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FANO 4-FOLDS WITH SCROLL STRUCTURE

ADRIAN LANGER

Abstract. We classify smooth Fano 4-folds with second betti number b2 = 2,
possesing adjunction theoretic scroll structure. These manifolds occur to be
projectivisations of coherent sheaves over Fano manifolds. The paper deals
mainly with projectivisations of non-locally free rank 2 Fano sheaves over Fano
3-folds with by = 1, using Mori theory. By the way, we classify nef and big rank
2 bundles over P? with the first Chern class O(3).

Introduction

In this paper we classsify smooth Fano 4-folds with second Betti number
by = 2 which possess scroll structure (in the sense of adjunction theory). It
turns out that such manifolds must be projectivisations of coherent sheaves
over some smooth Fano varieties of dimension less or equal to 3. The case
when dimension of the base is equal to 1 is very easy. The case of dimension
2 was studied in [SzW3] (let us note that P2 is the only Fano surface with
by = 1). Here we classify such structures over base of dimension 3, which
completes above mentioned classification. In view of the latest progress in
classification of contractions of 4-folds (see [AW2]), this can be treated as
the first step towards a classification of Fano 4-folds in general.

Our approach to the problem of classification is slightly different from
the one used until now in papers [SzW1], [SzZW2], [SzZW3]. We get our results
by computing possible Chern classes by means of numerical properties and
then by vanishing theorems and “sheaf” methods (using known facts about
stable sheaves and jumping lines). Such an approach also allows to obtain
known results about Fano bundles with little knowledge of stable bundles.
As an example, in appendix we compute Fano bundles of rank 2 on P2
without using Iskovskich-Mori-Mukai list of all Fano threefolds.

The first step towards the classification, i.e. computation of Chern
classes of sheaves £, is divided into three parts according to the type of
second contraction ¢ of P(£). If this morphism ¢ is onto a variety Y of
dimension less than 4, then computation is very easy. We simply know that
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the self intersection of a pull back of an ample divisor from Y is zero, which
is nearly sufficient to compute possible Chern classes of £. The case of a
divisorial contraction is more complicated and we have to use also some well
known results of Ando [A] in order to determine good supporting divisor of
¢. The third part concerns small contractions, whose structure is known by
results of Kawamata [Ka]. Nevertheless the computation in this last case is
not obvious and easy (at least to the author). Next steps in classification
are geometrical considerations, concerning sheaves and bundles, depending
mainly on cohomology theory. We also discuss geometry of projectivisation
of obtained sheaves.

We have to deal separately with Fano sheaves on different Fano 3-folds,
according to the index of this 3-fold. The paper is divided into 9 sections.
The first two sections deal with some useful general facts and definitions.
In section 3 we classify nef and big rank 2 vector bundles over P2. This is
used in sections 4-6 for the classification of rank 2 Fano sheaves over P3.
The results concerning sheaves on other Fano 3-folds are briefly treated in

sections 7 and 8. Finally in section 9 we describe the geometry of obtained
Fano 4-folds.

Acknowledgements. I would like to thank to Prof. J. Wisgniewski for
very valuable discussions, advices and for help while preparing this paper.
I would also like to acknowledge partial support from Polish KBN.

§1. Preliminaries

In this section we recall some definitions and results which will be used
later on. Notation and terminology used in this paper is consistent with
the one used in [Hal| and previous papers concerning this topic (cf. [SzW1],
[SzW2] and [BW]). The only difference is using the notation €|y for an Oy-
module associated to a restriction of £ to subvariety H.

Locally free sheaves and vector bundles are not distinguished, similarly
as divisors and line bundles on smooth manifolds. All varieties are assumed
to be defined over complex number field.

1.1.

Let X be a 3-dimensional smooth Fano variety with the second Betti
number by(X) = 1. Let us denote by H a class of the generator of Picard
group Pic X. From the assumptions one can write ~Kx = r(X) - H for
some integer r(X) called the index of X. It is known by the result of
Shokurov that on every such manifold there exists at least 1-dimensional
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family of lines. By a line we mean here a smooth rational curve L such
that L - H = 1. Hence H%(X,Z) is generated by the class H, H*(X,Z)
is generated by a line L and H%(X,Z) by a point P. Therefore one may
identify in the known way, Chern classes of sheaves on X with integers.

Let F be a coherent sheaf of rank r on X. From the Riemann-Roch
formula it follows that:

1 1
X(F) = 6(013H3 —3cico + 3¢3) + ZT(X)(012H3 —2¢9)

1 prg 24
+1261(T‘(X)H +T(X))+r,

where ¢1, ¢z, c3 stand for Chern classes of F. In what follows, we will
extensively use this formula for P3, so for the convenience of the reader, we
will write this formula in explicit form for sheaf F on P3:

+3 1
X(f)zr-1+<cl3 )—2024-5(03—0102)

For F of rank r» = 2 on P3 we have cicy = c3 (mod2) and

Cl(f(k:)) =c + 2k
ca(F(k)) = cp + c1k + k?
c3(F(k)) = cs.

Another simple fact which we use is the existence of an isomorphism:
(F) = F(=a),

for a rank 2 reflexive sheaf F.

1.2.
In this subsection we recall some results and definitions from [BW].

DEFINITION 1.2.1. A coherent sheaf € of rank » > 2 over a normal
variety Y is called Banica sheaf if its projectivization is a smooth variety.

PROPOSITION 1.2.2. If € is a Banica sheaf then it is reflexive, the

projection p: P(€) — Y is an extremal ray contraction and Opg)(1) is p-
ample.
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DEFINITION 1.2.3. We say that a coherent sheaf £ over a normal
variety Y extends to a locally free sheaf F if there exists a sequence of
Oy -modules

0—0O—F —€&—0.

PROPOSITION 1.2.4. Let £ be a Béanicd sheaf of rank n — 1 over a
smooth projective variety Y of dimension n. If H*(Y,E*) = 0, then £
extends to a locally free sheaf; in particular the sheaf € @ L™™ extends for
an ample line bundle L and m > 0.

THEOREM 1.2.5. Let £ be a Banicd sheaf of rank r on a normal
variety Y. If r > dimY, then Y s smooth and &£ is locally free.

1.3.
In this paper we use the following version of the relative Kawamata-
Viehweg theorem (see [KMM, theorem 1.2.5]).

THEOREM 1.3.1. Let X be a smooth manifold and m: X — Y be a
proper morphism onto a variety Y. Assume that D — Kx is w-nef and big
for some divisor D on X. Then Rin,Ox(D) =0 fori > 0.

In section 3 we use the following theorem (see [Re]):

THEOREM 1.3.2. Let X be a projective variety with only canonical
singularities, D € Pic X —a nef divisor and aD — K x —a big and nef divisor
for some a > 1. Then for m > 0 |mD| is base point free and defines a
morphism ¢: X — Y on a normal variety Y such that ¢.Ox = Oy and
there exists an ample divisor A on'Y such that D = ¢*A. Moreover if D is
big then ¢ is birational and Y has only rational singularities.

1.4.

Let us recall a couple of theorems from Mori theory—a detailed survey
of this theory can be found in [KMM].

THEOREM 1.4.1. (Kawamata-Shokurov) For any extremal ray R on
a Q-factorial projective variety X with canonical singularities there exists
a normal projective variety Y and a surjective morphism ¢: X — Y with
connected fibers that contracts a curve C if and only if [C] € R. Such a
morphism we call an extremal ray contraction.
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ProOPOSITION 1.4.2. If X is a Fano manifold, then the cone of effec-
tive curves NE(X) is a rational polyhedral cone spanned by a finite number
of extremal Tays.

1.4.3. One can distinguish three types of a ray contraction ¢: X —
Y according to the dimension of the contracted set E(¢) := {z € X:
dim ¢~'(¢(z)) > 0}:

— a fiber contraction, if F(¢) = X. Then X is covered by rational
curves and a general fiber of ¢ is a Fano variety.

— a divisorial contraction, if codim E(¢) = 1. Then Y is a Q-factorial
projective variety with canonical singularities.

— a small contraction, if codim E(¢) > 1. In this case Y has to have
non Q-factorial singularities.

1.5.

In the present paper we will study Fano sheaves on smooth 3-dimen-
sional Fano varieties. One motivation for studying such sheaves comes from
the following. Let X be a smooth 4-dimensional Fano variety admitting a
scroll structure p: X — Z, without divisorial fibers, over a normal variety Z.
Then from [AW, theorem 4.1 and remark 4.12] it follows that Z is smooth
and X is a projectivisation of a coherent sheaf from Z. Moreover, from
[BW, lemma 3.4] it follows that Z is a Fano variety. Now we know that p is
an extremal ray contraction, and if we assume by(X) = 2, then by(Z) = 1.
If the dimension of Z is at most 2, then X is a projective bundle of rank
(dim X —dim Z + 1) over Z, and Z is the projective space P! or P2. In the
first case one can easily check that X = Pp1(0%) or X = Pp:1(03 @ O(1)).
The second case was studied by Szurek and Wisniewski in [SzZW3] and
completely settled. In this paper we study the case: dimZ = 3. We
will completely classify all such manifolds X, some of which occur to be
projectivisations of non-locally free sheaves.

We will divide studying of Fano sheaves on Fano 3-folds according to
the index r(X) of X. The main idea in all cases remains the same, but there
are some differences in numerical data. We use here classification of Fano
threefolds in essential way (in particular we use the bound for the degree
of Fano 3-folds of index 1). Fano threefolds of index 2 and degree d are
denoted by V. The next section is devoted to some general facts and then
in sections 3-6 we deal with technically the most difficult case of sheaves
on P3.
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§2. Ample sheaves and vanishing theorems
Let us recall that a sheaf £ is ample (resp. nef, big) if O(1) is ample
(resp. nef, big) on P(E).

