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Cokernels of Homomorphisms from
Burnside Rings to Inverse Limits

Masaharu Morimoto

Abstract. Let G be a finite group and let A(G) denote the Burnside ring of G. Then an inverse limit
L(G) of the groups A(H) for proper subgroups H of G and a homomorphism res from A(G) to
L(G) are obtained in a natural way. Let Q(G) denote the cokernel of res. For a prime p, let N(p)
be the minimal normal subgroup of G such that the order of G/N(p) is a power of p, possibly 1. In
this paper we prove that Q(G) is isomorphic to the cartesian product of the groups Q(G/N(p)),
where p ranges over the primes dividing the order of G.

1 Introduction

Throughout this paper, let G be a finite group, let S(G) denote the set of all subgroups,
and let F be a conjugation-invariant lower-closed subset of S(G). Let P(G, F) denote
the cartesian product of the Burnside rings A(H) of H (cf. [3,4]), where H runs over &,
i.e., P(G,F) = [1ges A(H). For the sake of convenience, if F is the empty set, then by
P(G,JF) we mean the trivial group. Let res§ denote the restriction homomorphism
:A(G) » P(G,F); res§(x) = (res% x)peg for x € A(G). Let B(G,JF) denote the
ring with unit obtained as the image of resG: A(G) — P(G, F). As free Z-modules,
A(G) and B(G, J) are of rank cg(g) and cg, respectively, where cg () and cg are the
numbers of G-conjugacy classes of subgroups contained in 8(G) and F, respectively.
Let V be a real G-module containing a G-submodule isomorphic to R[G] ® R[G].
Then there is a canonical one-to-one correspondence from the set of all G-homotopy
classes of G-maps :S(V) — S(V) to the Burnside ring A(G) of G (¢f. [3, p. 157],
[8,§2]). For aset f = (fg) Her consisting of H-maps fz:S(V) = S(V'), we wonder if
there existsa G-map fg:S(V) - S(V) such that res? fg is H-homotopic to fy for all
H e F. An obstruction group O(G, F) of the existence problem is P(G, F)/B(G, F).
Let L(G, F) denote the subgroup

{x € P(G,F) | mx € B(G, F) for some positive integer m}.

By definition, L(G, ¥) is a ring with unit. By Corollary 2.2, we can describe L(G, F)
as an inverse limit of {A(H) | H € F}. Clearly, P(G,F)/L(G,F) is a free Z-module
and Q(G,F) = L(G,F)/B(G,F) is a finite module. Note that the exact sequence

0— Q(G,F) — 0(G,F) — P(G,F)/L(G,F) — 0
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splits, because P(G, F)/L(G, F) is Z-torsion free. We remark that B(G, F), L(G, ),
P(G,J),and Q(G, F) are modules over A(G). Let F(G) denote the set of all proper
subgroups of G, i.e., F(G) = 8(G) \ {G}, and set P(G) = P(G,F(G)), B(G) =
B(G,3(G)), L(G) = L(G,F(G)), and Q(G) = Q(G,F(G)). Y. Hara and the au-
thor found that for a nontrivial nilpotent group G, Q(G) is trivial if and only if G is a
cyclic group of which the order is a prime or a product of distinct primes (cf. [5, The-
orem 1.4]). M. Sugimura showed that Q(As) is trivial, where As is the alternating
group on five letters. Furthermore, we can show that Q(G) is trivial for any nontriv-
ial perfect group G (cf. [9, Corollary 1.5]).

For a prime p, let G{?} denote the smallest normal subgroup of G with p-power
index (cf. [7]). Let G™! denote the intersection of the subgroups G} where p ranges
the primes dividing |G|. Let kg denote the product of the primes p such that G{#} #
G. We can show that kg L(G) c B(G), i.e, k¢ Q(G) = 0 (¢f. [9, Corollary 1.5]).
For a Z-module M and a prime p, let M, denote the localization of M at p, i.e.,
M,y =S'M for S = {m e N | (m, p) = 1}. It is remarkable that Q(G) is isomorphic
to [T, Q(G) (), where p ranges over the primes dividing kg, and Q(G) ) is an el-
ementary abelian p-group, possibly the trivial group (cf. Corollary 3.7). In addition,
we note that the canonical map Q(G/G{**) - Q(G/G#}) ,y is an isomorphism.

The next feature of Q(G) is interesting.

Theorem 1.1 Let G be a finite group. For an arbitrary prime p, the finite module
Q(G) () is canonically isomorphic to Q(G/G'P}) ). Therefore, the equalities

Q(G) = [1Q(G)(p) = [TQUG/G) () = TTRUG/G™)/(GIG™) ) )
p p p
P
hold up to isomorphisms, where p ranges over the primes dividing k.

