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Z[
√

14] is Euclidean

Malcolm Harper

Abstract. We provide the first unconditional proof that the ring Z[
√

14] is a Euclidean domain. The

proof is generalized to other real quadratic fields and to cyclotomic extensions of Q . It is proved that

if K is a real quadratic field (modulo the existence of two special primes of K) or if K is a cyclotomic

extension of Q then:

the ring of integers of K is a Euclidean domain if and only if it is a principal ideal domain.

The proof is a modification of the proof of a theorem of Clark and Murty giving a similar result

when K is a totally real extension of degree at least three. The main changes are a new Motzkin-

type lemma and the addition of the large sieve to the argument. These changes allow application of

a powerful theorem due to Bombieri, Friedlander and Iwaniec in order to obtain the result in the

real quadratic case. The modification also allows the completion of the classification of cyclotomic

extensions in terms of the Euclidean property.

1 Introduction

Let K be an algebraic number field—a finite extension of Q . OK will denote the ring

of integers of K. As is usual we will say K is Euclidean when we mean that OK is a

Euclidean domain. In this paper we continue an investigation into which number

fields are Euclidean. Our initial target for investigation will be Z[
√

14]. The number

14 was the least d for which the Euclidean status of Q(
√

d) was unknown.

We will use a definition of Euclidean domain due to Samuel [18]. Essentially we

require a well-ordered way of measuring the size of β 6= 0 so that if β does not evenly

divide α we can nonetheless find a remainder whose size is less than the size of β.

Definition 1 Let φ be a map from the non-zero elements of OK into a well-ordered

set W . φ is a Euclidean algorithm for OK if for all α and non-zero β in OK there are γ
and ρ in OK with

α = γβ + ρ and

either ρ = 0 or φ(ρ) < φ(β).

OK is a Euclidean domain if and only if there is a Euclidean algorithm for OK .

The algorithm Euclid used in Z was the absolute norm map, φ(n) = |n|. Another

Euclidean algorithm for Z is φ(n) = [log2 |n|] where [x] is the integral part of x.

Samuel showed that for OK there is an algorithm φ into some well-ordered W

if and only if there is an algorithm φ ′ into N0, the non-negative integers. We will

consider only algorithms into N0.
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Originally the question of what K are Euclidean was posed as: For what fields K is

the absolute norm map φ(α) =
∣

∣NK/Qα
∣

∣ a Euclidean algorithm for OK ? We will call

such fields norm-Euclidean.

Weinberger [19] applied Hooley’s primitive root techniques [11] to the Euclidean

algorithm problem and showed the following proposition.

Proposition 1 Let K be a number field of class number one. Suppose OK has an

infinite unit group. Assuming a generalized Riemann hypothesis, OK is Euclidean.

Not only should Z[
√

14] be a Euclidean domain, but assuming a GRH (general-

ized Riemann hypothesis), outside of the imaginary quadratic fields, every number

field of class number one should be Euclidean.

In the 1980s Lenstra suggested that the unconditional (independent of the as-

sumption of a GRH) primitive root techniques of Gupta and R. Murty [5] should

be applied to the Euclidean problem. Gupta, R. Murty and K. Murty [6] found

a result for S-integers of K. Let K be a number field and let S be a finite set of

places of K including the infinite places S∞. OS is the ring of S-integers of K. Set

d = gcd{(NK/Q p) − 1 : p ∈ S \ S∞}.

Proposition 2 If K is Galois over Q , K has a real embedding or ζd ∈ K, and #S ≥
max{5, 2[K : Q] − 3} then OS is a Euclidean domain.

Gupta, Murty and Murty were thus able to provide the first examples of rings

OS that are Euclidean but not norm-Euclidean. Unfortunately the size of S required

precludes the application of their theorem to OK . Results for OK had to wait a few

more years.

Clark and R. Murty [3] provided results for K/Q totally real and Galois in 1995.

They replaced the above condition on the size of S by a condition requiring the exis-

tence of a suitably large set of admissible primes in OK . Admissible primes are defined

explicitly in the next section.

Proposition 3 ([3]) Let R be a PID whose quotient field K is a totally real Galois

extension of Q of degree n. If there is a set of s admissible primes of R with s ≥ |n − 4|+1

then OK is Euclidean.