LEMMA 2.1. Let £ be a Banica sheaf over a smooth projective variety
Y and let p: P(£) — Y be a natural projection. Then for any coherent sheaf
F on'Y and any n > 0 there is a natural isomorphism

F @ (S™(€))™ — p«(p*(F) ® Op(g)(n))

and the following equality

R'p.(p*(F) ® Op(gy(n)) =0
holds for ¢ > 0.

Proof. The same as in the case of vector bundles (cf. [Ha2, lemma 3.1]).
It should be only proved that Rip,(Ox(n)) = 0 for i > 0, n > 0. This
equality follows immediately from the theorem 1.3.1. O

COROLLARY 2.2. Let £ be a Banica sheaf of rank 2 on P3. If ¢, (€) =
0, 1 and E(1) is nef and big then H'(P3,£) =0 for i > 0.

Proof. 1t follows from the lemma, Leray spectral sequence and
Kawamata-Viehweg vanishing theorem on P(). i

Remark. The vanishing theorem of le Potier (see [SS, theorem 5.17])
fails for non-locally free sheaves even if the sheaf is Béanica with isolated
singularities, i.e., it is not generally true that if K* ® £ is ample then
HY(X,E) =0 for ¢ > r =rank&. A simple counterexample to this expec-
tation gives the following sheaf £ of rank 2 on P3:

0 — O(=1) — 0% — £(3) — 0,
as K* ® £ is ample but h2(P3,£) =1 # 0.

THEOREM 2.3. Let € be as in lemma 2.1. The following statements
are equivalent:

1) the sheaf £ is ample,
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2) for any coherent sheaf F the sheaf F & (S™(&))** is globally generated
by global sections for n > 0.

Proof. The same as the proof of [Ha2, theorem 3.2] (the assumption
on projectivity of Y is valid). U

LEMMA 2.4.  Assume that F s a coherent sheaf on P™ with zero-
dimensional singular locus, n > 3 and the homological dimension of the
sheaf F is at most 1. Moreover let us assume that F|p2 is a decomposable
bundle for some P2. Then the sheaf F is also a decomposable bundle.

Proof. (cf. [OSS, I, theorem 2.3.2] and [SRS, theorem 2.5]) For general
P"~! containing P? from the assumption F|p»-1 is locally free and splits
(this needs some easy extra argument). In particular from Horrock’s crite-
rion: H'(P"™ !, Flpn-1(k))=0for0<i<n-—1, ke Z.

Let us consider the divisorial sequence:

0— Flk—-1) — F(k) — (Flpn-1)(k) — 0.

Similarly as in [0SS] H(P™, F(k)) = 0 and H*(P™, F*(k)) = 0 for 2 < i <
n—1and k£ € Z. Now let us look at the spectral sequence of local and
global Ext functors:

EP = HP(Ext?(F,0)) = EP = ExtPT(F, 0).

From our assumptions Ext?(F,0) = 0 for ¢ > 2 and Ext!(F,0) is a
coherent sheaf with support at points where F is not locally free.

It follows that F5? = 0 for ¢ > 2 and ¢ = 1, p > 1. Now from the Serre
duality theorem there is the following exact sequence:

0— HYF*) — H" Y F @w) — HExt'(F,0))
— HY(F*) — H" 3 (Fow) — 0.
Therefore Ext!(F,0) = 0 and F is locally free. Hence F splits. U

We will need the following easy, technical lemma in the sequel:

LEMMA 2.4.1. Let £ be a Banica sheaf of rank 2 on P3. Let us
assume that h*(£) = h*(€) = 0 and for some P? which does not contain
singular points of € we have h'(E|p2) = 1. Let F be a non-zero element of
Ext!(£(k)|p2, Op2(k—3)), and G be a non-zero element of Ext! (£(k), O(k—
3)) for some integer k. Then it follows that G|p2 = F. If moreover F splits
on P2, then G splits too.
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Proof. The divisorial sequence:
00— &(-1) — & — &|pz — 0.
gives an exact cohomology sequence:
0= HYE) — HY(Elp2) = HA(E(-1)) — H2(E) = 0.
Now let us consider the following diagram:

G € Ext'(E(k),0(-3+k) ~H2E(-1))
s

G|p2 € Ext}(E(k)|p2, Op2(=3 4+ k)) ~ H(&|p2)

Since § is an isomorphism, &' is also an isomorphism, dim Ext' (€ (k), O(—3+
k)) =1 and G|p2 = F. The last statement of the lemma is obvious because
of lemma 2.4. 0

Suppose that £ is a vector bundle over a smooth manifold X. Then
there is a Leray-Hirsch formula allowing us to compute the intersection
product on the projectivisation P(£). In general there is no such formula
for sheaves but in the case of sheaves of rank dim X —1 we have the following
lemma which allows us to compute intersections on P(£). Below B*(X)
denotes the ring of algebraic equivalence classes of cycles on X and B*(X)
stands for a group of classes of codimension k cycles.

LEMMA 2.5. Let € be a rank r = n — 1 Bdanica sheaf on a smooth
manifold X of dimensionn and let Fy, ..., Fy be the fibers of p: P(£) — X,
corresponding to singular points of the sheaf €. Denote k = c,(£). Then

k
B(P(©) - (B0 e PR )/R

Here R denotes the following relations: 3 i_q(—1)'p*c;(E)€m"i=(~1)" Zle

F;, F;F; =0 fori# j, F} = (=1)", Fi¢ = p*(z), where z is a general point
of X, and F; - p*(V) =0 for any V € B*(Y).

Proof. Let p1,...,pr denote singular points of £ and let Z = Ule Fy,
T=Y—{p1,...,ox}, U =X —Z. Of course F;F; = 0 for i # j and
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Ef = p*(l‘), because é-IF, = OPT(].) Denote i: 7 — X, ]U —— X. From
[Ful, example 10.3.4] there is the following exact sequence:
(*) B(Z) — B(X) — B(U) — 0
It is known that:
BW) = B (S-1)e(e) € =0).
i=0
Therefore in B(X):

T k

Z(—l)ip*ci(é') T ZaiFi € ker j* = imi,

=0 =1

for some a;. Intersecting both sides of this equation with F; we obtain:
a;F?=¢"F,=1.

Now let F denote an extension of £ by O(k) for some k > 0. We have the
following exact sequence:

0 — Np,/pe) — Np,/pr) — Np(e)pF)lr — 0.

Here P(£) is a smooth divisor from the linear system |Op(r)({x — kH)|,
O(r)lr, = O(1) and O(H)|f, = O, so Np(gyp(r)|lF, = OF,(1). We also
know that Ng, /p(r) = (’);jl, hence N, x ~ QF, (1) and F? = er(Npyx) =
(——l)r = ;. -

Since F;NU = h € Pic F; generates Pic F; and it is algebraically equiv-
alent to subvarieties of U not intersecting h we see that h = 0 in B*(X).
Now B(X) is generated by &, F,...,Fy and B(Y) as Z-algebra, so it is
straightforward that there are no other relations in B(X). O

COROLLARY 2.6. Let £ be a Banica sheaf of rank 2 on a Fano 3-fold
with by = 1. Let h be a generator of the Picard group and h3 = d. Then:

H* =0, H3 =d, H*? =dc;, HE = dc? — ¢y, £* = dcd — 2c1c0 + c3,
where H denotes a pull back of h.

Proof. It is immediately obtained from the previous theorem and an
obvious remark that H* = 0 and H3¢ = d. 0
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LEMMA 2.7. Let £ be a rank 2 Fano sheaf on P3 and aH + b€ be a
nef divisor on P(€). If c; =0 or 1, thena >0, b > 0.

Proof. It is easy to see that b > 0. So let us assume that a < 0. Then
(aH 4 b€) + (—a)H is ample, hence £ is an ample sheaf. If we restrict £ to
the general line L we obtain:

ElL =0r(c)®Or(d), c+d=cy, wherec, d >0,
which is impossible. 0
3. Classification of rank 2 weak Fano sheaves on P2 with ¢; = —1

DEFINITION 3.1. A sheaf £ on X is weak Fano if P(£) is a smooth
weak Fano variety, i.e., —Kp(g) is nef and big.

This is a natural generalization of Fano sheaves. We will use it in
classification of rank 2 Fano sheaves on P3. It occurs that the restriction
of such sheaf to a general plane is weak Fano.

In this section the following notation is used: £ is a weak Fano sheaf
of rank 2 on P2, ¢1(£) = —1, X = P(€), p: X — P? a natural projection,
H = p*(Op2(1)), £ the divisor Op(g)(1) on X, ¢: X — Y a “contraction”
from theorem 1.3.2 for D = £ + 2H (—Kx = 2D is nef and big, so the
assumptions of the theorem are valid), A an ample divisor on Y, such that
¢p*A=D.

THEOREM 3.2. Let £ be a rank 2 weak Fano sheaf on P2, ¢ (€) = —1.
Then £(2) is globally generated and £ is of the form:

c2(€)
1. -2, O(1)®0O(-2)
2. 0, 080(-1)

3. 1, 050 —E&—Jy,(-1)—0,ze€ P?
or equivalently:
0—-0(-1)—=0?00(2) - £(2) =0

4. 1, Tp2(-2)
5. 2, 0—-0(-1)—-0(1)?00—-E&(2)—0
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6. 3, 0—-0(-1)2-01)p0®—-E2)—0

(1)
7. 04, 00123 —-0°=E&(2) -0

8. 4, 0—-0(-2)—0(1)@0%—-E&(2)—0
9. 5, 0-0(-1)90(-2)—0*—=£(2)—0
Proof.