This theorem follows from Lemmas 4.1 and 4.2. Combining the theorem with [5,
Theorem 1.4], we immediately obtain the next corollary.

Corollary 1.2 Let G be a finite group. The group Q(G) is trivial if and only if G|G™!
is a cyclic group of which the order is a prime or a product of distinct primes.

2 Preliminary

For a category €, let Obj() denote the totality of all objects in €; for objects x, y in
¢, let Morg (x, y) denote the set of all morphisms in € from x to y, and let Mor(&)
denote the totality of all morphisms in &, i.e.,

Mor(€)= [ More(x,y).
x,ye0bj(€)

Let &(G) denote the category in which the objects are all elements in S(G), the

morphisms from objects H to K are all triples (H, a, K) such that a € G and aHa ™" c
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K, and the compositions of morphisms are given by
(K,b,L)o(H,a,K)=(H,ba,L) for(H,a,K),(K,b,L)eMor(&(G))
(cf [2]). For (H, a,K) € Mor(&(G)), we have an associated homomorphism
(k) H— K 1max)(x)=axa” for x € H.

Let F be a conjugation-invariant, lower-closed subset of 8(G); i.e., if H € F, then
(H) c F, where (H) = {gHg ™' | g € G}, and if H € F, then S(H) c F. Let § denote
the full subcategory of &(G) such that Obj(F) = F. By definition, Mor(F) consists
of all triples (H, a, K) such that H, K € F, a € G satisfying aHa ™' c K. Let 2b denote
the category of which the objects are all abelian groups and the morphisms are all
group homomorphisms between objects.

Let M: &(G) — 2b be a contravariant functor such that

M((H,a,H)) = idpm) forall He 8(G) and a € H.

In the sequel, we should read the notation (H, a, K)* as M((H, a, H)) and the ex-
pression x = (xg)ges for x € [Igey M(H) as one satisfying xy € M(H). Let
lim_M(x) denote the inverse limit defined in [1, p. 243], i.e., lim M() consists
of all elements (xm) € [gey M(H) such that xg = f*xg for all %, K € &, and
f € Morgz(H, K). There is a canonical restriction homomorphism

res$: M(G) —> UmM(%); x— (res? x) ges
8

where res stands for (H, e, G)*. For K € F, we have the restriction homomorphism

resgzl(igaM(*) — M(K); x=(xHg)Hes — XK.
§

Let A(G,J) denote the submodule of A(G) generated by {[G/H] | (H) c F}.
Then A(G, ¥F) is a direct summand of A(G) of rank cg. By definition, the inclusions

resi( A(G,F)) c B(G,F) c L(G,F) clim A(x) c P(G, )
§
hold, where B(G,F) = res§(A(G)) and P(G,F) = [Iyes A(H). For a finite
CW complex C, let y(C) denote the Euler characteristic of C. For K € JF and
X = (XH)HeF € l(iLn&A(*), we define yx(x) by yx(x) = x(XX), where X is a finite
K-CW complex representing xx. We regard yx as a homomorphism from @3 A(x)
to Z.

Lemma 2.1 For an arbitrary conjugation-invariant lower-closed set F of subgroups
of G, the homomorphism resG: A(G, F) — lim _ A(x) is injective and the equalities
3

rank res$ (A(G, F)) = rank B(G, F) = rankl(ir_nA(*) =cy
5

hold.
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Proof We have the commutative diagram

[M(ayes (o) Xu

A(G,F) — A(G) [(H)esc) Z
Mayes xu i
res$ res$ I—[(H)C?Z

Miayes xu

By the Burnside congruence formula (cf. [3, IV, Theorem 5.7]), we readily see
G T (myesZ © (T (e xu) (A(G, F)).

Therefore the rank of ([T()cs xu)(A(G,J)) is equal to cz. Since A(G, F) is a free
Z-module of rank cs, the homomorphism [](pycs xu: A(G,F) = [1(gycs Z is in-
jective. By the commutative diagram above, we obtain the lemma. ]

res$(A(G,F))—— B(G,F)—— l(ing A(*).

Corollary 2.2 The module L(G, F) coincides with 1(&13 A(*).

Proof The conclusion follows from the fact that L(G, ¥) c lim_A(x), L(G,F) is
a direct summand of P(G, ), l(iLnSA(*) is a submodule of P(GS, F), and the two
modules L(G, ¥F) and Lir_n?A( ) have same rank, because L(G, F)/B(G, F) is torsion.

' [ ]

Now let M: S(G) — 2(b be a covariant functor such that
(H,a,H). = idpm) forall He 8(G)and a € H,

where (H, a,K), stands for M((H, a,K)). Let lim M(*) denote the colimit de-
fined in [1, p. 243]. In order to understand the colimit, let € be the family of pairs
(V, (hy)Hes), where each V is an abelian group and each hp is a homomorphism
M(H) — V, satisfying the following two conditions.
(Cl) Theset {hy(x)|HeJF,x e M(H)} generates V.
(C2) If (H,a,K).x = y for (H,a,K) € Mor(§), and x € M(H), y € M(K), then
hu(x) = hx(y).

