 0 the box in R”
By = {x € R™ |Ix[* < t}.
It follows from Lemma 2 and the definition of ¢(a)
c(a) > sup{t: (each point of) B, is inside K}
= {'rgg inf{t: By N K, is not empty }
= gg}r:linf{”xu": x € Ko}

= mininf {n3]In3~/"x|[*: 75" x € ¥}
o€

= min#} inf{||x|[*: x € ¥,}.
o€EL
By Lemma 3, and assuming (U.C.) equality holds and
c{a) = minn} inf{||x||": x € ¥,}.
oEL

But
inf{||x||": x € X,} = inf{||x||": g(xU;) =1,0(xU;) =0}
inf{||x||*/g(xU1): x € R",o(xU;) = o},
A by homogeneity,

inf{1/g(xU;): x € R",||x|| = 1,0(xU;) = 0},
by homogeneity,

1/ max{g(xU;): x € R",||x|| = 1,0(xU;) = o},
by homogeneity.
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This completes the proof of (i) and (i’) of Theorem 1.

5. Proof of (ii) and (ii’) of Theorem 1

The proof may be brief where it follows that for (i) and (i’) of Theorem 1.
In this section m = (my, ..., m,)* € Z**! with m the projection on m defined
by m = (my,...,my)’. We need only consider elements of

= {m € 7™t |||l = max |m,| > 0}.
1<j<n
Recalling a9 = 1 we write
a; = (0] - - - 0n[i]) = 1th row of A, 1=0,...,n
So for m € 77},
n
a; -m= E a;[;)m; = 1th conjugate of ap - m € M.
7=0

We often write for m, m; € Z7}1,

¢=¢(m)=cap-m, and ¢ = ¢(mk)=ap my.

The dual approximation vector of m € Z7}! is defined by

h*(m) = |ag - m|/"(my, ..., mp)t = |¢|}/"m, ¢ = $(m).
It is a classical result that infinitely many dual approximation vectors exist with
|h(m)]| < 1.

The following identity—analogous to (1)—is easily shown
(1) Ar-bm) =9y ~ - b — 8 ¢ =(m).
Thus
(12) g(Arh*(m)) = |N(@)| [T 11 - ¢/pl, ¢ = o(m).
j=1

Infinite subsets of Z7;}! where [T;_; |1 — ¢/¢y;}| = 1+ o(1) are constructed.
Forw#0in M andT' = (%, k=1,2,...) a Peck sequence in R(M)

Z*[w;T) = {my € 271 '7,:10.) =ap -mg, k=1,2,...}.

Trivially for mg = (mgo,...,mkn)t € Z*|w;T]

(13) miy #0€Z", for (nearly) all k.
We will show there exists J > 1, so that
(14) |Ih*(my)|| < J, for mg € Z*[w;T).
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Clearly for m € Z*(w; T}, with ¢x = ¢(my),

(a) [N(¢&)| = [N (W),

(®) ¢ = w/v — 0, a8 k — 0,

(c) For any é > 0 and all sufficiently large k,

¢Ic[j]/¢k[1] = wm/w[l] + k5, 16k51 < 6, J=2,...,n.

Employing here (b) as well as (c) we have

(d) |@w]*™(Bk(1) = Bk> - - - » B[n) — Bk)t = pr(w + wy1)0k) + o(1), where

w= (wlll’ ‘e ,W[n])t, 6k = (0, 6k2, [N ,6k,,)t
and
o = |6k kg fwpa) = V™ /(4 " vega))-

By (d) and (11)

(e) A1 -h*(mg) = pr(w +wyy)6k) +0(1). Clearly, as 7,1/"'7”1] — 1,as k — oo.

(f) px = O(1), and (14) follows immediately from (e).

Observe ([Mg|| = O(1) « |[my|| = maxogj<nlmisl = O(1), as myo =
—a - My + o(1). So, as there are infinitely many my € Z*|w; T,
(15) || k|| — 00, as k — oo.
For each 0 € £ and J > 1, we define

Z*(0,J) = {m e Z7}!: ||h*(m)|| < J, and o(eg - m) = 0},
W*(o,J)={me Z*(0,J): |N(ao -m)| =1}

For fixed 0 € X let w € M with o(w) = ¢ and |[N(w)| = n,. By (13) and (14)
there exists J > 1 such that

Z*w;, T CW*(o,J) C Z*(0,J).
We need to show

(16) lim ¢/¢;; =0, i=1,...,n, for ¢ = ¢(m), m € Z*(o,J).

(17]| —o00
Suppose (16) is false. Then there exists § > 0 so that for any K > 1
|¢/¢15)] > 6, at least one j =1,...,n, some ¢ = #(m) with [|m]|| > K.
Without loss of generality we suppose j = 1 and then
eyl < 1¢1/6.
But then n n
5711 T 1ol > [T 1131 = ne-

=2 7=0
Then for at least one j =2,...,n,say 7 = 2,

b1z > [¢]~%/ (=1 (n,6)Y/ (")
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and so
18] /™dga)] > (|g]2/m)(n+ D/ (n=1) (5, )1/ (n 1),

But ¢ = ¢(m), m € Z* (0, J) with ||m]|| > K and so
l6I*/" < J/lim]| < J/K.
Substituting in the right side of the previous inequality
|#1'/"61z1] > (K/7)+D/ (=1 (g 6) D/ (2=,

But by (11) since ||h*(m)|| = O(1) we must have |¢|1/"¢[2] = O(1) which
is contradicted by the above inequality as K may be arbitrarily large. This
contradiction proves (16). Then by (16)

n
(17) T -¢/#al =1 as|iml| - co, for ¢ = ¢(m), m€ 2°*(0,J).
j=1

By (12), (17) and our definitions of W* (o, J), Z*(0, J)
(18) g(A1-h*(m)) —»n, as |[mm|| - oo, for m € W*(q,J)
and there exists €9 > 0 such that
(18") g(A; -h*(m)) > (1 +&0)n,, forme Z*(a,J) —W*(0,J)

with ||| sufficiently large.
For each o € ¥ the surface K} is defined by
Ky = {x€R" o(A1x) =0, and g(A1x) = n5}.

We put K* = |J,e5 K5- We have proved

LEMMA 4. For anyo in X, J > 1 such that W*(o,J) is an infinite set, and
ewith0<e<1.

(i) h*(m) is tnside (1 + €)K* but not inside (1 — €)K* for allm € W*(0,J)
with ||| sufficiently large.

(ii) there ezists g > 0 not dependent on ¢, such that h*(m) is not inside
(1+€0)K* for allm € Z*(0,J) —W*(0,J) with ||m|| sufficiently large.

Lemma 4 is the analogue of Lemma 2. We give Lemma 5, the analogue of
Lemma 3, without proof since its proof is virtually identical to the proof of
Lemma 3.

LEMMA 5. Let o € ¥ and x € K; C K. Then, assuming (U.C.), for any
€ > 0 there exists J > 1 and infinitely many m € W* (o, J) such that

||h*(m) — x|| < €.
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Finally we observe (ii) and (ii’) of Theorem 1 follow from Lemmas 4 and 5 by
precisely the same arguments proving (i) and (i’) of Theorem 1 from Lemmas 2
and 3.
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