3.2.0. Let us recall the intersections of divisors on X:
H?=0, H¢ =1, H? =—1, & =1—¢y

Since 0 < (—=Kx)3 = 8(7 — ¢2), so c3 < 6. Using Kawamata-Viehweg
vanishing theorem and Riemann-Roch formula on P? we obtain:

A(Y,A) =dimY + A% ~h%(Y,A) =3+ (T —c2) — (9 —¢c2) = 1.
Now from the sectional genus formula (cf. [Fuj))
2g(X,D) —2 = (Kx +2D)D? = 0.

Naturally g(Y, A) = g(X, D) = 1 for x(Y,tA) = h°(Y,tA) = h%(X,tD) =
X(X,tD), t > 0.

Observe that Y has rational singularities, so it is locally Cohen-
Macaulay. Therefore (Y, A) is a Del Pezzo variety by [Fuj, theorem 1.6.5].
In particular Bs|A| = 0 for ¢cg < 5 (see [Fuj, 1.6.2]) and £(2) is globally
generated. This will be used for the description of £ if ¢ =4 or 5.

Now assume that H°(E(—1)) # 0 and let s be a non-zero section of
E(-1), Z = {s = 0}. If Z # 0, then for a line intersecting Z in finitely
many points:

E-DL=0d)@&0) d>1,d+e= -3,

in contradiction to the ampleness of £(3). Hence Z = () and & ~ O(1) @
O(-2).

3.2.1. Now let us assume that H%(E(~1)) = 0, HY(£) # 0 and set
s€ HE), Z = {s =0}. We consider the following cases:

321.1. Z=0 Then &E~0®O(-1).
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3.2.1.2. Z consists of one point. In that case section s gives rise to
the sequence

0— 0 —&— Jy(—-1) —0.

Observe that h!(£(1)) = 0, A'(£) = 1 and R%(£) = 0, so there exists
exactly one non-trivial extension F € Ext'(£(2), O(—1)) ~ H'(E) of £(2)
by O(—1). Hence H(F(-2)) = 0, H}(F(—1)) = 0 and by the Castelnuovo-
Mumford criterion F is globally generated and it is a Fano bundle on P2,
From [SzW3] it follows that F ~ O? @ O(2).

3.2.1.3. Z contains at least 2 points. We consider a line L containing
two points from Z. Of course L is not contained in Z for H°(£(—1)) = 0.
Therefore:

Elp=0(d)&0() dz2 dte=-1,
so £(3) is not ample, a contradiction.

Remark. In fact we proved here that if £(3) is ample then £ is of the
form 1, 2, 3 from the theorem or £ is stable (so ca > 0). We will use this
remark in section 6.

From now on we can assume that c; > 1, H°(£(k)) = 0 for £ < 0 and
from Serre duality: H?(E(k)) =0 for k > —2.

3.2.2. ¢cg =1,2,3 Since x(£(1)) =4 — c2 > 0 we have H°(£(1)) # 0.
Moreover for £(2) is nef, the order of a jumping line r is < 1 (according to
Hartshorne’s notation [SRS1, p. 141]). From theorem 6.2, [ibid.] we find
H(E(k)) =0 for k > 1.

3.2.2.1. ¢ = 1 By the Riemann-Roch formula h'(€) = x(€) = 0
and h2(£(—1)) = 0. So by the Castelnuovo-Mumford theorem £(1) is
globally generated and £ is a Fano sheaf. Now it is easy to see that
& ~ Tp2(—2), e.g., using the Beilinson spectral sequence cf. [Be| or [OSS,
II, theorem 3.1.3] (alternatively one can check that h9(£(1)) = 3, so the
kernel of natural surjection O3 — £ is a line bundle, which is completely
determined by its first Chern class; by Euler’s sequence we get the required
isomorphism).

3.2.2.2. ¢ =2 Then h}(£) =1, K°(E(1)) = 2, h°(E(2)) = 7. Now we
use the Beilinson spectral sequence for £(2):
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O(-1)
0 Q1)? | o7
£ () | £(2)

So we obtained the following exact sequence:
0— O(-1) — F — &(2) — 0.

Here F = O7/€(1)? is a rank 3 globally generated bundle with Chern classes
c1(F) = 2, (F) = 1. Therefore F is a Fano bundle and F ~ O(1)? ® O
(see [SzW3]). We have case 5 of the theorem.

3.2.2.3. ¢ =3 Similarly as in 3.2.2.2 we obtain 6 from the theorem.
3.2.3. co =4

3.2.3.1. If h%(£(1)) = 0, then by the same method as before we obtain
the sequence

0— O(=1)* — 05 — £(2) — 0.

3.2.3.2. Now assume that h°(€(1)) # 0. In 3.2.0 we proved that £(2)
is globally generated. Now let us consider the kernel F of evaluation O° —
£(2). Naturally F* is a rank 3 globally generated vector bundle on P2, so
by Serre lemma ([OSS, I, 4.3.1]) we have an exact sequence:

0— 0 —F" —G(2) —0,

where G is a rank 2 vector bundle with Chern classes ¢, (G) = —1, ¢2(G) = 1.
In this case G is a weak Fano sheaf, for G(2) is globally generated. Therefore
from 3.2.2.1 it follows that G ~ Tp2(—2). Because dim Ext!(G(2),0) =
dim H}(G(—1))" = dim H' (Tp2(—3)) = 1 we have F* ~ O @& Tp2 or F* =~
O(2) @ Tp2(—1). But the first case cannot happen for H°(F) = 0, so
F ~Q(1) ® O(—2) and we have an exact sequence:

0 — O(=2) — O°/Q(1) — £(2) — 0.

Applying the classification of Fano bundles on P? we get O%/Q(1) ~ O(1)®
02,
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3.2.4. co =5 Then h%(£(2)) = 4 and h°(E(1)) = 0 by the criterion of
Nakai-Moishezon ((£ + H)D? = 4 — ¢ < 0). Now we already know that the
bundle £(2) is globally generated, so for some bundle F we get the sequence

0 — F(-2) — O* — £(2) — 0.
As before F* is weak Fano and F* ~ O @ O(-1).

3.2.5. ¢ = 6 We will prove that this case cannot occur. On the
contrary assume it can happen. In 3.2.0 we proved that ¢: X — Y is a
crepant resolution of Del Pezzo variety of degree 1 (i.e., A> = 1). In that
case the base scheme of |A| is a smooth point y (cf. [Fuj, 1.6.14]). Therefore
the base scheme of |D| is also a point z (the preimage of y under ¢). From
this one can easily see that £ fits into the following exact sequence:

0 — Op2(—3) LN 0} — E(2) — Op — 0,

where P = p(z). The inclusion 7 is given by three forms ¢g, ¢1, ¢2, of
degree 3 vanishing at P.

If we blow up X at the point = we obtain a smooth manifold Z, which
is a divisor in P2 x P? given by the equation

#(wo, T1, T2; Yo, Y1,Y2)
= ¢o(o, T1,T2)Yo + ¢1(20, T1, Z2)y1 + d2(0, 1, 72)y2 = O,

where |zg, z1, T3] are homogeneous coordinates in the first copy of P2, and
[yo, Y1, y2] in the second one. We will prove that there are no smooth man-
ifolds in P? x P? satisfying such equation for any forms ¢; having one
common zero in P2,

Without loss of generality we can assume that P = [0,0, 1]. The singu-
lar locus of Z is given by the following system of equations:

¢(930a$1,332;y0, Y1, y2) =0

(xo,xl,mz;yo,yl,yfz) =0

ay (x()y‘rlax?ay()?yl’ y?) - ¢1(IE0,.’L'1,£L‘2) 0
4

for i = 0,1, 2. From these equations we infer that [zo,z1, z2] = [0, 0, 1], and
the system is equivalent to

E)
Z ¢3001 =0 fori=0,1,2.
0 Z
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But %(0, 0,1) = 0, so this system has always a non-zero solution. In
particular Z has a singular point on the exceptional divisor of the blow up,
a contradiction.

This completes the proof of our theorem. 1

COROLLARY 3.3. Let F be a globally generated bundle of rank 2 on
P2 with the first Chern class c1(F) = 3. Let us denote & = F(—2). Then
E is of the form 1-9 from theorem 8.2 or co(€) =7 and € can be put in the
form:

(3.3.1) 0 — O(=3) — O* — £(2) — 0.

Proof. At first let us remark that —Kpr) = 2§ is nef because F is
globally generated. It follows that :

(—Kp(5)’ = 8(7 — 2(€)) 2 0.

If c3(€) < 6, then theorem 3.2 implies that £ is a bundle of the form 1-
9, theorem 3.2. So we can assume c2(€) = 7. As in 3.2.4 we prove that
hO(E(1)) = 0. Because £(2) is globally generated so the maximal rank of
the jumping line r < 1 (see 3.2.2). Using [SRS1, theorem 6.2] we obtain
R1(£(2)) < 1. Now the Riemann-Roch theorem implies:

h2(£(2)) < x(£(2)) +h1(E(2)) < 3.
From this it can be easily seen that £ is of the form 3.3.1. 0

Remark. Using corollary 3.3 one can easily describe globally generated
bundles of rank » > 2 with ¢; = 3 on P2. The structure of such bundles
can be described using [SzW3, lemma 3.1]; all of them are extensions of the
bundles of the same type but of the lower rank. Unfortunately there are
already 38 such bundles of rank 3.