Let (Vy, (ho,i) Hes) be a universal object in the family C; i.e., for (V, (hy)pes) € C,
there exists a homomorphism ¢: Vj — V such that hy = ¢ o ho i for all H € J. Since
we have a canonical epimorphism k: [Ty M(H) — Vj,

k(x) = Z hO,H(xH))

HeJ

where x = (xg)ger € [Iyeg M(H) with xg € M(H), we can identify V, with a
module consisting of equivalence classes of elements of []y.q M(H), which is the
colimit lim M (*) defined in [1, p. 243]. Thus, we get a universal object in € of the
form (h_n)lg M(»), (ind}) ges).
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There is a canonical homomorphism

ind$:lim A(x) — A(G); > ind}, xp —> > ind$ xy,
? HeT HeJ

where each x; is an element of A(H) and ind, stands for (H, e, G),. The image of
this homomorphism is A(G, F).

Proposition 2.3  For an arbitrary conjugation-invariant lower-closed set I of sub-
groups of G, the homomorphism ind$: h_r)n& A(*) > A(G) is injective.

Proof It is readily seen that lim A(*) is a module generated by c5 elements
indy,[H/H] with (H) c F, where

indj: A(H) — lim A(+)

§
and cg is the number of the G-conjugacy classes of subgroups belonging to F. Since
A(G, F) is a free Z-module of rank cs, the homomorphism ind is injective. ]

By the homomorphism ind$ above, we can identify lim _A() with the submodule
A(G,7F) of A(G). s

Let N be a normal subgroup of G. We have the homomorphism fixg y: A(G) —
A(G/N) that maps [X] to [X"] for finite G-sets X. Let fix(g),n: L(G) - L(G/N)
be the homomorphism for which the diagram

L(G) — O 1 (G/N)
[TAH) . [T AH/N)
He§G fix He§G

commutes, where § = {H € 8(G) | N ¢ H # G}. It is a ring homomorphism and
induces a homomorphism fixs () n: Q(G) = Q(G/N).

3 Operation of A(G,F) on L(G,F)

Recall that L(G, F) is a module over A(G):
A(G)xL(G,F) — L(G,F);  (a,x) —> ((res; oc)xH)HE?,

where o € A(G) and x = (xg) ger € L(G, F).
Let a be an element of A(G, J) (resp. A(G,F)(,) for a prime p) with
a= Y au[G/H],
(H)cTF
where ay € Z (resp. Z(,)) and x = (xg)aes € L(G, T) (resp. L(G, F)(p)). Then we
define an element & o x of A(G, JF) (resp. A(G, JF)(p)) by

aox= Z aHindng.
(H)cF
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Lemma 3.1 For a € A(G,T) (resp. A(G,F)(p)) and x = (xu)res € L(G, T) (resp.
L(G,F)(p))» the equality resG(a o x) = ax (= (res§ a)x) holds, and therefore ax
belongs to B(G, F) (resp. B(G,F)(p))-

Proof Let K € F(G). Then we have the equalities

resi(aox) = > am res (ind¥ xp)
(H)cF

K
= > aH( > 1ndKﬂgHg71(cg)*(resgng_lKng))
(H)eF KgHeK\G/H

. K
= Z aH( Z indy o gt megHg—l)
(H)cF KgHeK\G/H
and

(resgoc)(resgx):( > aHresg[G/H])xK
(H)<F

= Y ap(resg[G/H])xk
(H)cTF

= Y au( Y indKogue (o) restingg [H/H]) xx
(H)cTF KgHeK\G/H

=y aH( > [K/KngHg_l])xK

(H)cF KgHeK\G/H

.. 1K
= Z aH( Z 1ndKngHg71 xKﬁgHg—l) 5
(H)cF KgHeK\G/H

where (cg ). stands for (Hng'Kg, g, KngHg™")... Hence we obtain the lemma. W

The next fact can be obtained implicitly from R. Oliver [10, Lemma 8] and explicitly
from C. Kratzer and J. Thévenaz [6, Proposition 3.2].

Lemma 3.2 ([9, Lemma 1.3], [8, Proposition 2.1])  For an arbitrary finite group G,
there exists a unique element yg € A(G) such that xc(yc) = kg and yu(yc) = 0 for
all H e ¥(G).

This gives the following corollaries.

Corollary 3.3  For an arbitrary finite group G, there exists a unique element 1 €
A(G) such that yg(16) = 0 and yu(16) = kg for all H € F(G).

