GENERALIZED MATRIX ALGEBRAS

W. P. BROWN

1. Introduction. The algebras considered here arose in the investigation of an algebra connected with the orthogonal group. We consider an algebra \mathfrak{A} of dimension mn over a field K of characteristic zero, and possessing a basis $\{e_{ij}\}$ $(1 \leq i \leq m; 1 \leq j \leq n)$ with the multiplication property

$$e_{ij}e_{pq} = \phi_{jp}e_{iq}, \qquad \phi_{jp} \in K.$$

The field elements ϕ_{ij} form a matrix $\Phi = (\phi_{ij})$ of order $n \times m$. It will be called the multiplication matrix of the algebra relative to the basis $\{e_{ij}\}$.

Such algebras will be called generalized matrix algebras. If m=n and $\phi_{ij}=\delta_{ij}$ (the Kronecker delta) we have a total matrix algebra.

An element b of \mathfrak{A} has an expression in terms of the basis $\{e_{ij}\}$ of the form

$$b = \sum_{i=1}^{m} \sum_{j=1}^{n} b_{ij} e_{ij}, \qquad b_{ij} \in K.$$

The correspondence $b \to B = (b_{ij})$ is a one to one correspondence between the elements of \mathfrak{A} and the set of $m \times n$ matrices over K. If $a \in \mathfrak{A}$ and $a \to A = (a_{ij})$, then

$$ab = \sum_{i,j} a_{ij} e_{ij} \sum_{p,q} b_{pq} e_{pq}$$

= $\sum_{i,q} \left(\sum_{j,p} a_{ij} \phi_{jp} b_{pq} \right) e_{iq}$.

It follows that the product ab corresponds to the matrix $A \Phi B$; $ab \to A \Phi B$. The most general change of basis of $\mathfrak A$ may be effected by a transformation of the type

(2)
$$f_{ij} = \sum_{\lambda=1}^{m} \sum_{\mu=1}^{n} \sigma_{ij}^{\lambda\mu} e_{\lambda\mu}, \qquad \sigma_{ij}^{\lambda\mu} \in K$$

 $(1 \le i \le m; 1 \le j \le n)$. We use double suffix notation with lexicographic ordering to describe the matrix of this transformation. The element of its (ij)th row and $(\lambda \mu)$ th column is $\sigma_{ij}^{\lambda \mu}$. The elements f_{ij} of $\mathfrak A$ constitute a basis for $\mathfrak A$ if and only if this matrix is non-singular. We consider however a special type of transformation, namely:

$$f_{ij} = \sum_{\lambda=1}^{m} s_{i\lambda} e_{\lambda j}, \qquad s_{i\lambda} \in K.$$

This may be written in the form of (2) by setting $\sigma_{ij}^{\lambda\mu} = s_{i\lambda}\delta_{j\mu}$. This is the element of the (ij)th row and $(\lambda\mu)$ th column of the Kronecker product $S \times I$ where S is the $m \times m$ matrix (s_{ij}) and I is the $n \times n$ unit matrix. It follows

Received November 2, 1953.

¹The algebra concerned is ω_f^n . For definition see (1) and (2, chap. V, 5).

that the elements f_{ij} in (3) constitute a basis for \mathfrak{A} , if and only if $S = (s_{ij})$ is non-singular.

The nature of the multiplication rule is preserved under transformations of the type occurring in (3). Indeed

$$\begin{split} f_{ij}f_{pq} &= \sum_{\lambda} s_{i\lambda}e_{\lambda j} \sum_{\mu} s_{p\mu}e_{\mu q} \\ &= \sum_{\lambda,\mu} s_{i\lambda}s_{p\mu}\phi_{j\mu}e_{\lambda q} \\ &= \left(\sum_{\mu} s_{p\mu}\phi_{j\mu}\right) f_{iq}, \end{split}$$

by (3). Hence $f_{ij}f_{pq} = \psi_{jp}f_{iq}$ where $\psi_{jp} = \sum_{\mu}\phi_{j\mu}s_{p\mu}$. Relative to the new basis $\{f_{ij}\}$, the algebra has therefore the multiplication matrix $\Psi = \Phi S^T$, where S^T denotes the transpose of S.