84. Divisorial contractions

THEOREM 4.1. If¢: X — Y is a divisorial contraction, X is smooth,
E is an ezepctional divisor of ¢, dim ¢(E) = dim E—1, C is a general fiber
of ¢|p: E — ¢(E), then C ~P! and C- E = —1, Kx - C = —1. Moreover
if X is Fano and p(X) = 2, then —Kx + E is a good supporting divisor for
@.
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Proof. This is an immediate consequence of [A, theorem 2.1]: there
exists a Cartier divisor L on X such that (C,L|c) ~ (P!,Op:(1)) and
we = Oc((—p—q)L), where Oc(—Kx) ~ Oc(pL) and Oc(—FE) ~ Oc(qL),
p, ¢ > 1. Since wp1 ~ Op1(—2), p = ¢ = 1 and we have the first part of
theorem. The other one is obvious for (-Kx + E)-C = 0. u

Remark. The following more general theorem is also valid: if C is a
one-dimensional fiber, then in some neighborhood of C, ¢ is the blow down
of smooth divisor E to a smooth subvariety of Y (cf. [A, theorem 2.3] and
[AW1]). But we will use only this simple version of this theorem.

THEOREM 4.2. Let £ be a rank r > 2 Fano sheaf on P™, n > 2 and
assume that the “other” contraction ¢: X = P(E) — Y is divisorial, E, C
are as above. Then k = H - C is positive and divides (HZ_Q)
for r = 2 it follows that H - C = 1 and —Kx — H 1is a good supporting
divisor for ¢.

. In particular

Proof. We have the following equalities:
—-Kx =1+ (n+1-c)H, ca=cl(€)
E =af+bH, a,be Z.
If we apply theorem 4.1 we obtain:
—-Kx-C=1
E.-C=-1
for general fiber C' of morphism ¢|g. Let k = H-C > 0. We set Dp :=

1
—Ky—=
X%

1
One can also see that £ + —H is also a good supporting divisor for ¢.

H. This is a good supporting Q-divisor for ¢, because Dgr-C = 0.

Therefore comparing coefficients with &, we get

1 a
(4.2.1) E + —];H = ;DR.
Now if we compare coeflicients with H we get:
a 1 1
4.2.2 b= - l—-cg—+)——-€Z.
( ) T(.n+ c1 k) p €
Hence k divides %‘% = _k[(—aT?jb - (a;"r)(n + 1 — ¢y)], where (a,r) stands

for the greatest common divisor of @ and r. Naturally we have also the
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following equalities: H™t' = 0 and H™"¢""! = 1. Moreover we know that
1-cycle D" 2E is numerically trivial. Hence by (4.2.1) we get:

a 1
4.2.3 ZprnTl = 2
( ) r R k

If we multiply both sides of (4.2.3) by TTLZLT and substitute Dp =7+ (n +
1—c— §)H, we get:

(1 o

+ (the sum of £PH? with integral, divisible by &, coefﬁcients)

n—2
HD

=¢tan (T e 2) ((n+1-ec)k—1)""

n—1
+ (the sum of 2P HY with integral, divisible by & coefficients).

From this equality it follows that 7 divides (P ((n+ 1 - )k — 1)
Now we can choose 71 and 72 such that: riry = =, r; divides ((n + 1 —

(a,r)
¢1)k —1)" and ry divides ("*"7!). Then

a (T+n—1>(_1)nzrl(r+n—2)(_1)n_1 (mod k),

(a,r)ry n n—1

a+?"(r+z_1):,,, r4+n-—1 _ r+n—2 (modk)

(aa T) T2 - n n—1 .
Because k divides (‘:LTT) and (r1,k) = 1 it follows that k divides (T+Z_2).

The last statement of the theorem is obvious for k must be equal to 1 and
Dp=-Kx - H, 0

SO

From now on in the next two sections we will consider the following
situation: £ is a rank 2 Fano sheaf on P3, normalized in such a way that
cg =0or —1 and ¢: X = P(£) — Y is the “other” contraction. In this
section we will assume in addition that ¢ is divisorial. Let E denotes the
exceptional divisor for ¢.

LEMMA 4.3. Let € be as above. Then c3 = 0, co < 1 or the Chern
classes of the sheaf £ are of one of the following types: (—1,2,2), (—1,3,5),
(—=1,3,7), (-1,4,10), (—1,4,12), (~1,5,17), (0,1,2), (=1,1,3).
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Proof.

4.3.1. Let us assume that dim ¢(F) = 2. First observe that ¢1(€) =
—1, because otherwise P(£) would be a Fano 4-fold of index 2 and then
this type of contraction can not occur. Next, applying theorem 4.2 we get
that —Kx — H = 2(§ + 2H) is a good supporting divisor for ¢. Then by
(4.2.2) we know that b = 2a — 1 and by (4.2.3):

a(€ +2H)* = H(¢ + 2H)3.

It is easy to see that a > 0 for otherwise —H = E+(—a)(£+2H) is effective.
Since ¢ is divisorial:

0< (£42H)* =15 —6¢cy + c3
O0<H(E+2HPR =T—¢y
and from the above equalities:
(4.3.1.1) a(15 —6¢cg +c3) =7 —c

Now we claim that 2 < ¢y < 6: this is straightforward consequence of
(4.3.1.1). Besides cjco = c3 (mod 2) (see [OSS]) and E|p2 is weak Fano.
If we take it into account we obtain the following possibilities:

a) Co

b 3,e3=5,a=2o0rcg=7,a=1

o
[\
Il

4,c3=10,a=3o0orc3=12,a=1

)
)

o) ¢
)

(o8

co=5,c3=17,a=1

4.3.2. Now assume that dim¢(E) < 1. Then the l-cycle D%E is
numerically trivial. Dg and E are positive multiples of (£ + uH) and (£ +
vH), respectively, where u, v € Q. So we have the following equalities:

0= (£+uH)*(¢ +vH)H
=12 — ey 4 2c1u + u? + (¢1 + 2u)v,

0= (¢ +uH)*(€+vH)E
=2 — 2ci09 + c3 + 2(012 —c)u + cu® + (012 —cg + 2ciu + u2)v.
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Comparing these two formulas we get the following equality, involving only
¢, ¢g, ¢z and u:

(c1? — e + 2c1u + u?)?

(4.3.2.1) . , ,
—(e1 4+ 2u)(c1® — 2c1e0+ e3 + 2(1” — c2)u + cju®) =0

Therefore u is an integer (for Z is integrally closed in Q). Now let us
write —Kx by means of Dg and H:

-Kx=2((+2H)+(4—c1 —2u)H

For —Kx is ample, so 4 — ¢; — 2u > 0 and by lemma 2.7 we have the
following possibilities:

a) ifc; =0, thenu=0o0ru=1
b) ifc; =—1,thenu=1oru=2

We will consider each of these cases separately, taking into account the
following inequality:

(4.3.2.2) D% = (€ +uH)* > 0.

4.3.2.3. (¢ =0,u=0) Then by (4.3.2.1): ¢ =0, c3 =0, but £&* =0,
which contradicts (4.3.2.2).

4.3.24. (¢ =0,u=1) By (4.3.2.1): 2¢3 = (1 +c3)?. Then £ + H is
nef, so P(£|p2) for a general plane is Fano. Therefore by [SzZW2] we have
the following possibilities:

a) 02:—1, C3=0, (§+H)4:C3——402+4:8

b) c=1,c3=2, (5+H)4:2

c) c2=3,c3 =28, (£+ H)* =0 — in a contradiction to (4.3.2.2).
43.25. (1 =0,u=1) By (4.3.2.1): 2c3 = ¢3 Then P(|pz) is Fano

and by Nakai-Moishezon criterion: (£ + H )3H =1—cp>0,s0c <0. As
above the only case is:

c2c=0, c3=0, (£+H)4=1

4.3.2.6. (c; = —1, u = 2) By (4.3.2.1): 3cg = (c2 +2)%, P(Elp2) is
weak Fano, so by theorem 3.2 we get:

https://doi.org/10.1017/50027763000025095 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025095

154 A. LANGER

a) 622—2, 6320,
b) (22=].,63=3,

C) C2 = 4, Cc3 = 12.

i

THEOREM 4.4. A classification of a rank 2 Fano sheaves £ on P3
with a divisorial contraction:

Cg(‘:

Z
e
o
—
Q
[

. -1 0 0 090(-1)
2. 0 -1 0 O1)e0o(-1)
3. -1 =2 0 O(1)90O(-2)
4. 0 1 2 0—O0—Tps(-1)®0(1)/O0 —E(1) — 0
5 -1 4 12 0—0(-2) —0(1)®0? — £(2) — 0
6. -1 1 3 0—0(-1)—0?00(2) — £(2) —0
7. -1 2 2 0—0—Q2)®0(1)/0 —E(2) —0
8 -1 3 5 0—0(-1)—Q2) —&2) —0

or

0— O(-1) —- N1)p 0O — &(2) — 0
9. -1 3 7T 0—0(-1)—01)e03 —E&2)—0
10. -1 4 10 0— O(-1)3 —0°—&(2) —0

Proof.

Remark. Proofs of theorems 4.4, 5.2 and 6.2 are not independent: we
prove only that if the contraction is divisorial (respectively: fiber, small),
then there are only the following possibilities. The fact that the con-
traction of the sheaf is exactly of such type as we suppose follows from
computations—we obtain either different Chern classes or this can be eas-
ily seen.

First note that there does not exist Fano sheaf with Chern classes
(—1,5,17) (we use notation: (ci,cg,cs)). It can be easily seen that h%(£(1))
= x(€(1)) =1/2(e3 + 10 — 5¢z) = 1. But from the divisorial sequence:

(4.4.1) 0—E&—E&Q1)—&Q)|pz — 0

and from theorem 3.2 it follows that R°(£(1)) = 0, a contradiction.
Cases c3 = 0, ¢y < 1 are simple and done in [SzZW1] (one can also obtain
them by restriction to P2). Next, we consider remaining cases:
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4.4.2. (0,1,2) By fact 1.2.4 one should only prove that £(1) extends
(which is the case if H2((£(1))*) = 0) and use the classification of numeri-
cally effective bundles with first Chern class equal to 2, see [PSW1]. From
a long exact cohomology sequence for (4.4.1) twisted by O(—1) we get:

H'(Elpe) — H*(E(-1)) = H*((E(1))*) — H*(£) =0

Since &|p2 is Fano bundle: H!(&|p2) = 0.
In the remaining cases the sheaf £|p2 is a weak Fano, since £(2) is nef
by theorem 4.2.