Corollary 3.4 ([9, Corollary 1.5]) For an arbitrary finite group G, kg L(G) is con-
tained in B(G), and hence kg Q(G) = 0.

Corollary 3.5 For an arbitrary finite group G and an arbitrary prime p, there exists
Y6.p € A(G)(p) such that x(yc.p) = p and xu(yc.p) = 0 for all H € F(G).

Corollary 3.6  For an arbitrary finite group G and an arbitrary prime p, there exists
76,p € A(G)(p) such that yc(7c,p) = 0 and yu(7¢,p) = p forall H € F(G).
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Corollary 3.7  For an arbitrary finite group G and an arbitrary prime p, p L(G)p)
is contained in B(G) ), and hence p Q(G) ) = 0.

For a prime p, let £,(G) denote the set of all subgroups of G containing G{#} and
set M,(G) = 8(G) \ £,(G). Let L(G) (resp. M(G)) be the union of £,(G) (resp.
the intersection of M, (G)) for all primes p dividing |G|.

Lemma 3.8 ([7, Theorem1.3])  For an arbitrary finite group G, there exists an element
Bc of A(G) such that xc(Bg) =1and xu(Bfc) =0 for all H e M(G).

Corollary 3.9  For an arbitrary finite group G and an arbitrary prime p, there exists an
element B p of A(G)(p) such that xc(Be.p) = 1and xu(Be,p) = 0 forall H e M, (G).

Proof Let Q = G/G™!. Note that Q is isomorphic to the cartesian product of Sylow
subgroups of Q. Let Q, be the Sylow p-subgroup of Q and let g: Q -~ Q = Q/Q,
denote the quotient homomorphism. There exists an element u € A(Q)(,) such
that yg(#) = land yr(u) = 0 forall T < Q. Set Bo.p = q*u € A(Q)(p). Then

xr(Ba,p) =1for T € £,(Q) and xr(Bq,p) = 0 for T € My(Q). Let f:G - Q be
the quotient homomorphism. Then the element g , = B¢ - f*Bq,p possesses the
required properties. |

Let p be a prime. The element « = [G/G] - g, € A(G)(,) has the form
a= > ay[G/H] (am € Zyy)
(H)<F(G)
and belongs to A(G, F(G)) y)-

4 Comparison of Q(G)(,) and Q(G/G})

Throughout this section, let N stand for G{?}. Let p be a prime, Bg.p the element
given in Corollary 3.9, and set « = [G/G] - B¢,

Let x = (Xu)Heg(G) be an element of L(G)(,y. Then we have x = x — ax + ax
and the last term ax = resg(G)((x o x) belongs to B(G)(p) = resg(G)(A(G)(p)) by

F(G)

Lemma 3.1. In addition, we have e (6)

(x — ax) = 0. Recall the commutative
diagram
B(G)(p) ——= L(G)(p) ——= Q(G)p)

i lfixcr(c),rv lﬁxﬁ'(G),N

B(G/N)(p) — L(G/N)(p) — Q(G/N)(p).

Lemma 4.1  The homomorphism fixs() n: Q(G)(p) > Q(G/N)(,) is injective.

Proof Let x € L(G)(p) such that [fixg(g),n(x)] = 0in Q(G/N)(p). Then the ele-
ment fixg(),y(x) belongs to B(G/N) ;). Therefore,

fixr(gy,n (%) = fixg(cy,n (resS ) (2))
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holds for some z € A(G) ;). It means that v = x — resg(c) (2) belongs to the kernel of
fixg(g),n- Setw = v —av. Since fixg(g),n(w) = 0 and resjs:/[(pG()G) (w)=0,wegetw =0

in L(G)(p). Clearly we have [x] = [v] = [w] in Q(G) ;). Therefore, we conclude that
[x] = 0in Q(G)p), which shows the injectivity of fixs(g),n- [ |

Lemma 4.2 The homomorphism fixs (g n: Q(G)(p) = Q(G/N)p) is surjective.

Proof Letx = (xx)kes(G/n) be an arbitrary element of L(G/N) ;). Define an ele-
ment y = (yi)nes(G) of P(G, F(G))(p), where P(G, F(G)) () = [Tres () A(H) (p)>
by

_ f‘H*xf(H) if Ho N,

HeF(G)),
0 otherwise ( (@)

YH

where f:G - G/N is the quotient map. Then the element z = y — ay belongs to
L(G)(p)> and the equalities

[ fixg(6y,n(2)] = [ (fixy,n(z0))n]

[ (fixp,n (v — (resy @) yn))u]

= [ (e = (fixen (resy ) ) x|
= [x - ﬁxG,N(oc)x] = [x]

hold in Q(G/N),), where H ranges over £,(G) nF(G). This shows the surjectivity
of ﬁX&“(G),N- |
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