
J. Fluid Mech. (2023), vol. 969, R3, doi:10.1017/jfm.2023.604

Dynamics and containment of a viscous liquid
atop a granular bed

Edward M. Hinton1,† and Anja C. Slim2,3

1School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
2School of Mathematics, Monash University, Victoria 3800, Australia
3School of Earth, Atmosphere and Environment, Monash University, Victoria 3800, Australia

(Received 2 May 2023; revised 2 July 2023; accepted 19 July 2023)

We consider the dynamics of a gravity current of viscous liquid propagating above a dense
granular medium that obeys a μ(I)-rheology. Initially, the pool of liquid depresses the
granular layer to form levees at its edges. Next, these levees are pushed outwards by the
gravity-driven slumping of the liquid, but the levees are not surmounted. In the third stage,
the top of the levee is pushed out beyond the rest of the levee. This segregates the liquid
into a pond trapped by the remnant of the original levees, and a slowly spreading thin
film ahead of the levees. The trapped fraction of liquid depends on the extent of the early
granular erosion, which in turn is controlled by the initial shape of the deposit and the yield
criterion of the granular layer. The key physical ingredients that lead to such dynamics
are inertia-less flow and a lower layer with a yield criterion. The latter gives rise to the
all-important levees, which lead to the eventual trapping.

Key words: magma and lava flow

1. Introduction

Viscous gravity currents are near-horizontal, low-Reynolds-number flows driven by
buoyancy. They are a canonical flow structure occurring broadly in natural phenomena
such as lava flows and glaciers as well as various industrial applications such as the
pouring of cement. They have received extensive study in numerous configurations since
the seminal work of Huppert (1982).

Here we consider the flow of such a gravity current atop a deformable granular medium.
Several significant new features are possible in this case. At the grain scale, the viscous
fluid can infiltrate the granular medium in a manner similar to a porous medium, although
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Figure 1. Schematic of the flow set-up. (a) The liquid sulphide and silicate crystals sink within the silicate
melt. Thin layers of liquid sulphide may not percolate due to its low wettability. (b) Model set-up: a viscous
gravity current spreads atop a granular layer.

with additional behaviours because of the potential for granular rearrangement. At the
continuum scale, the viscous fluid can cause the entire granular layer to flow, with potential
feedback on the dynamics of the gravity current. This effect is the focus of our study. Our
particular motivation is to the formation of massive sulphide ores in magmatic systems,
but it also has broader application, for example in the reworking of subglacial tills and
potentially the formation of moraines.

Sulphide-rich liquid forms a small �1 % fraction of basaltic magmas (Tonnelier 2010).
This liquid is significantly heavier than the dominant silicate melt and significantly less
viscous. It is thought to be transported as small droplets in active magmatic systems before
being deposited at various concentrations as the system cools (Robertson, Barnes & Le
Vaillant 2016). It is one of the last components to solidify and hence is thought to interact
with granular mushes of silicate crystals. Because various metallic components (especially
nickel, cobalt, copper and platinum-group elements) are preferentially absorbed by these
droplets during active transport, they form valuable ores when deposited in sufficiently
high concentration (Campbell & Naldrett 1979; Kiseeva & Wood 2015; Barnes et al. 2017).
Hence a focus of economic geology is finding such locations. The classical picture is that
the heavier sulphides migrate to the bottom of the system (Naldrett 1973). However, Chung
& Mungall (2009) argued that this picture is incomplete and that the very low wettability of
silicate crystals to sulphide liquid can prevent the percolation of moderately sized droplets
through the mush. Here we explore whether massive sulphides could form atop a granular
mush; see figure 1(a).

Specifically, we consider the spread of a very viscous Newtonian fluid above a
granular layer modelled as a dense shallow continuum with a μ(I)-rheology (GDR-MiDi
2004; Gray & Edwards 2014). A key characteristic of this rheology is a yield criterion
below which the granular layer is ‘rigid’, analogous to a viscoplastic material. The
μ(I)-rheology has been able to accurately capture many experimental observations
including avalanching, silo discharge and bulldozing (Da Cruz et al. 2005; Kamrin &
Koval 2012; Sauret et al. 2014; Staron, Lagrée & Popinet 2014). Whilst there has been
much research on gravity-driven dense granular flows, and some investigation of their
capacity to erode an underlying substrate (Viroulet et al. 2019), the coupled interaction of
a viscous gravity current with a granular layer has not previously been studied. We focus on
the case where the viscous liquid does not infiltrate the granular pack; see figure 1. This is
possible if the grains are non-wetting to the viscous liquid and the liquid layer is relatively
thin so that its excess hydrostatic pressure does not exceed the capillary entry pressure of
the granular pore space. We develop a novel but simplified isothermal model that captures
the dominant flow physics on relatively short time scales with the displacement of the
ambient silicate melt having a negligible influence on the flow (Huppert 1982).