4.4.3. (—1,4,12) Applying (4.4.1), theorem 3.2 and lemma 2.4.1 we
know that there exist non-trivial extension F:

0—0(-2) —F—&(2)—0

such that F ~ O(1) ® 0%
4.4.4. (-1,1,3) We know &|p2 and by Serre construction:

0— 00— & — J(-1) —0,

where L is a line in P3. Now we can use lemma 2.4.1 to get a non-trivial
extension F:
0— O(-1) — F —&(2) — 0,

where F ~ O(2) ® O2. This gives case 6 of our theorem.
In the remaining cases we compute cohomology of £ using known co-

homology of £|pz, divisorial sequence and the Riemann-Roch formula for
E(-1),...,&(2).

4.4.5. (—1,2,2) Observe first that H2((£(2))*) = H2(£(-1)) =0, so
by fact 1.2.4 there exists non-trivial extension F of £(2) by O, where F is
locally free. From cohomology exact sequence we get:

H*(£(-2)) > H3(O(—4)) — H3(F(—4)) — H*(E(~2)) =0,

so by non-triviality of 8: H3(F(—4)) = 0. One can compute the rest of
cohomology of F(—k) (k = 1,2,3,4) using cohomology of £(—k + 2). In
particular dim Ext!(F,O) = h?(F(—4)) = 1. So there exists a non-trivial
extension G:

0 —0—§¢G—F—0
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Computing cohomology of sheaves G(k) for k = —1,... — 4 and using the
Beilinson spectral sequence for G(—1) we get:

0—O1)— G — Q(2) —0.

Now because Ext!(Q2(2), O(1)) = 0, so G ~ Q(2) @ O(1) and we get case 7.
4.4.6. (—1,3,5) From the sequence
0= H°(€|pz) — H'(E(=1)) — H'(€)
— H'(E]p2) — H*(E(-1)) — H*(£) =0
and h'(£) = 1 we can only deduce, that h'(£(—1)) < 1. Suppose for a

moment that h'(£(—1)) = 1. Then h%(£(-1)) = 2 and from the Beilinson
spectral sequence:

0— O(-1)?2 —- F —£&(2) — 0,

for some globally generated sheaf F with ¢;(F) = 1, cp(F) = 0. As
above F ~ 0% @ O(1) in contradiction to c3(£) = 7. So we proved that
h1(E(-1)) =0, h*(£(-1)) = 1 and from Beilinson spectral sequence:

(4.4.6.1) 0 — O(=1) — 0%/Tps(-2) = F — £(2) — 0,

where F is possibly non-locally free. We claim that in fact this sheaf must
be locally free. Applying to twisted (4.4.6.1) a functor Ext we get the dual

sequence:
0— ()" — (F())" — Jy —0O,

where Y is a finite set of points (a support of Ext!(£(3),0)). Using
Ext!(Jy,Ops) = 0 (see p. 690, [GH]) and dualizing once more we obtain
the following canonical diagram with exact rows:

00— J — (F))™ —— (EB3))™* —— Bxt!(Jy, O)

-] T

T

0
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By lemma about 5 isomorphisms F is reflexive. Let us now consider
the sequence:
0— 05 F — g—20

For a general section s a sheaf G is locally free besides finite number of
points, where F is singular. Similarly as above one can easily prove that G
is reflexive, so G ~ N(1). Because Ext!(N(1),0) =1, F ~ N(1)® O or
F ~Q(2).

4.4.7. (—1,3,7) This can be easily obtained by the use of Beilinson
spectral sequence.

4.4.8. (—1,4,10) If h2(€) # 0, then as in 4.4.3 we prove that £ looks
like 5—a contradiction. Hence h?(£) = 0 and by Beilinson spectral sequence
we get case 10.

Let us remark that in all cases we have an exact sequence of the form:

0—G -5 F—E&Q2)—0,

where F, G are locally free and the sheaf Hom(G,F) = G* ® F is gen-
erated by global sections. Therefore by [BW, lemma 3.1] for generic o €
Hom(G, F), £(2) is a Bénica sheaf and P(£) is a smooth Fano variety. [J

§5. Fiber contractions

We use notation compatible with that before theorem 4.2 assuming ¢
is a fiber contraction.

LEMMA 5.1. Let £ be as above. Then cg =0, cog < 1 or Chern classes
of the sheaf € are of one of the following types: (0,2,4), (0,3,8), (—1,3,3),
(-1,3,7), (-1,1,1), (-1,5,15), (—=1,7,27). Moreover £(2) is nef.

Proof. Let Dp = £ + uH denote a good supporting Q-divisor of ¢.
Then D% = 0 (see [A, lemma 1.4]). Furthermore by Nakai-Moishezon
criterion D%H > 0. Corollary 2.6 leads now to:

(5.1.1) (¢ +uH)4 =0 & 4ud +6c1u’ + 4(612 —c)u+c® — 21043 =0

(5.1.2) (E+uH)?*H >0 3u? +3ciu+c> —cy >0
By similar arguments as in divisorial case:

-Kx=2(¢+uH)+ (4—c1 —2u)H,
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where

(4 —C1 — QU)H > 0.
By (5.1.1), if we write u = §, (a,b) = 1, a, b € Z, then b | 2. Combining
the fact that cp > 0 or a sheaf is decomposable bundle (by classifications of

Fano bundles and weak Fano bundles on P?) with lemma 2.7, (5.1.1) and
(5.1.2) we get the lemma (the last statement is obvious). U

THEOREM 5.2.  Classification of rank 2 Fano sheaves on P? with two
fiber type contractions:

c1 Cy cC3
. 0 0 0 0O

2 0 1 0 N — null correlation

3. 0 2 40—0-1)—0*—E&1)—0

4. 0 3 8 0—O0O(-2)—0®—E&(1)—0

5. -1 1 1 0—0(-1)— 03 —€&(1)—0

6. =1 5 15 0—0O(-1)®0(—2) — 0* — £(2) — 0
7. =1 7 27 0—0O(-3) — 03— £(2) —0

Proof. We first exclude cases (—1,3,3) and (—1,3,7). In case (—1,3,7)
£+ %H is nef, so £|p2 is Fano—this is impossible by [SzZW2]. As for the
other case we have the following commutative diagram:

X=PE — Y

!

T /!
X' =P(€|p2)

Clearly on Y there exists an ample divisor A such that: ¢*A =&+ 2H
and £ + 2H|x = (¢')*A. Hence we get: hO(Y,A) = hO(P%,£(2)|p2) =
hO(P3,£(2)). On the other hand: h°(P?,£(2)|pz2) = 6 and h°(P3,£(2)) =
x(E(2)) = 5 from corollary 2.2 and the Riemann-Roch theorem a contra-
diction. By [SzW1] we get sheaves with cs = 0.

5.2.1. (0,2,4) It can be easily obtained by the same arguments as in
4.4.2.

5.2.2. (0,3,8) Asin4.4.3.
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5.2.3. (-1,1,1) By a similar argument as in 2.2 we prove: H*(&(—i+
1)) = 0 for ¢ > 0. Hence we can use the Castelnuovo-Mumford theorem for
&(1) to derive theorem in this case.

Remark. It is known that every stable reflexive sheaf with Chern
classes (—1,1,1) derives from sequence 0 — O(—2) — 0% — £(1) — 0 (see
[SRS1, lemma 9.4]).

5.2.4. (—1,5,15) Then H°(E(2)) = x(£(2)) = 4. Let us consider a
sequence:

0 — ker(ev) — 0% =% £(2) — coker(ev) — 0

A sheaf ker(ev) is reflexive (see [OSS, II, lemma 1.1.16]) and coker(ev) is
concentrated in the singular points of £(2), for £(2)|p2 is globally gener-
ated (a weak Fano sheaf on P?). On the other hand theorem 3.2 yields
ker(ev)|p2 ~ O(—1) & O(—2). Therefore coker(ev) = 0 (see [SRS1, lemma
2.7)).

5.2.5. (—1,7,27) It is easy to see that dimY = 2 (see [A, p. 356]).
There exists an ample divisor A on Y such that £ + 2H = ¢*A. We know
that A2 < (¢ + 2H)2H? = 3, Y is smooth by [AW, theorem 1.4.1] and
p(Y) =1, hence A? = 1. Moreover it is immediate that A(Y, A) = dimY +
A2 —-h%(A) = 0,0 (Y, A) ~ (P?,0p2(1)) by [Fu]. Therefore £(2) is globally
generated (cf. [BW, p. 18]). This leads to the sequence 7. U

§6. Small contractions

We use notation from the last section; besides let E denotes excep-
tional set. In this case [W1, lemma 1.1] implies ¢;(€) = —1. By [Ka, theo-
rem 1.1] we know that E is the disjoint sum of E; ~ P2, Ng,x ~ Op2 (—1)2
(NEg,/x—a normal bundle E; in X).