When n = 2, that is when K is a real quadratic field, the proposition requires

s ≥ 3. However for any real quadratic field s can be at most 2. The proposition

cannot be applied to real quadratic fields. Clark and Murty point out that their the-

orem implies that Z[
√

14, 1/p] is Euclidean when p = 1298852237. Actually it is

straightforward to combine the result of Clark and Murty with that of Gupta, Murty

and Murty (Proposition 2) and show that Z[
√

14, 1/p] is Euclidean for any p [7].

Here we modify the approach of Clark and Murty to prove that Z[
√

14] is Eu-

clidean. We then apply the modified proof to other real quadratic fields and to cyclo-

tomic fields.

Theorem A Z[
√

14] is a Euclidean domain.
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Theorem B Suppose K/Q is a real quadratic field. If OK is a PID and contains a set of

two admissible primes then OK is a Euclidean domain. If the discriminant of K does not

exceed 500 then OK is Euclidean if and only if it is a PID.

Theorem C Z[ζd] is a Euclidean domain if and only if it is a principal ideal domain.

Contrasting the method here with the method of Clark and Murty suggests a

means of attack on the Euclidean algorithm problem in general Galois extensions

of Q . M. Ram Murty and this author prove in a forthcoming paper that for K/Q

Galois with unit rank exceeding 3, OK is Euclidean ⇐⇒ it is a PID [9].

2 Motzkin’s Lemma

Motzkin [16] provided a characterization of Euclidean domains. It was originally

used to show that the rings of integers of the number fields Q(
√
−19), Q(

√
−43),

Q(
√
−67) and Q(

√
−163) are not Euclidean for any algorithm. Samuel [18] sug-

gested that the characterization might be used to show that some rings are Euclidean.

In his paper, Samuel singled out Z[
√

14] as the ring on which these methods should

be tested. Based on heuristic reasoning inspired by an appropriate generalization of

Artin’s primitive root conjecture, he was led to speculate that Z[
√

14] is Euclidean.

(It is easy to see that Z[
√

14] is not norm-Euclidean.)

Definition 2 (Motzkin’s Construction) Let R be an integral domain. Define A0 to

be the unit group of R, that is A0 = R×. For n ≥ 1, successively define An as the set of

all non-zero elements β in R such that every non-zero residue class modulo βR has a

representative in An−1. That is:

An =
{

β ∈ R \ 0 : An−1 ∪ {0} onto−−−→ R/(βR)
}

;

define A =

⋃

n≥0

An.

Proposition 4 (Motzkin’s Lemma) R is Euclidean if and only if every non-zero ele-

ment of R is in A.

Proof Proofs appear in Motzkin [16] and Samuel [18] for example.

In the case of a real quadratic field, Motzkin’s set A1 consists of irreducibles π such

that some fundamental unit generates all of the non-zero residue classes (mod π).

This is suggestive of Artin’s primitive root conjecture which Hooley proved under

the assumption of a generalized Riemann hypothesis. In the light of Hooley’s condi-

tional resolution of Artin’s primitive root conjecture [11], one can ask when we can

expect that the full ring of integers, OK , of an algebraic number field K is Euclidean.

Surely a necessary condition is that the ring OK be a principal ideal domain (PID).

That this condition is sufficient (when K is not an imaginary quadratic field) is a

remarkable prediction of the generalized Riemann hypothesis (GRH). This is Wein-

berger’s theorem. More precisely, he proves unconditionally:
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Proposition 5 If OK is a PID and all primes of OK are in A2 then OK is Euclidean.

Proof This is shown by applying Motzkin’s lemma, Proposition 4 and an analog

of Dirichlet’s theorem on primes in arithmetic progressions for number fields. See

Weinberger [19].

He then shows, assuming GRH, that if OK has an infinite unit group then all

primes are in A2 (Proposition 1).

There have been several attempts to remove the dependence on a GRH from this

proposition. The first was a paper by Gupta, R. Murty and K. Murty [6] in which

they showed unconditionally that the ring of S-integers, OK,S, for a finite set S, is

Euclidean whenever OK is a PID and contains infinitely many units. In that paper,

we find the first examples of rings of S-integers of number fields which are Euclidean,

but not norm-Euclidean. In the particular case that K is a real quadratic field, they

show that OK,S is Euclidean whenever OK is a PID and #S ≥ 5.