We describe the model and generic results in §§ 2 and 3. We return to the question of
massive sulphides in § 4.
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Viscous liquid atop a granular bed

2. Shallow two-layer model

The set-up is shown in figure 1(b). The two phases are modelled as continua lying on a
horizontal layer of impermeable country rock. As discussed in § 1, the sulphide droplets
are non-wetting to the crystals and we assume that the granular layer is impermeable to
the liquid (noting that penetration could occur if the liquid layer was very thick so that
the hydrostatic pressure exceeds the capillary entry pressure; we revisit this assumption
in § 4). The thickness of the viscous liquid is denoted by hu(x, t) whilst the thickness
of the granular layer is denoted by hl(x, t), with the total thickness given by H(x, t) =
hu + hl, where x is the horizontal coordinate and t is time. We restrict our attention to a
two-dimensional geometry with the vertical coordinate denoted by z. The flow is driven
predominantly by the weight of the layers and inertia is negligible. For simplicity, the two
layers are taken to have the same excess density relative to the ambient melt, �ρ (the
density of the granular layer is the product of the grain density with the solid volume
fraction). The case of a density difference between the layers does not qualitatively change
the results; for further discussion, see § 4. The viscous liquid is assumed to be Newtonian
with dynamic viscosity η and the granular layer has a μ(I)-rheology described below.
There is no slip at the interface between the layers and the stress is continuous. Initially,
the granular layer has uniform thickness hl(x, 0) = L and the upper layer is a localised
deposit whose shape is an input to the model that we vary.

The flow is assumed to be predominantly in the horizontal direction so that the pressure
is hydrostatic across both layers:

p = �ρg(H − z), (2.1)

where g is earth’s gravity. Momentum balance implies that the shear stress in both layers
is given by

τ = −(H − z)�ρg
∂H
∂x

, (2.2)

where we have used the condition of zero shear stress at the free surface z = H(x, t). The
constitutive model for the granular layer is provided by (GDR-MiDi 2004)

τ = μ(I)p sgn
(

∂u
∂z

)
where I =

∣∣∣∣∂u
∂z

∣∣∣∣√m/p, (2.3a,b)

where u is the horizontal velocity and m is the grain mass (per unit length into the page in
figure 1). This μ(I)-rheology is defined by the relationship between the effective friction
coefficient μ and the inertial number I (GDR-MiDi 2004). We use the following linearised
relationship: (Da Cruz et al. 2005; Kamrin & Koval 2012)

I = max(0, μ − μs)

b
, (2.4)

where μs is the minimum slope gradient for which flow occurs, and b is a dimensionless
constant. The granular material is rigid when μ < μs. Relating (2.1) and (2.2) with (2.3a)
implies that μ(I) is constant across the granular layer and given by the magnitude of the
free-surface gradient, (see also Gray & Edwards 2014)

μ =
∣∣∣∣∂H
∂x

∣∣∣∣ . (2.5)
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Equations (2.3b) and (2.4) combined with no slip at the base z = 0 then furnishes a
Bagnold velocity profile in the lower layer (Bagnold 1954),

ul(x, z, t) = −2
√

�ρg
3b

√
m

[H3/2 − (H − z)3/2]F
(

∂H
∂x

)
, (2.6)

where

F
(

∂H
∂x

)
= sgn

(
∂H
∂x

)
max

(
0,

∣∣∣∣∂H
∂x

∣∣∣∣ − μs

)
. (2.7)

The volume flux in each layer is given by

Ql(x, t) = −2
√

�ρg
15b

√
m

[(hu + hl)
3/2(3hl − 2hu) + 2h5/2

u ]F
(

∂H
∂x

)
, (2.8)

Qu(x, t) = −2
√

�ρg
3b

√
m

[(hu + hl)
3/2hu − h5/2

u ]F
(

∂H
∂x

)
− �ρg

3η
h3

u
∂H
∂x

. (2.9)

The last term in the upper layer flux, Qu, arises from its own viscous shearing.
We non-dimensionalise the system by scaling all lengths with the initial thickness of the

granular layer, L, and by scaling time t with the time scale Tg for granular shearing,