LEMMA 6.1. In the situation as above:

E~P? Ng/x~Op(-1)%

Proof. Considering the above remarks it is sufficient to show that E
is irreducible. On the contrary let us suppose that E;, Fe—two disjoint
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components of E. Let C = p(E1) N p(E;), C—the normalization of C.
Then we have a diagram:

y & X 2, ps3
@] U

P(&|c) — C

14 i
Z=P(Elp™) = C

Let Cy = ¢ 1(E1), Cy = q71(E>) be curves in Z contracted by ¢ = ¢q
to 2 different points and dim(Z) = 2. Then we have:

Cl2<0, 022<0, C;-Cy>0

There exist a, b > 0 such that aC7 —bCs would be equivalent with a multiple
of fiber 7, so (aC1 — bC2)? = 0, a contradiction. U

THEOREM 6.2. There is only one rank 2 Fano sheaf £ on P3 with a
small contraction. It has Chern classes c1(£) = —1, c2(€) =2, c3(€) = 4
and & is of the form:

0— O(-1) — 01200 — £(2) — 0.

Moreover Dp = £ +2H and E = (§+ H)? is the intersection of two divisors
from H°(¢ + H) = H°(£(1)).

Proof. First notice that c(€) > 0 (cf. the remark in 3.2.1).

6.2.1. Now we will compute in two ways Chern classes of the bundle
TP(F)|g, where F is locally free and such that:

0—Ok)—F —E& —0,
and &' = £(2), k € Z, see fact 1.2.4. Let us assume that:
Op(F)(é7)|E = Op2(a)

and
Op(r)(H)|p = Op2(d).
I method:
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There are following exact sequences on E:

0 — Ng/pe) — Ngspr) — Npe)pr)le — 0

and
0 — TP? — TP(F)|g — Ng/pr) — 0.

Since P(£) is a smooth divisor from linear system |Op(x) ({7 — kH)|, so
Npypr)lE =~ Opr)(§r — kH)|p ~ O(a — kd). We know that Ng,p(e) =
O(—1)2, hence:

o(TP(F)lg) = c(TP*)c(Ngpe))e(Np ey p(r) | B)
= (1 +3h+ 3031 - h)*(1 + (a — kd)h)
=1+ (1 +a—kd)h+ (a—kd—2)h*

IT method:
We have the relative Euler sequence for F, which we restrict to E:

0— Olg — p"(F*) ® Opx)(§x)lE — Tprypsle — 0
and the sequence:
0 — Tp(rypile — TP(F)|g — p*(TP%)|g — 0,
where p: P(F) — P3 is a natural projection.

Remark. The same relative Euler sequence exists for a sheaf £ on

P(€).
From these sequences it is easy to compute that:

c(TP(F)

) = c(p"(F*) @ Op(5)(€5)|p) - c(p"(TP®)|5)
=1+ (d(4 —c; — k) + 3a)h + (3a® — 2(c; + k)ad
+ (g + c1k)d? + 4d(3a — d(c1 + k)) + 6d*)h?

If we compare obtained Chern classes we get:
d(4—c1)+2a:1

and
3a% — 2(c; — 6)ad + (c3 — 4c1 +6)d* +2 —a = 0.
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If we take into account that ¢; = 3 we obtain:
d=1-2a

and
(4c2 — 33)a® + (29 — 4cz)a+ co — 4 = 0.

For A = 313 — 36¢; is a square of integer we reduce the problem to two
cases:

a) () =2,a=0,d=1,
b) c2(€) =6,a=—4,d=9.

6.2.2. Since Op)(H)|g = Op2(d) and the length of ray R equals
to 1, as a good supporting divisor Dy one can take 2§ + (5 — %)H . By
lemma 2.5 E € A%2(P(€)) can be represented as:

E=0b6H +cH?> 4+ a1Fy + ... + apFy,
where k = c3 and a; = E - F; > 0. Next, we have the following equalities:
E-Dr=0,

E- (_—I()()2 = 17
because of adjunction formula: —Kx|g = (—Kg) ® A Ng/x ~ O(1).

Hence one can easily obtain:

b= d?
c= 1(az — 3d?)
S 2
1
(6.2.2.1) a1+ ...+ap = Z((4c2 4 15)d*> — 8d + 1)
(6.2.2.2) a? 4. Fa=4dt - +1

6.2.2.3. (c2(€) = 2) Then £ is stable, so by [SRS1, theorem 8.2
c3 < c?2 = 4. From (6.2.2.1) and (6.2.2.2) we obtain c3 = 4, a; = ... =
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as = 1. In this case E = (£ + H)?. Applying corollary 2.2, theorem 3.2 and
lemma 2.4.1 we get desired sequence:

0— O(-1) — 01?00 — £(2) — 0.

6.2.2.4. (c2(£) =6) Then:
a1+ ...+ap =772

a4+ ...+ ap? = 25516

We now apply the inequality between arithmetic and quadratic means:

(@1 + ... +ag)?
a2+ ...+ a?

23 < <k=cs

Hence c3 > 24. It can be easily proved, by the Nakai-Moishezon criterion
on P(€|p2), that H°(£(1)|p2) = 0 and H°(£(1)) = 0.

By [SRS1, theorem 6.2] we get H(£(2)|pz) = 0; also we know that
H?(E(2)|p2) = 0, hence H°(£(2)|pz) = x(£(2)|p2) = 3. On the other hand
[SRS3, theorem 1.1] yields H%(£(2)) < 1 and by Riemann-Roch theorem:

5 < v(£(2)) = %(28 bes—42) < KO(E(2) +1

and
0=H°(E(1)) — H°(£(2)) — H°(£(2)lp2),

we get h%(£(2)) < h°(£(2)|pz) = 3, a contradiction. Therefore this case
cannot occur. 0

§7. Fano sheaves on 3-dimensional quadric

Now we will be occupied with the case of Fano sheaves over the 3-
dimensional quadric. The following result may be proved in much the same
way as theorem 4.2 and lemmas 4.2, 5.1, 6.1 and theorem 6.2:

LEMMA 7.1. Let £ be a Fano sheaf of rank 2 on Qs with ¢; = 0
or —1. If the other contraction of P(E) is fiber then either & = O? or
€ =8 (the spinor bundle) or £(1) is nef and € has Chern classes (0,2,0),
(0,4,8), (0,6,16) or (—1,2,2). If this contraction is diwvisorial then either
E=000(-1), O(-1)® O(1) or £(1) is nef and € has Chern classes
(0,2,4), (0,1,1), (0,2,2) or (0,3,5). The small contraction does not occur.
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THEOREM 7.2.  Classification of rank 2 Fano sheaves on Qs:

No. ¢ ¢ c3 &

1. 0 0 0 OO

2. 0 -2 0 O(-1)®0(1)

3. -1 0 0 080(-1)

4. -1 1 0 S—the spinor bundle

5. 0 2 0 7*(N), where m: Q3 — P3 is the double cover

6. 0 4 8 0—O(-12—0*—¢&(1)—0

7. 0 6 16 0—0O(-2)— 03 —€&(1)—0

8. -1 2 2 0—O0(-1)—0®—¢€(1)—0

9. 0 2 4 0—0(-1)—0?90O(1) — £(1) —0
0. 0 3 5 0—O(-1)—O0®S(1) —&(1) —0
11. 0 2 2 0—O0O—S(1)®S(1)/O—E&(1)—0
122 0 1 1 0—0O0—01)®S1)—&(1)—0

Proof. To prove this theorem we will extensively use [AO, theorem 6.7].
We will consider some cases according to the Chern classes of the sheaf £.

7.2.1. Incases (0,2,0), (0,4,8), (0,6,16) and (—1, 2, 2) it can be easily
proved by lemma 8.1 and considerations similar to those in 3.2.0, that £(1) is
globally generated. In case (0,2,0) we can now use [SzZW1, proposition 3.2].
From the remaining cases we will prove the theorem only for the most
difficult case: (0,4, 8).

First let us remark that h°(£(1)) = 4 and h*(£(1)) = 0 for i > 0. One
can also prove, using divisorial sequence, that h'(£(—1)) = 0. So there
exists a bundle F such that we have the following sequence:

0— F — 0 —£(1) — 0.
So it follows that h(F(—i)) = 0 for i = 0, 1,2. Now using [AO, theorem 6.7]
we easily prove that F = O(—1)32,

7.2.2. (0,1,1) From the Kawamata-Viehweg vanishing theorem h*(&)
— 0 for i > 0 and so h°(£) = 1. The section of £ vanishes along a line L
and we have the following exact sequence:

0—0—E&—J,—0.

From this sequence h2((£(1))*) = 0, so £(1) extends to a sheaf F.
One can easily prove that hé(F(—i— 1)) = 0 for i = 0,1,2, so from [AO,
theorem 6.7] it follows that F = S(1) & O(1).
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7.2.3. (0,2,4) Quite similarly as above we can show the existence of
the sequence:

0—0—&— Jo—0,

where C' is a smooth conic. From this dim Ext!(£(2),0) = h2(£(-1)) =1
and therefore there exists a non-trivial extension F:

0—O0—F—E&2) —0.
Because h?(F(—2)) = 1 we have the sequence:
0— O — F(-2) — G —0,

for some sheaf G. Now because h*(G(—i)) = 0 for i = 0,1,2, we have
G =0(-1)%

7.2.4. (0,2,2) The spectrum of £ is {—1,—1}, so h2((£(1))*) = 0 (see
[ES]) and £(1) extends to F, such that h*(F(—i — 1)) = 0 for i = 0,1, but
h2(F(—3)) = 1. Hence there exists a non-trivial extension G € Ext!(F, ).
Now h#(G(—i—1)) =0 for i = 0,1,2 and from [AO, theorem 6.7] it follows
that G = S(1) @ S(1).

7.2.5. (0,3,5) Similar to 7.2.4.
This finishes a proof of theorem 7.2. U

§8. Fano sheaves on other Fano 3-folds

This is quite similar to the considerations in the last section.