The second attempt is due to Clark and R. Murty. They observed that the previous

argument can be modified by introducing what they call Wieferich primes. In the

case of a quadratic field K, these primes can essentially be characterized as primes π
satisfying:

(1) εN(π)−1 6≡ 1 (mod π2) where ε is the fundamental unit of K and

(2) the image of ε (mod π) generates the group (OK/π)
×

.

Their terminology is motivated by an old theorem of Wieferich, namely, if p is a

prime such that 2p−1 6≡ 1 (mod p2) then xp + y p
= zp has no solutions with

(p, xyz) = 1.

These Wieferich primes seem to play an important role in the study of Euclidean

rings. In this paper, we will call them admissible sets of primes.

Definition 3 (Admissible Sets of Primes) Let π1, . . . , πs ∈ OK be distinct non-

associate primes. {π1, . . . , πs} is an admissible set of primes if for all β = πa1

1 · · ·πas
s ,

with ai ∈ N0, every coprime residue class (mod β) can be represented by a unit of OK .

If r is the rank of O
×
K modulo torsion, then the number of elements in an ad-

missible set of primes satisfies s ≤ r + 1. To see this recall that by Dirichlet’s unit

theorem

O
×
K ' WK ⊕ Z

r

where WK is the finite group of roots of unity in K. Thus
(

OK

/

(πa1

1 · · ·πas
s )

)×
must

be generated by r + 1 elements. Since

(

OK

/

(πa1

1 · · ·πas
s )

)× '
⊕

1≤i≤s

(

OK

/

(πai

i )
)×
,

by the Chinese remainder theorem we must have s ≤ r + 1. Heuristics suggest that

s = r + 1 can always be attained.

To check if {π1, . . . , πs} is admissible it will usually suffice to check whether ev-

ery coprime residue class of β = π2
1 · · ·π2

s can be represented by a unit. This is a

proposition on page 160 of the paper of Clark and Murty [3].
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Proposition 6 Let π1, . . . , πs ∈ OK be distinct non-associate primes. Further suppose

that each πi is unramified and of odd prime norm. If every coprime residue class modulo

π2
1 · · ·π2

s contains a unit then {π1, . . . , πs} is an admissible set of s primes in OK .

Clark and Murty combine Proposition 6 with the following proposition to show

certain totally real Galois extensions are Euclidean but not norm-Euclidean. They

give examples of quartic and cubic extensions to which their theorem applies. In his

thesis [2] in 1992, Clark gave examples of totally real, quartic, Galois extensions that

were Euclidean, but not norm-Euclidean. These were the first examples of number

fields K that are Euclidean, but not norm-Euclidean.

The Motzkin variant used by Clark and Murty is:

Proposition 7 Let A0 be the monoid generated by the unit group and an admissible set

of primes. Complete the construction of the An as in Motzkin’s construction, Definition 2,

above. If every prime of OK lies in A2 then OK is Euclidean.

In essence, Clark and Murty are boosting the size of the starting set in the con-

struction by identifying certain special primes that act enough like units that a variant

of Motzkin’s lemma goes through. With more degrees of freedom in A0 it is possible

for them to show that all of the primes of OK are in A2 for certain fields where this

was not possible before.

3 A Variation of Motzkin’s Lemma

Notice that while the constructions of An used by Weinberger and by Clark and Murty

use arbitrary elements of OK , the hypotheses of Propositions 5 and 7 consider only

the primes of OK . Some gain can be made by considering only the primes during the

construction. This motivates:

Definition 4 (The Construction of B) Let B0 be the monoid generated by the unit

group and an admissible set of primes. For n ≥ 1, successively define Bn as the

set of all primes π of OK such that every non-zero residue class modulo (π) has a

representative in Bn−1 ∪ B0. That is:

Bn = {primes π ∈ OK : Bn−1 ∪ B0
onto−−−→ (OK/π)

×}.

Now let B =
⋃

n≥0 Bn.

Our main result here is:

Lemma 1 Let OK be a principal ideal domain. If all primes of OK are in B then OK is

Euclidean.