Tg = 3b
√

m√
�ρgL

. (2.10)

Henceforth all variables are dimensionless. The dimensionless volume flux in each layer
is given by

Ql(x, t) = −2
5

[(hu + hl)
3/2(3hl − 2hu) + 2h5/2

u ]F
(

∂H
∂x

)
, (2.11)

Qu(x, t) = −2[(hu + hl)
3/2hu − h5/2

u ]F
(

∂H
∂x

)
− αh3

u
∂H
∂x

, (2.12)

where

α = b
√

mL�ρg
η

, (2.13)

is a dimensionless number that relates the granular ‘viscosity’ to the viscosity of the
upper layer, η. The flow is governed by two dimensionless parameters: μs and α. Mass
conservation in each layer is written as

∂hi

∂t
+ ∂Qi

∂x
= 0, for i = u, l. (2.14)

3. Results

The two coupled partial differential equations for the flow thicknesses (2.14) are integrated
numerically using a finite-difference scheme; for details, see Appendix A. In the case that
|∂H/∂x| ≤ μs everywhere initially, the lower layer does not yield (except possibly in a very
small neighbourhood of the contact point with the granular material). The upper layer
spreads predominantly as a classical viscous gravity current over a rigid bed (Huppert
1982). Henceforth, we only consider initial conditions with max|∂H/∂x| > μs.
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Figure 2. Stages of the containment of viscous liquid atop a granular layer (with μs = 0.25 and α = 1).
(a) Set-up. (b) Initial configuration (t = 0). (c) Stage 1: levee formation (t = 0.1). (d) Stage 2: viscous pushing
of the levee (t = 50). (e) Stage 3: break-off of the top part of the levee (t = 1000). ( f ) Stage 4: separation and
containment of viscous liquid (t = 100 000).

The numerical results for a particular choice of parameters and initial condition are
shown in figure 2. This example illustrates the general and important features of the flow.
The evolution of the system can generally be broken into four stages, which we outline
here, with the full details provided in the following subsections. Initially, the gradients in
the thickness of the upper layer induce yielding in the lower layer. There is a fast transient
with the lower layer eroded to form granular levees (stage 1, figure 2(c); § 3.1). This stage
ends as the free-surface gradient approaches μs and the granular shearing slows. Next,
the flow is driven by the much slower slumping of the viscous deposit. There is further
erosion and the growing levees are pushed outwards by the gravity-driven viscous flow
(stage 2, figure 2(d); § 3.2). Subsequently, the outward viscous flux diminishes and is
unable to continue pushing the entire levee. The stress is reduced and yielding occurs only
near the top of the levee, which breaks away (stage 3, figure 2(e); § 3.3). Finally, the top
part of the levee is very slowly pushed horizontally by the viscous liquid. The new levee
gradually diminishes in size and the viscous deposit becomes segregated with a central
portion trapped by the rigid remnant of the original levee (stage 4, figure 2( f ); § 3.4).

3.1. Stage 1: initial erosion and levee formation
The initial transient (stage 1) is shown in figure 3. The gradients in the free surface are
sufficient to yield the granular material underlying the viscous deposit. This causes the
granular material there to flow outwards. Beyond the viscous deposit, the granular material
is approximately rigid (its motion is slow relative to the deformation of material beneath
the liquid). The mass eroded below the viscous deposit is transferred into levees at either
side. In stage 1, the volume flux in the upper layer is negligible relative to that in the lower
layer because the upper layer is relatively thin. Hence the thickness of the upper layer
is approximately constant during the initial transient; almost all motion arises from the
yielding of the granular material.
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Figure 3. Stage 1: fast initial erosion of the granular layer and levee formation with α = 1 and μs =
0.25. Viscous deposit and levee shape (calculated numerically) at (a) t = 0, (b) t = 0.01 and (c) t =
0.1; the dotted blue line shows |∂H/∂x| ≈ μs for which the granular layer becomes quasi-rigid (3.1).
(d) Location of the front of the levee (black line) and the quasi-rigid location (red dashed line).
(e, f ) Thicknesses at t = 0.1 for (e) μs = 0, 0.125, 0.25, 0.375 with α = 1 and ( f ) with α = 0.04, 0.2, 1, 5, 25
and μs = 0.25.

