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The interferometric mapping of astronomical objects relies on the van-Cittert 
Zernike theorem, one of the major results of the theory of partially coherent light [see, Bom 
and Wolf (1980), chapter 10]. This theorem states that the degree of spatial coherence of the 
field from a distant spatially incoherent source is proportional to the Fourier transform of 
the intensity distribution across the source. Measurement of the degree of spatial coherence, 
by, for example, measuring the visibility of interference fringes, allows the object to be 
mapped by making an inverse Fourier transform. (For a full description of this technique 
see Thompson, Moran and Swenson, 1986.) 

In this paper I present a summary of the results an investigation into what happens 
when the distant source is not spatially coherent (James, 1990). Using a heuristic model of a 
spherically symmetric partially coherent source, an analytic expression for the error in the 
measurement of the effective radius, expressed as a function of coherence area, can be 
obtained. 

The coherence function of a statistically stationary random scalar field is defined by 

r ( r r r 2 , x ) = < V ( r r t + t ) V ( r 2 > t ) > 

where the angular brackets denote ensemble averages, and V(r,t) is the complex analytic 
signal representation of the real valued field, for example, a Cartesian component of the 
electric vector [see Born and Wolf (1980) sec. 10.2]. We assume that V(r,t) obeys an 
inhomogeneous wave equation, 

v V . O - i ^ P ' 0 =-47cQ(r,t), 
c2 3t2 

where c is the speed of light and Q(r,t) is a random primary source distribution. It will be 
useful to employ the cross-spectral density function 

oo 

W(rrr2,co) = ^ r(r
v
r
r
x )exp(i<oc) dx . 

Coherence theory in the space-frequency representation, instead of the traditional space-time 
domain, has proved to be very useful for analysis of problems of this type. Two quantities 
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of interest in the measurement of radiation fields can be obtained from the cross-spectral 
density function directly. The spectral intensity of the field at the point r is given by 
S(r,co)=W(r,r,(fl) and the degree of spatial coherence at frequency co is defined as [Mandel and 
Wolf (1976)] 

^ ( r r r 2 , co ) = 
W(rrr2,co) 

^ W ( r r r r a » W(r2,r2,co) 

The modulus of the degree of spatial coherence is equal to the visibility of fringes obtained in 
an interference experiment carried out with narrowband spectral filters centred at the frequency 
to (Wolf, 1983). 

It can be shown that the cross-spectral density of the far-zone field is given by the 
formula [see Carter and Wolf (1981a)] 

(~) 
W (r1s1,r2s2,<D) = 

exp[ik(r -r )] ff 3 3 

r r JJ W Q ( r i ' T2 ' ^ exp[-ik(s1.r'1- s2.r'2)] d r ' l d r 2 ' 

where k= (o/c= 2JI/X, r.s- and r2s, are the position vectors of two far zone points defined 
with respect to an origin in the vicinity of the source (s1 and s, being unit vectors) and 
WQ(r,j,r*2,«o) is the cross-spectral density of the primary source distribution Q(r,t). The 
spatial integration is taken twice independently over the source domain. 

We will now consider a Schell model source (Schell, 1967). Sources of this type 
have a degree of spatial coherence which is a function of the difference r ' .-r '- , only; the 
cross-spectral density is therefore of the form: 

W Q ( r ' , r 2 , co ) = y S Q ( r ; , c o ) S Q ( r 2 , c o ) ^ ( r ' - r ; ,co) , 

where SQ(r',co) is the spectral intensity of the source distribution and UgOr'.-r' ,co) is its 
degree of spatial coherence at frequency co. We will choose for the spectral intensity a 
Gaussian function, 

( r ^ SQ(r,co) = I0(co) e x p - — 

I 2 a J 

where a is its effective radius of the source. We will model the degree of spatial coherence of 
the source also by a Gaussian function: 
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HQ(r\co) = exp 
f ,2} _r 

2c2 

where o is the effective coherence length at frequency (0 of the fluctuating source 
distribution. 

Substituting and performing the integration (for details, see Carter and Wolf, 1981b; 
James, 1990) we find that the degree of spatial coherence in the far zone is given by 

( 
.<-) H' '(r1s1,r2s2,(0) = exp -(2rc) 

2 a 2 5 2 (u2+v2) 
\ 

o2 2r 
exp(-i27C\v) 

1 J 

where 

82 4az o 2 ' 

and the baseline vector is given by b = *-p\*'£i = X(u,v,w). Ignoring the geometric delay 
term as we are not interested in the position of the source but only in its dimensions and 
neglecting the effect of antenna response the visibility pattern measured in the u,v plane is, 
therefore, 

/ 

1 (̂u,v) = exp (2TC) 
2 a 2 8 2 (u2+v2) 

\ 

V 
o2 2r 

1 J 

The measured intensity distribution is (see Thompson et. al., Eq.(4.6) with antenna and 
geometric effects neglected) 

m ,r\) s JJ ^(u, y) exp i27i(^u + riv) du dv 

J_ 
2K 

rcr^ 
a8 exp 

f ofl?G2+Tft 
a5 

where \ and T\ are the angular coordinates of position on the celestial sphere. We see that the 
measured radius, a , (i. e. the half width meas v 

actual radius of the source, a; more precisely 

measured radius, a , (i. e. the half width of the Gaussian function) is smaller than the meas v 
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a meas _5_ 
a 

1+-
o2 A -1/2 

4az 

Fig.l A graph of the ratio of measured radius to actual radius (a /a) as a function 

of the ratio of the spatial coherence length of the source to the actual radius (a/a). 

In conclusion, these calculations indicate that spatial coherence effects can effect the 
interferometric measurement of the radius of an object It should be noted that this error will 
not occur in the images produced by conventional imaging telescopes. 
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Peter Dewdney: Can the presence of an intervening scattering medium 
provide spatial coherence, and if so, can these methods discussed in your talk 
be applied to calculate errors, etc.? 
D. James: For non-forward scattering, weak scatterers are analogous to 
primary sources so that, if the incident light and the scattering medium are 
both highly correlated, the scattered light will be also. For multiple scattering 
(i.e. optically thick scattering media). I believe that the scattered light has 
correlation lengths which are small (of the order of a wavelength). 
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