Proof We shall use Proposition 4, Motzkin’s lemma. To show that a non-zero β is in

A, it suffices to show that every non-zero residue class (mod β) has a representative

in A. We can draw this conclusion since OK has finite norms.
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We will proceed by induction. Let Ω0(β) count those prime divisors of β that are

in B0 according to their multiplicity and let Ω1(β) count those prime divisors that

are not in B0. Define λ on the prime elements of OK by

λ(π) =

{

0, if π ∈ B0;

n, if π ∈ Bn \ Bn−1.

Extend λ to all non-zero β ∈ OK by complete additivity. For example, if β =

πa1

1 · · ·πas
s then

λ(β) =

∑

i

aiλ(πi), Ω0(β) =

∑

πi∈B0

ai , and Ω1(β) =

∑

πi /∈B0

ai .

Ω0, Ω1 and λ are all well-defined since each Bn is closed under the taking of associates;

since the Bn, n ≥ 1, form an increasing sequence of sets; since all of the primes of OK

are in B by hypothesis; and by unique factorization in OK .

Now induct on
(

Ω1(β),Ω0(β), λ(β)
)

ordered lexicographically. If β ∈ O
×
K then

(

Ω1(β),Ω0(β), λ(β)
)

= (0, 0, 0) and β ∈ A by definition. Suppose β ∈ OK is

neither zero nor a unit. Let α (mod β) be a non-zero residue class (mod β). We

will exhibit an α ′ ≡ α (mod β) that precedes β in the ordering. By the induction

hypothesis if α ′ precedes β then α ′ ∈ A so α (mod β) has a representative in A.

Assume first that α and β are coprime. There are various cases:

β ∈ B0; that is Ω1(β) = 0 and Ω0(β) ≥ 1:

By the definition of B0, we can representα (mod β) by a unitα ′ so that Ω1(α ′) =

0 and Ω0(α ′) = 0.

β is a prime not in B0; that is Ω1(β) = 1 and Ω0(β) = 0:

α (mod β) can be represented by an element of B0 so that Ω1(α ′) = 0 or by a

prime preceding β in which case Ω1(α ′) = 1, Ω0(α ′) = 0 and λ(α ′) < λ(β).

Otherwise Ω1(β) = 1 and Ω0(β) ≥ 1 or else Ω1(β) ≥ 2:

We use an analog of Dirichlet’s theorem on primes in arithmetic progression for

number fields to find a prime α ′ representingα (mod β). Either Ω1(α ′) = 1 and

Ω0(α ′) = 0 (when α ′ /∈ B0) or Ω1(α ′) = 0 and Ω0(α ′) = 1 (when α ′ ∈ B0).

In each case there is an α ′ ≡ α (mod β) with α ′ preceding β under our ordering.

If gcd(α, β) = δ 6= 1, we can find an α ′/δ representing α/δ (mod β/δ) with

α ′/δ preceding β/δ as above. But then α ′ represents α (mod β) while α ′ precedes

β since each of Ω1, Ω0 and λ is completely additive. The only possible exception is

when β/δ is a unit, but then α (mod β) is the zero class which we need not consider.

This completes the proof.

4 Application of the Large Sieve

Lemma 1 shows that we only need to prove that all primes are in B in order to show

that OK is Euclidean. We next derive a numerical criterion to prove this. Our main
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tools are the large sieve method in number fields as derived by Wilson [20] and an

estimate due to Gupta and Murty [5].

For the remainder of this paper we will always take OK to be a PID. If S ⊆ OK then

S will denote the set of ideals generated by elements of S, S = {αOK : α ∈ S}. For S

a set of ideals, S(x) is the set of those ideals in S whose norm does not exceed x, that

is S(x) = {a ∈ S : Na ≤ x}. For example, B1(x) = {(β) : β ∈ B1 and |Nβ| ≤ x}.

Our next result is:

Lemma 2 If #B1(x) � x/ log2 x then OK is Euclidean.

Before we prove this lemma, we review the result of Gupta and Murty and the

large sieve inequality for number fields.

4.1 The Gupta-Murty Lemma

If M is a monoid in OK whose elements are coprime to an ideal a then under reduc-

tion mod a, the image of M forms a subgroup of (OK/a)
×

. fM(a) will denote the

order of this subgroup. If M is generated by a single element, M = 〈α〉, then fα(a)
denotes the order while if M = O

×
K we write f (a) for the order. In their work on

Artin’s primitive root conjecture Gupta and Murty provided a bound on the num-

ber of prime ideals p with fM(p) small in terms of the size of M. The number of

multiplicatively independent elements of M measures its size.