The fast granular mass transfer continues until the free-surface gradient approaches the
yield point, |∂H/∂x| ≈ μs, and the granular layer slows, becoming quasi-rigid. Stage 1
ends with the free surface having the shape

H = μs(xf − |x|) + 1, (3.1)

for |x| < xf , where volume conservation implies that xf = √
V/μs for a viscous deposit

of volume V (per unit length into the page). The shape (3.1) is shown as a blue dotted
line in figure 3(c), accurately capturing the numerically integrated shape at t = 0.1. The
evolution of the edge of the levee, ±xc(t), is shown in figure 3(d), with the red dashed
line corresponding to xc = xf ; the motion of the levee is relatively fast until the yield point
is reached. Subsequent stages are much slower as they are driven by the slumping of the
viscous liquid.

Different values of the yield gradient, μs, lead to similar behaviour but with a
quantitative change in the quasi-rigid shape (3.1) at the end of stage 1; see figure 3(e). The
special case of μs = 0 (red lines in figure 3e) is qualitatively different because there is no
quasi-rigid shape and instead the upper free surface gradually relaxes to the horizontal; for
further discussion see § 3.2.

The dynamics in stage 1 is largely insensitive to the value of α because there is little
viscous deformation; see figure 3( f ). For particularly large α, there are small changes
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Figure 4. Stage 2: viscous ‘pushing’ of the levee with α = 1 and μs = 0.25. (a–d) Viscous deposit and levee
shape at t = 1, 4, 16, 64. In (b–d) the blue dashed line shows the shape from (a). (e, f ) Thicknesses at t = 16
for (e) μs = 0, 0.125, 0.25, 0.375 with α = 1 and ( f ) with α = 0.04, 0.2, 1, 5, 25 and μs = 0.25.

in the upper layer thickness around x = 0 because there is some outwards viscous
deformation at very early times.

3.2. Stage 2: viscous ‘pushing’ of the levee
At the end of stage 1, levees at the edges of the viscous deposit are formed with |∂hl/∂x| ≈
μs. Subsequently, in stage 2, the levees slowly move outwards driven by slumping of
the viscous deposit; see figure 4. The free-surface gradient of the levees is held just
above the yield criterion because the viscous liquid at the edge of the levee just yields
the quasi-rigid granular material. Thus the viscous deposit slowly ‘pushes’ the levees
outwards. The levees cannot be fully surmounted by the viscous deposit as this would
first cause significant yielding in the granular layer, which in turn drives fast outwards
flow away from the surmounting viscous liquid as in stage 1. The levees also grow with
continued erosion of the lower layer (figure 4).

The volume flux in the granular layer is continuous across the edge of the viscous deposit
and so μ is continuous there also, with μ ≈ μs. For the present case of equally dense fluids,
this gives |∂H/∂x| ≈ μs at the edge of the viscous deposit. This condition is adjusted
slightly for layers with different densities but the levee is still not surmounted and the
qualitative features are unchanged; see § 4.

As in stage 1, different values of μs > 0 lead to quantitative changes in the levee slope
(see figure 4e) but the qualitative behaviour is unchanged. The exception is the case μs = 0
(red lines in figure 4e) for which the upper interface has become approximately horizontal
by t = 16 and the flow is almost entirely arrested. There is subsequently negligible change
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Figure 5. Stage 3: decaying viscous flux and levee break-off with α = 1 and μs = 0.25. (a,b) Viscous deposit
and levee shape at t = 4 and t = 64 (see figure 3), with green bands indicating the region where the lower
layer is yielded. (c) Extent of the yielded band, L, as a function of time. (d) Shape at t = 1000 showing levee
break-off.

in the thickness but we note that there would be further slow spreading in the case of a
density difference.

In stage 2, the flow is driven by the viscous deformation of the upper liquid layer and
so changes in the viscosity ratio, α, predominantly lead to changes in the time scale; see
figure 4( f ). The flow stages and features are, however, qualitatively similar across different
values of α.

The other interesting feature of this regime is the steepening of the front of the
viscous–granular interface at the edge of the viscous deposit; see figure 4(d). This arises
because, near the edges of the viscous liquid, ∂H/∂x ≈ ±μs and so the flux in the
upper layer is Qu ≈ ∓αμsh3

u. The mean velocity of the upper layer is proportional to h2
u

whilst the lower layer moves much more slowly. Where the viscous liquid is thicker, it
travels faster and then incorporates liquid in thinner regions leading to a steepening at the
viscous–granular interface. This phenomenon (sometimes referred to as shock formation)
has been observed previously in two-layer viscous gravity currents (Dauck et al. 2019).