LEMMA 8.1. Let £ be a Fano sheaf of rank 2 on Vg with ¢; = 0
or 1. Then £ is nef. Moreover if the other contraction of P(E) is fiber
then € has Chern classes (0,0,0), (1,d,d) ord =4 and (1,2,0), or d =5
and (1,3,1). If this contraction is divisorial then the Chern classes are as
follows: (1,¢,c), where ¢ >0, ord =5 and (1,2,0). Small contractions do
not occur.

Proof. Proof is similar to that of lemma 8.1, but if ¢; = 0 one can
simplify computations using [BW, lemma 4.6]. Because £(1) is ample then

from this lemma for any line L:

2 =L -det&(1) > rank & + (number of singular points of £ on L).
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Because V; is covered by lines it follows that £ is locally free. First we show
that £ is nef. Then it is easy to see that ¢y > 0, for from the Hodge index
theorem (see [Fu, theorem 0.4.6]) we have:

(d—cy)d =¢€%(¢H) - H*(¢H) < (£2H?)? = d°.
Then one can easily compute Chern classes of £. U

THEOREM 8.2.  Classification of rank 2 Fano sheaves on Vy:

No. Ci Cg C3 £

1. 00 0 09O

2. 0 1 0 0O80()

3. 1 d d 0—0-1)—0 —E£—0

For d = 4 we have also the following bundles:
4. 1 2 0 E—stable bundles (see [SzW4])
For d =5 we have also the following sheaves:
5. 1 2 0 F—the only stable bundle with these Chern classes
(see [SzW4])
6. 1 3 1 0— F(-1)—0*—E—0,
where F is the bundle from 5.

Proof. First, we show that for £ with Chern classes (1, ¢, c) we have
£ =0®0O(1). Let us remark that by Kawamata-Viehweg theorem and
Riemann-Roch formula we have h°(£(—1)) = 1 and h%(£*) = 0. It follows
that £ extends to a locally free sheaf F such that F is nef, ¢;(F) = 1 and
RO(F(-1)) = 1. If the section of F(—1) vanishes in some points then we
can take a conic C, which meets the zero locus of this section in a finite
number of points. Then:

F(=Dle = O(a) ® O(b) ® O(c),

where a +b+c = —4, a > 0 and b, ¢c > —2 (because F is nef). So we get
a contradiction and this section vanishes nowhere. Hence we get an exact
sequence:

0— 00— F(-1) — G —0,

where G is locally free. One can check that G(1) is nef and ¢;(G) = 0, so
G = O(=1)? and therefore £ = O @ O(1). In all remaining cases one can
show that £ is globally generated and computing h°(€) one easily shows
the theorem. i
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Let us also remark the following fact about uniform vector bundles with
c1 =0 on Vy (cf. [OSS, theorem 3.2.1]):

PROPOSITION 8.3. Let £ be a vector bundle on V; such that ¢; = 0
and for any line L: €], = O @& ---® O. Then co(E) = 0. Moreover if £ has
rank 2, then it is trivial.

Proof. Let T be a scheme parametrizing a family of lines on V; and
let S be an incidence variety of lines on V3. T is known to be a smooth
surface. We have natural projections p:'S — Vy and ¢: S — T. Let L be
a general line on V; and C = ¢(p~!(L)) be a curve, parametrizing lines
meeting line L. Now let us take a normalization C of some irreducible

1-dimensional component Cy of C' and the pull back F' LS C of universal
Pl-bundle ¢=}(C) 4 C. Then we have the following diagram:

F - ¢'c) ¢ § & vy
1 1@
60 — C c T

Let us remark that ¢’ is a Pl-bundle, so F is a smooth surface. It is
also easy to see that ¢’ has a section s, which sends a point of Cy to a
point of intersection of corresponding line with L (this is well defined over
open subset of curve C and so can be extended to a section on the whole
curve). Let us denote p’ = mp: F — V; and consider bundle F = p'* ().
This bundle is trivial over fibers of ¢/, so there exists a bundle G on C such
that F = ¢"*(G). We claim that now G is trivial. Indeed, we have (compare
with [OSS, theorem 3.2.1]):

Oz = (1's)"(€) = s(¢"(9)) = (¢'9)"(9) = ¢
It follows that F is trivial and from the projection formula (because p'(F)
is a generator of Pic(V;)) we get c2(€) = 0.

If the rank of sheaf £ is two then one can easily see that if £ is non-
trivial then h®(€) = h®(E*) = 0. Indeed, otherwise the section of £ would
be non-vanishing in all points (because of the splitting type on lines) and
we would get trivial subbundle of £. Now from the Bogomolov inequality
for rank 2 stable bundles on V; (see [L]) we have ¢ > 0, a contradiction.
So the theorem is proved. 0
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Now we will study Fano sheaves on Fano threefolds of the first kind
(i.e., such that —Kx = H and Pic X = Z[H]).

THEOREM 8.4. If £ is a Fano sheaf of rank 2 on X, then it is just
02

Proof. First let us remark that if c; = —1 then by [BW, lemma 4.6] the
number of singular points on any conic is equal to 0. Because X is covered
by conics it follows that £ is locally free. Then as before we show that £
is nef. Now by the same argument as in lemma 8.1 one can show that if
c1 = 0 then co = 0. It makes easier computations, that the Chern classes
of £ must be (0,0,0) and the other contraction of P(£) is fiber. Now it is
straightforward that £ = O2. U

§9. The geometry of P(£)

In this section we study geometry of X = P(&), where £ always denotes
a rank 2 Fano sheaf. Firstly, let us remark that for locally free sheaves F
and G a manifold P(F & G) is a joint of manifolds P(F) and P(G). In our
situation we usually obtain a sequence of the form:

0—G —F—E&—0,

where F is a sum of some bundles, whose projectivisations we know. Hence
P(€) can be embedded into P(F) “by means of G” and P(F) is easy to
describe. Moreover we already know the good supporting divisor Dg and we
know that it is globally generated. Hence it defines a morphism, which in all
our cases occurs to be the contraction ¢ (usually even if Dg is generated by
global sections one has to take its Stein factorization to obtain a contraction
of extremal ray). These remarks allow us to give a completes description of
P(&) and the contraction ¢.

For the convenience of the reader we give here a complete description
of projectivizations of Fano sheaves over P3 and more interesting examples
among others.

9.1. Complete description of P(€) for sheaves on P3.
We use here notation from theorems 4.4, 5.2 and 6.2.

9.1.1. (Divisorial contractions) In this case one can easily compute
all important invariants of contraction and of manifolds X and Y. Basic
informations are gathered in the following table (numbers in the table are
the same as that from theorem 4.4):
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No.| Dg E  |ATA(Y, A)[dim ¢(E)[deg ¢(E) [RO(Dg)
1 | ¢+H| ¢ 1] o 0 1 5
2 |6+H| ¢—H 1 0 1 11
3 |6+2H| ¢—H |271| 7 0 1 21
4 |6+H| ¢ 2| 0 1 1 6
5 |[6+2H| ¢+H |3 1 1 1 6
6 [E+2H| ¢ |12| 4 1 1 12
7 |6+2H| ¢+H |5 1 2 2 8
8 |6+2H|26+3H| 2| 0 2 5 6
9 |6+2H| £+H |4] 1 2 1 7
10 |E+2H[3¢+5H| 1| 0 2 6 5

Because in all cases A(Y,A) = g(Y, A) in the table there is no separate
place for g(Y, A).
A description of the manifold P(€):

1. A blow up of P* along a point, Y = P4,

2. A blow up of the cone Y in P19 over Veronese embedding P? — P%

l0@)]
along its vertex (a point),

3. A blow up of the cone Y in P?° over Veronese embedding P3 | C‘)—(g)l PP

along its vertex (a point),
4. A blow up of Y = Qq along a line P!,

5. As one can easily see P(O(1) & O?) is also a Fano manifold, which
contains P(£) as a divisor of type (2,1) (i.e. P(£) € [{01)p02) +2H])-
P(O(1) ® 0?) is a blow up of P? along a line L. Because the trace of
linear system |{o(1ya02) + 2H|p(¢)| is a complete linear system |Dg|,
so the restriction of a contraction ¢: P(O(1) @ 0?) — P? to P(€) is
also a contraction: ¢'|p(gy = ¢. The image ¢(Y') is a hypercubic in
P5 (see the table) and the exceptional divisor E of ¢ is contracted
onto a line L (because it is 1-dimensional). Because DpEH? = 2 it
follows that all fibers of map ¢|g are 2-dimensional quadrics (possibly
singular).

6. P(€) is a divisor of type (1,1) in P(O(2) ® O?) (a blow up of the cone

in P! over P3 | — P9 along a “vertex” L = P!). Similarly as above

0(2)]
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one can see that Y is a divisor in this cone, containing line L, as an
image of the exceptional divisor E.

7. A complete intersection of two divisors of types (0,1) in 7" = P(2(2) &
O(1)). This last manifold T is a Fano variety—a resolution of a ratio-
nal map ¢: G(1,4) — P3. If we fix a hyperplane H in P* then the map
q can be easily described: it sends a line [ to its intersection with this
hyperplane. T admits two contractions: one onto P3 and the other
(which is a blow up along G(1,H) = 4-dimensional quadric) onto a
Grassmanian G(1,4). Now it is easy to see that E is contracted onto
2-dimensional quadric in Y and all fibers of ¢|g are just P. It follows
that ¢ is a blow up of a smooth linear section of Grassmanian G(1,4)
along a smooth 2-dimensional quadric.

8. It is convenient to look at the cases a) and b) from theorem 4.4 at
the same time. In both cases P(£) is an intersection of two divisors
Dy € [éappsol and D; € [Eapyso + H] in PQ(2) ® 0). PQ(2) & 0)
is a joint of P2 and the incidence variety of lines in P3. The linear
system |{q2)p0| defines a contraction of P(£2(2) ® O) to a cone over
4-dimensional quadric G(1,3) (the section F corresponding to a trivial
factor of Q(2) @ O is contracted to a vertex P, while rest of fibers are
lines). The restriction of the morphism defined by this system to X
gives us contraction ¢: X — Y.