Definition 5 α1, . . . , αt ∈ K are multiplicatively independent if, for ai ∈ Z,

αa1

1 · · ·αat
t = 1 implies that all ai are 0.

The Gupta-Murty bound is:

Proposition 8 Let M be a monoid in OK . If M contains a set of t multiplicatively

independent elements then

#{p : fM(p) ≤ Y} � Y
t+1

t .

The implied constant depends only on K and M.

Proof See Lemma 6 of Clark and Murty [3] for a proof in the number field case.

4.2 The Large Sieve Inequality

Let A be any finite set of non-associated elements of OK and let P be any finite set of

non-ramifying prime ideals of K. Denote the cardinality of A by Z and the cardinality

of {β ∈ A : β ≡ α (mod p)} by Z(α, p). X and Q are bounds on the norms of all

the elements of A and P respectively.

That is X ≥ max
β∈A

|Nβ| and Q ≥ max
p∈P

Np.
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Proposition 9 (The Large Sieve in Number Fields)

∑

p∈P

(

Np
∑

α(mod p)

(

Z(α, p) − Z

Np

) 2
)

� (Q2 + X)Z

where the implied constant depends only on K.

Proof This is Wilson’s Theorem 1 [20].

ω(p) will denote the number of residue classes α (mod p) for which Z(α, p) = 0.

Then
∑

α(mod p)

(

Z(α, p) − Z

Np

) 2

≥ Z2ω(p)

Np2

and we deduce:

Corollary 9.1
∑

p∈P

ω(p)

Np
� Q2 + X

Z
.

4.3 The Proof of Lemma 2

We will show that #B2(x) ∼ x/ log x. This implies that all primes must be in B3, for

if not, say π /∈ B3. Then there is a residue class (mod π) which has no representative

from B2. This would contradict Dirichlet’s theorem. Hence by Lemma 1, #B2(x) ∼
x/ log x suffices to show that OK is Euclidean. Proving that #B2(x) ∼ x/ log x is

equivalent to showing that Bc
2, the complement of B2 in the set of prime ideals of

OK , satisfies

#B
c
2(x) = o(x/ log x).

This is what we show using the large sieve method.

We apply the large sieve as follows: Let A be a set of representatives of B1(x2). Let

Z = #A = #B1(x2), and set X = x2. Let P = Bc
2(x) so Q = x. By Corollary 9.1 and

the hypothesis on B1(x), we have

(1)
∑

p∈Bc
2(x)

ω(p)

Np
� x2

#B1(x2)
� log2 x.

Now we need a lower bound on ω(p) for p ∈ Bc
2 so that we can use (1) to estimate

#Bc
2(x). Recall that when reduced modulo p, the unit group forms a subgroup of

(OK/p)× and that f (p) denotes the size of this subgroup. Note that p ∈ Bc
2 means

some non-zero residue class mod p fails to have a representative in B1. Since B1

is closed under the taking of associates, if one non-zero residue class mod p is not

represented then at least f (p) non-zero residue classes mod p are not represented by

elements of B1. Thus for p ∈ Bc
2, ω(p) ≥ f (p).
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By the Gupta-Murty bound (Proposition 8),

# {p : f (p) ≤ Y} � Y 2

provided OK has a unit of infinite order. Thus,

#{p : Np ≤ x and f (p) ≤ Np
1
2
−ε} � x1−2ε

and so

(2) #{p : Np ≤ x and f (p) ≤ Np
1
2
−ε} = o(x/ log x).

On the other hand using equation (1)

log2 x �
∑

p∈B
c
2(x)

f(p)>Np
1
2
−ε

ω(p)

Np

≥
∑

p∈B
c
2(x)

f(p)>Np
1
2
−ε

f (p)

Np

>
∑

p∈B
c
2(x)

f(p)>Np
1
2
−ε

1

Np
1
2

+ε

>
#{p ∈ Bc

2(x) : f (p) > Np
1
2
−ε}

x
1
2

+ε
.

Thus

(3) #{p ∈ B
c
2(x) : f (p) > Np

1
2
−ε} = o(x/ log x).