We make a further change of basis, namely

$$g_{ij} = \sum_{\lambda=1}^{n} f_{i\lambda} r_{\lambda j}, \qquad r_{\lambda j} \in K,$$

 $(1 \le i \le m; 1 \le j \le n)$. Again the elements g_{ij} of \mathfrak{A} constitute a basis if and only if the $n \times n$ matrix $R = (r_{ij})$ is non-singular. The multiplication rule is again transformed;

$$g_{ij}g_{pq} = \theta_{jp}g_{iq}$$
 where $\theta_{jp} = \sum_{\lambda} r_{\lambda j}\psi_{\lambda p} \in K$.

Relative to the basis $\{g_{ij}\}$ the algebra has the matrix $\theta = R^T \Phi S^T$.

If Φ has rank r, non-singular matrices R and S may be chosen so that the $n \times m$ matrix Θ is

$$\Theta = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix},$$

where I_r is the $r \times r$ unit matrix and all other submatrices of θ are zero. A basis such as $\{g_{ij}\}$, relative to which the multiplication matrix has this simple form, will be called a special basis. While the types of transformation used preserve the rank of the multiplication matrix, it has not yet been demonstrated that the rank of a multiplication matrix is an invariant for \mathfrak{A} . This, however, will be obvious later.

2. The structure of generalized matrix algebras. We now assume that a special basis has been chosen for $\mathfrak A$ and that the multiplication matrix Φ has the special form of Θ above and has rank r. Suppose that an element $b \in \mathfrak A$ has a matrix B whose partitioned form is

$$B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix},$$

the dimensions of the submatrices being $r \times r$ for B_1 , $r \times n - r$ for B_2 , $m - r \times r$ for B_3 and $m - r \times n - r$ for B_4 .

The radical of A consists of all elements that are properly nilpotent, i.e. all elements b of $\mathfrak A$ such that for every $a \in \mathfrak A$, ab is nilpotent. The matrix cor-

190 w. p. brown

responding to the tth power of b is $(B\Phi)^{t-1}B$. It follows that b is nilpotent if and only if $B\Phi$ is a nilpotent matrix.

Let a and c be elements of $\mathfrak A$ whose matrices are A and C respectively. The matrix of the product abc is the product of matrices $A \Phi B \Phi C$. Now suppose $B_1 = 0$. Then

$$\Phi B \Phi = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & B_2 \\ B_2 & B_4 \end{pmatrix} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} = 0.$$

It follows that b is properly nilpotent and has index of nilpotence ≤ 3 .

On the other hand, for b to be properly nilpotent it is necessary that the matrix $A \Phi B \Phi$ be nilpotent for all matrices A.

$$A \Phi B \Phi = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \begin{pmatrix} I_7 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix} \begin{pmatrix} I_7 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} A_1 B_1 & 0 \\ A_3 B_1 & 0 \end{pmatrix}$$

The *t*th power of this matrix has $(A_1B_1)^t$ in the first submatrix position. It follows that b is properly nilpotent only if A_1B_1 is nilpotent for all $r \times r$ matrices A_1 . This can only occur if $B_1 = 0$. Hence the radical of \mathfrak{A} consists of all those elements b whose matrices relative to a special basis, have their first submatrix zero.

A Wedderburn decomposition of $\mathfrak A$ into a direct sum of a semisimple subalgebra $\mathfrak B$ and the radical $\mathfrak A$ is now clear. $\mathfrak B$ consists of all elements b of $\mathfrak A$ whose matrices relative to a special basis, have the submatrices B_2 , B_3 and B_4 all zero. For such elements the mapping $b \to B_1$ is a ring isomorphism of $\mathfrak B$ onto the total matrix algebra of degree r over K. Hence $\mathfrak B$ is simple and r is an invariant of the algebra.

We see that a generalized matrix algebra is either simple $(m = n = \text{rank }\Phi)$ or is non semisimple and simple modulo its radical. If the algebra is simple it certainly possesses an identity element. On the other hand let the generalized matrix algebra \mathfrak{A} possess an identity element e so that ea = ae = a for all a in \mathfrak{A} . Let E and A be the corresponding matrices. We must have $E\Phi A = A\Phi E = A$ for all matrices A. Hence $E\Phi$ must be the $m \times m$ unit matrix and ΦE must be the $n \times n$ unit matrix. This can happen only if m = n and Φ is non-singular. The algebra is then simple. We restate the above result in a

Theorem. A generalized matrix algebra is either

- (i) simple, or
- (ii) non-semisimple and simple modulo its radical.

It is simple if and only if it possesses an identity element.

REFERENCES

- R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. Math., 38 (1937), 857.
- 2. H. Weyl, The classical groups (Princeton, 1946).

King's College, Aberdeen