If D; contains F', then we obtain case b). In this case Dy cuts out a
plane on F, which is contracted to P, and Y is a cone over a smooth
3-dimensional quadric. ¢ has one 2-dimensional fiber and the rest
of non-trivial fibers are lines. One can also prove that the image of
exceptional divisor ¢(E) is a smooth surface of degree 5.

If Dy does not contain F', then we obtain case a). The other divisor Dy
cuts out line in F'; so all non-trivial fibers are 1-dimensional. It follows
that ¢ is a blow up of smooth quadric Y along a smooth surface of
degree 5.

One can show that this surface is a Del Pezzo surface embedded by
its anticanonical system into P5.

9. A complete intersection of two divisors of type (1,1) in P(O(1) @ O3)
(a blow up of P® along a plane P?). One can easily see that there
are no 2-dimensional fibers and ¢ is a blow up of a smooth complete
intersection of two hyperquadrics in P® along the plane.
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P(£) is a complete intersection of three divisors of type (1,1) in P3x P4
and ¢ is a projection onto the second component Y = P*. In this case
one can easily describe situation: X is given by three equations:

(%) > aigmiy; =0 k=123,
i’j

where x; are coordinates in P3, y; are coordinates in P* and aijk
are general coefficients. Over point [yo,...,ys] there is generically
one point (an intersection of three hyperplanes in P3), but if these
equations (x) are dependent, then we get P'. This last condition is
described by 4 equations of degree 3 in P*:

det a;ikyi) = 0, l=1,...4.
j#(zj: ijkY5)

Now it is easy to see that the surface ¢(E) is a blow up of P2 in 10
points and ¢ is a blow up of P* along this surface.

9.1.2. (Fiber contractions) In this case all necessary informations
be read off the form of sheaf £. Numbers coincide with that from

theorem 5.2.
A description of the manifold P(£):

1.
2.

P! x P3, Y = P!,

A divisor of type (0,1) in the incidence variety P(Q(2)); ¥ = Qz—
a complete description of this contraction can be found in [SzW1,
pp. 202-203],

An intersection of two divisors of types (1,1) in P2 xP3; ¢: X - Y =
P3 is the projectivisation of a sheaf of the same form as &,

A divisor of type (2,1) in P? x P2, Contraction ¢: X — Y =P?isa
quadric bundle.

. A divisor of type (1,1) in P2xP3; ¢: X — Y = P? is a projectivisation

of the bundle Tp2(—1) ® O on P? (see [SzW3, p. 89]),

. An intersection of two divisors of types (1,1) and (2,1) in P3 x P3.

Contraction ¢: X — Y = P3 is a projection onto the second factor
and it is a conic bundle.
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7. A divisor of type (3,1) in P3 x P?; all fibers of contraction ¢: X —
Y = P? are cubics in P3.

9.1.3. (Small contractions) From theorem 6.2 we have only one such
sheaf that the other contraction ¢: X — Y is small. In this case P(€) is a
divisor of type (1,1) in P(O(1)? ® O). This last manifold is Fano—it is a
blow up of the cone in P® over embedding P! x P2 < P7 along the vertex
(which is a point).

9.2. Some other examples of scrolls

9.2.1. Here we will study geometry of Fano sheaves over quadric Qs.
This is very easy for sheaves 1-8 from theorem 7.2, so we omit it. For others
cases we have the following table (numbers in the table correspond to these
from theorem 7.2):

No.| Dg E |AT[A(Y, A)[dim ¢(E)[deg ¢(E) [RO(DR)
9 [e+H| ¢ |4 1 1 1 7
10 |6+ H|3¢+2H| 1| 0 2 8 5
11|§+H|2+H|1| 0 2 4 6
12 |6+H| ¢ |5 1 2 1 8

A description of the manifold X = P(€):

9. X is a divisor of type (1,1) in M = P(O? @ O(1)). Manifold M is
Fano and has an extremal ray contraction (given by a linear system
502@0(1)) onto a cone with vertex L = P! over 3-dimensional quadric
Qs. A restriction of this contraction to X is again a contraction.
X is contracted onto the intersection of two quadrics in P® and the
exceptional divisor is contracted onto the line L. All non-trivial fibers
of ¢ are quadrics (because DpEH? = 2).

10. X is a divisor of type (1,1) in P(O @ S(1)) (ie. X € |fogsa) +
H|). This last variety has a contraction given by the linear system
|€oes()l- This contraction has one 3-dimensional fiber corresponding
to the trivial factor of O @ S(1) whereas all other fibers are lines. The
restriction of this contraction to X gives us contraction ¢ of X. It
is a divisorial contraction with one 2-dimensional fiber (all other non-
trivial fibers are lines). This 2-dimensional fiber is a quadric, which
is either smooth or singular (a cone over plane conic). Moreover both
this cases occur as can be seen by considering a degeneracy locus. In

https://doi.org/10.1017/50027763000025095 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025095

FANO 4-FOLDS WITH SCROLL STRUCTURE 173

this case the exceptional divisor is contracted onto a singular surface
(non-normal) of degree 8.

First we will prove that in cases 11 and 12 there are no 2-dimensional
fibers. Let’s on the contrary assume that there is such fiber F. In
both these cases we have exact sequence of the form:

0 —0—F —&—0,

for some bundle F. Then we know all the possibilities for F (see
[AW2]). Equality H - C = 1 for curves contracted by ¢ then implies
H|r = Op(1) and so p|p: F' — p(F') is an isomorphism. Because there
are no P?’s in Q3 we conclude that F is a quadric (possibly singular).
Moreover there exists a section of p|r, which corresponds to a bundle
epimorphism:

Flpry = Opry = 0.

But F*|,r) has no sections so our assuption was false.

We proved that there are no 2-dimensional fibers, so ¢ is a blow up of
a smooth 4-fold along a smooth surface. Now we will study cases 11
and 12 separately.

11. X is a blow up of a smooth 4-dimensional quadric along a surface of
degree 4. One can also prove that this surface is an intersection of two
quadrics naturally embedded in Q4.

12. One can easily see that X is a blow up of a smooth linear section of
Grassmanian G(1,4) < P? along a plane P? (see the table). It is also
a smooth divisor from the linear system [{o(1)gs(1)| in P(O(1)®S(1)).

9.2.2. Among all other scrolls the only non-trivial case is case 5 from
theorem 8.2. The geometry of this last scroll is fairly complicated and
partially described in [SzW4]. In this case P(F) is a blow up of P* along
a Veronese surface. One can also find the normal bundle of this surface in
P* (using classification of weak Fano bundles on P?; see theorem 3.2). It
is (O(1) @ 0%)/O(-2). Projectivisation of this bundle is the exceptional
divisor, which occurs to be the incidence variety of lines in V.

Appendix: Fano bundles of rank 2 on P? and on Fano threefolds.

A.1. Let € be a Fano bundle of rank 2 on P2 and let ¢: P(€) — Y be the
“other” contraction of an extremal ray. Set Dp = +uH = ¢*A, u € Q—a
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good supporting divisor and assume that ¢1(£) =0, 0 < cz(€) < 6—we can
do that because otherwise we use [SzZW2, fact 2.3]. It can be easily proved
that u > 0—compare with lemma 2.7. Write the table of intersections on
P(€):

H®=0, H¢=1, H&=0, & =-c.

Then:
D% =3u? — ca.

We know that ¢ is either fiber or divisorial (small contractions do not occur
for smooth 3-folds). We will consider these two cases separately:

a) ¢ is of fiber type. Then D% = 0, 0 < ¢z = 3u? < 6, hence u = 1
and c» = 3. Since DIZ%H = 2 we have dimY = 2 and Y is a smooth surface,
by classification of contractions from smooth 3-folds. But p(Y) = 1 and
A? < D(H = 2,50 A? =1 and A(Y,A) = dimY + A2 — hR(Y, A) = 0.
Hence [Fuj, theorem 1.5.10] implies that ¥ = P? and A = Op2(1). Then
E(1) is globally generated and it comes from the sequence:

0 — Op2(—2) — 0%, — £(1) — 0.

Remark. It is convenient but not strictly necessary to use classification
of contractions from smooth 3-folds. Instead it is sufficient to remark that
if A2 =2 we have A(Y, A) =1 and as above A is globally generated. Then
£ is as above, which is impossible.

b) ¢ is divisorial. Let E be the exceptional set of ¢; E is a positive
multiple of £ +vH, v € Q.

1. dim ¢(E) = 0. Then DrE = 0, so c; = —u? > 0, a contradiction.

2. dim¢(FE) = 1. Applying theorem 4.2 we obtain u = 1 and from
D% =3—c2 >0, cy < 2. This case is easy—see [SzW2, 2.3].

A.2. Classification of rank 2 Fano bundles on P3 follows from the-
orems 4.4, 5.2 and 6.2 in proofs of which we used only “easy” part of
classification of these bundles—when £ is normalized and ¢y < 1. Note
that in fact proofs can be simplified in case of bundles. Namely, divisorial
and fiber contractions can be obtained only by computing Chern classes
and small contractions can be derived only from equality (6.2.2.2), which
reduces to the equality 4d* — d® + 1 = 0 which does not have integral solu-
tions. Also classification of Fano bundles on Qg is much easier than that of
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bundles: we can easily compute all possible Chern classes (note that it was
really the problem when only vector bundle techniques were used—[SzW1]).
The classification of other ruled 4-folds is described in the paper (relevant
computations are much easier than for sheaves).
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