Equations (2) and (3) together give

#B
c
2(x) = o(x/ log x) and so #B2(x) ∼ x/ log x.

B3 contains all primes and so by Lemma 1, OK is Euclidean. This completes the proof

of Lemma 2.

5 The Proof of Theorem A

We can now apply Lemma 2 to show that Z[
√

14] is Euclidean. We first exhibit an ad-

missible set of two primes for Z[
√

14]. Thus we will have three multiplicatively inde-

pendent elements in B0. The lower bound sieve then shows that #B1(x) � x/ log2 x

and hence that Z[
√

14] is Euclidean.
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We will apply the lower bound sieve using the techniques pioneered by Gupta and

Murty [5] in their work on Artin’s primitive root conjecture. These techniques were

first applied to the Euclidean algorithm problem by Gupta, Murty and Murty [6] and

then by Clark [2] and by Clark and Murty [3].

The key ingredients here are the Rosser–Iwaniec lower bound sieve with bilinear

form for the remainder terms; a Bombieri–Vinogradov type theorem of Bombieri,

Friedlander and Iwaniec to control the remainder terms in the sieve and allow sieving

past x
1
4 ; and the Gupta–Murty estimate on the number of p with fB0 (p) bounded, our

Proposition 8.

5.1 Admissible Primes in Z[
√

14]

ε = 15 + 4
√

14 is the fundamental unit of Z[
√

14]. Z[
√

14]
×

is generated by −1

and ε. Set π1 = 5 −
√

14 and π2 = 3 − 2
√

14.

Proposition 10 {π1, π2} is an admissible set of primes in Z[
√

14].

Proof Nπ1 = 11 and Nπ2 = −47 so π1, π2 are split primes in Z[
√

14]. The order

of ε (mod π2
1) is (10)(11) = 110 and its order (mod π2

2) is (46)(47)/2 = 1081.

Thus ε is a generator of
(

Z[
√

14]/(π1)2
)×

and −ε is a generator (mod π2
2). Since

gcd(110, 1081) = 1, ε1081 is a generator (mod π2
1) that is congruent to 1 (mod π2

2).

If ε1081a is the inverse of −ε (mod π2
1) then−ε1081a+1 is congruent to 1 (mod π2

1) but

generates
(

Z[
√

14]/(π2
2)

)×
. Thus by the Chinese remainder theorem, every coprime

residue class modulo (π2
1π

2
2) can be represented by a unit. By Proposition 6, {π1, π2}

is admissible.

5.2 The Lower Bound Sieve

To apply the lower bound sieve method, we will need the following results:

Definition 6 (Well-factorable) Let λ be an arithmetic function defined for 1 ≤
q ≤ Q. If for all Q1, Q2 ≥ 1 with Q1Q2 = Q there are arithmetic functions λi

defined for 1 ≤ q ≤ Qi with |λi(q)| ≤ 1 and

λ(q) =

∑

q1q2=q
qi≤Qi

λ1(q1)λ2(q2)

then λ is said to be well-factorable of level Q.

Let P be a set of primes and let A be a set of positive integers all of which are less

than or equal to x. For each ` ∈ P distinguish ω(`) residue classes (mod `). These

are the residue classes which will be sifted out of A. S(A,P, z) counts the number of

elements of A that do not lie in any of the distinguished residue classes for any ` ∈ P

with ` < z. It is the number of elements of A remaining after sifting.
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Let A` denote the set of those elements of A that belong to one of the distinguished

classes (mod `) and let Aq denote those elements that lie in some distinguished class

for all `|q. X is an approximation to the size of A so that

X
∏

`|q

ω(`)

`
approximates #Aq.

Call the error in the approximation rq, that is:

rq = #Aq − X
∏

`|q

ω(`)

`
.

If we choose X so that the remainder terms, rq can be controlled, Iwaniec’s bilinear

form of the remainder [12] gives:

Proposition 11 (The Lower Bound Sieve) For each ε, ε ′ > 0 there is an N depend-

ing on ε ′ and ε such that

S(A,P, xθ) ≥ X
∏

`∈P

`<xθ

(

1 − ω(`)

`

){

f
( 2θ + ε

θ

)

− ε ′
}

− R0 −
N

∑

n=1

Rn

for all x sufficiently large.

Here f is a well-known function, f (u) =
2eγ

u
log(u − 1) if 2 < u ≤ 4, so f (u) is

positive in this range.

R0 =

∑

q<x
1
4

∣

∣rq

∣

∣ and Rn =

∑

q

λn(q)rq

for some well-factorable functions λn of level x2θ+ε.

Proof See Iwaniec [12, Theorem 4].

The usual form of the Bombieri-Vinogradov theorem shows that R0 � x/ log3 x.

To control the Rn remainder terms we will need the following theorem of Bombieri,

Friedlander and Iwaniec [1]:

Proposition 12 Suppose a 6= 0, ε > 0 and Q = x4/7−ε. For any well-factorable

function λ(q) of level Q and any A > 0,

∑

(q,a)=1

λ(q)
(

ψ(x; q, a) − x

φ(q)

)

� x/ logA x.

Proof See Bombieri, Friedlander and Iwaniec [1, Theorem 10].
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Proposition 12 needs to be modified slightly in order to apply it here. Fouvry

[4, pp. 388 and 389] has sketched the process and Heath-Brown [10] has provided

details.

Proposition 13 Let gcd(a, k) = 1. For any q with gcd(q, k) = 1 let uq be a solution

of

uq ≡ a (mod k) and

uq ≡ 1 (mod q).

Fix A > 0 and θ < 4
7
. For every well-factorable function of level xθ

∑

gcd(q,k)=1

λ(q)
(

π(x; qk, uq) − li x

φ(qk)

)

� x

logA x
.

The implied constant depends on a, k, θ and A.

Proof This is Lemma 2 in Heath-Brown [10].

Applying Proposition 13 in Proposition 11, see Heath-Brown [10] for example,

we obtain:

Lemma 3 Suppose a and k are coprime integers. Set d = gcd(a − 1, k) and suppose

gcd
(

(a − 1)/d, d
)

= 1. The number of primes p ≤ x such that

p ≡ a (mod k) and

p − 1

d
is divisible only by primes ` exceeding x

2
7
−ε

is � x/ log2 x.

Proof The proof is identical to that of Heath-Brown’s Lemma 1 [10].

5.3 Completion of the proof

Now we can prove Theorem A:

Theorem A Z[
√

14] is a Euclidean domain.

Proof We apply Lemma 2 to the ring R = Z[
√

14] with B0 equal to the monoid

generated by the admissible primes π1 and π2 of Proposition 10 and the units of

Z[
√

14]. By Lemma 2, it suffices to show that #B1(x) � x/ log2 x. We deduce this

from Lemma 3. Indeed, setting a = 11 and k = 56 in Lemma 3 we have that the set

of p ≤ x with p ≡ 11 (mod 56) and `|(p−1)/2 implies ` > x
2
7
−ε has cardinality �

x/ log2 x. Since each p ≡ 11 (mod 56) splits in Z[
√

14], there are� x/ log2 x primes
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p of Z[
√

14] such that Np ≤ x and `|(Np − 1)/2 implies ` > x
2
7
−ε. fB0 (p) denotes

the order of the subgroup of (Z[
√

14]/p)
×

formed by reducing B0 mod p. p ∈ B1

if and only if fB0 (p) = Np − 1. By the choice of a and k, Np = p ≡ 3 (mod 4).

Since −1 ∈ B0, without loss of generality 2| fB0 (p) and so 2 - (Np − 1)/ fB0 (p).

(Np − 1)/ fB0 (p) equals one or exceeds x
2
7
−ε. In the latter case fB0 (p) ≤ x

5
7

+ε. By the

Gupta-Murty estimate, Proposition 8,

#{p : fB0 (p) ≤ x
5
7

+ε} � x( 5
7

+ε) 4
3 ,

since B0 has three multiplicatively independent elements. Choosing ε < 1/28 gives

the bound o(x/ log2 x) for the number of p with fB0 (p) ≤ x
5
7

+ε. Thus there are

� x/ log2 x primes p with Np ≤ x and fB0 (p) = Np − 1. #B1(x) � x/ log2 x and so

by Lemma 2, Z[
√

14] is Euclidean.

6 Real Quadratic Fields

We can generalize the result for Z[
√

14] to other real quadratic fields.

Theorem B Suppose K/Q is a real quadratic field. If OK is a PID and contains a set of

two admissible primes then OK is a Euclidean domain. If the discriminant of K does not

exceed 500 then OK is Euclidean if and only if it is a PID.

We will first prove a lemma, also useful for extending Theorem A to cyclotomic

fields.

Lemma 4 Suppose OK is a PID and contains a set of s admissible primes. Let r be the

rank of O
×
K modulo torsion and define d = max{d ′ : ζd ′ ∈ K}. If r + s ≥ 3 and if there

are a and k ∈ Z satisfying:

(1) gcd(a, k) = 1;

(2) gcd(a − 1, k) = d; and

(3) p ≡ a (mod k) implies there is a prime p of K with norm p

then OK is a Euclidean domain.

Proof We begin by noting that the conditions on a, k, d imply that gcd
(

(a−1)/d, d
)

= 1. To see this, let us observe that if a and k satisfy the conditions of the lemma,

then for any integer n, the number a ′
= a + nk will also satisfy the condition

gcd
(

(a ′ − 1)/d, d
)

= 1 provided n is suitably chosen. Indeed, the second condition

implies that a = 1 + dh for some h satisfying gcd(h, k/d) = 1. Then (a ′ − 1)/d =

h + nk/d can be taken to be a large prime by Dirichlet’s theorem for an appropriate

choice of n.

Our Motzkin variant, Lemma 1, holds for any K with class number one. Wilson’s

large sieve, Proposition 9, and the Gupta-Murty estimate, Proposition 8, hold for

arbitrary K so Lemma 2 also holds if OK is a PID.

If we examine the proof of Theorem A we see that the only places we used the fact

that OK = Z[
√

14] were:
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Norm Norm

d Euclidean d Euclidean

3 Yes 24 Yes

4 Yes 25

5 Yes 27

7 Yes 28

8 Yes 32 No

9 Yes 33

11 Yes 35

12 Yes 36

13 40

15 Yes 44

16 Yes 45

17 48

19 60

20 Yes 84

21

Table 1: Cyclotomic extensions of Q with class number one.

(1) the assumption that OK is a PID;

(2) the demonstration of the two admissible primes that allowed the construction

of B0 with three multiplicatively independent elements; and

(3) the choice of a = 11 and k = 56 above.

Identifying the properties of this choice of a and k that were used in the proof imme-

diately yields the result.

The Proof of Theorem B Apply Lemma 4. r = 1 so r + s = 3. By quadratic reci-

procity there are a and k in Z such that (a, k) = 1, (a − 1, k) = 2, and all p ≡ a

(mod k) split in K.

For the second assertion we need only verify the existence of the admissible primes

for all K with discriminant less than 500. This has been done by the author [8].

7 Cyclotomic Fields

We now apply Lemma 4 when K = Q(ζd), a cyclotomic extension.

Theorem C Z[ζd] is a Euclidean domain if and only if it is a principal ideal domain.

Proof When K = Q(ζd), OK = Z[ζd]. p splits completely in K if and only if

p ≡ 1 (mod d). To simplify the definition of k we can without loss of generality

take d to be even. Let k = d
∏

`|d ` and choose a (mod k) so that if `t‖d then a ≡
1 + `t (mod `t+1). The hypotheses of Lemma 4 are satisfied provided that r ≥ 3.

[Q(ζd) : Q] = φ(d) so if φ(d) ≥ 8, we can conclude that Z[ζd] is Euclidean if and
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only if it is a PID. The remaining K, Q(ζd) with φ(d) < 8, have been completely

characterized in terms of the Euclidean property. Lenstra [13] has shown that if

φ(d) ≤ 10 and d 6= 16, 24 then Z[ζd] is norm-Euclidean. Ojala [17] showed that

Z[ζ16] is norm-Euclidean in 1977 and Lenstra [14] showed the same for Z[ζ24] the

following year.

In fact, there are only 29 cyclotomic extensions of Q with class number one. 12

are known to be norm-Euclidean. Theorem C completes the classification of these

fields in terms of the Euclidean property. In Table 1, Yes indicates that the field is

norm-Euclidean, No indicates that it is not norm-Euclidean [15]. Notice that we

now have an example of a cyclotomic field (Q(ζ32)) that is Euclidean, but is not

norm-Euclidean.
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