3.3. Stage 3: decaying viscous flux and levee break-off
Stage 2 ends because the flux in the viscous layer diminishes in time and eventually cannot
continue to push the entire levee outwards. As the viscous layer slumps, the free-surface
gradient reduces. Hence a progressively smaller horizontal width of the granular layer
below the viscous deposit is yielded (note that the granular layer is either entirely yielded
throughout its thickness or entirely rigid throughout its thickness). The yielded portion is
indicated by green bands in figures 5(a) and 5(b). The length L of the bands as a function
of time is shown in figure 5(c).

Eventually, the only part of the granular layer below the viscous liquid that is yielded is
in a small neighbourhood of the levee (|∂H/∂x| ≈ μs at the edge of the viscous deposit
as discussed above). This initiates stage 3. The viscous liquid only yields the granular
material very close to the top of the levee (figure 5b). A smaller levee is broken off from
the top of the main levee and is pushed outwards; see figure 5(d). The granular material
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Figure 7. (a,d) Initial viscous deposit shape for the two rows. (b,c) Shape of the viscous deposit and levee at
t = 5000 for μs = 0.125 and μs = 0.25. The percentages indicate the fraction of viscous liquid that is trapped
at long times. (e, f ) Shape of the viscous deposit and levee as in (b,c) but with the initial shape from (d).

between the two break-off points is entirely rigid and is stationary for the remainder of the
motion.

3.4. Stage 4: containment of a pool of viscous liquid
In the final stage, the smaller broken-off levee continues to be pushed outwards. This
smaller levee diminishes in size as it is gradually deposited on the far side of the original
levee whilst the viscous flux continues to diminish (see figure 6). The remnant of the
original levee, which is entirely rigid, traps a significant proportion of the viscous deposit.
The liquid is segregated into a contained pool, whose height gradually decays to the peak
of the rigid granular material, and two thin films that are mobile indefinitely but migrate
very slowly; see figure 6(b).

Figure 7 shows the shape of the viscous deposit and granular material at t = 5000 with
the initial conditions shown in panels (a) and (d), for two different values of the yield
gradient, μs. The fraction of the viscous deposit that is trapped at late times is also shown.
When the yield gradient μs is smaller, more of the lower layer is eroded in stage 1, leading
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Figure 8. (a) Volume of liquid trapped at late times as a function of the yield gradient, μs, for the triangular
(red) and quartic (blue) intial conditions from figure 7 for α = 1 (crosses) and α = 10 (circles). (b) Maximum
thickness of the granular layer as a function of time, illustrating the four stages of flow (with μs = 0.3, α = 1
and triangular initial condition).

to a greater trapped fraction. Similar behaviour occurs for initial viscous deposits with
larger free-surface gradient.

Figure 8(a) shows the trapped fraction as a function of μs for the two initial shapes
in figure 7 in the case that α = 1 (crosses) and α = 10 (circles) (red corresponds to the
triangular initial condition and blue to the quartic initial condition). Our numerical results
confirm that the final trapped fraction and the shape of the rigid remnant is insensitive to
α (i.e. the relative viscosity of the upper layer). However, changes in α do change the flow
velocities in stages 2, 3 and 4. When there is no yield criterion (μs = 0), levees do not
form but the viscous liquid depresses into the granular layer and remains there, leading to
100% trapping (see also figure 4e).

The four stages of flow, and their time scales, are illustrated in figure 8(b), which shows
the maximum thickness of the granular layer as a function of time. In stage 1, the levees
are quickly formed, leading to a rapid increase in the maximum thickness. This is followed
by a weaker increase in stage 2 as the flow is driven by the slower viscous deformation.
In stage 3, the levee ‘breaks off’ leading to a relatively quick decrease in the maximum
thickness. Finally, in stage 4, the remnant of the original levees becomes entirely rigid and
the maximum thickness is constant in time and larger than the initial layer thickness.

4. Discussion and conclusions

This contribution has presented a mechanism by which a viscous liquid can drive levee
formation and become partially trapped during flow atop a granular layer. The weight of
the upper liquid layer erodes the granular layer to form levees, which are quasi-rigid. The
gravity-driven flow of the liquid just yields the edge of the levee, which drives the levee
outwards. This continues until the mass flux of the liquid cannot sustain the pushing of the
levee. Subsequently, only the top part of the levee is mobilised. This part breaks away and
a significant fraction of the liquid remains contained by the remnant of the original levees.

The analysis was in part motivated by an application to liquid sulphide flowing
atop a poorly consolidated crystal mush in a partially solidified magmatic system. Our
results suggest a physical mechanism for creating massive sulphides. However, our model
includes a number of assumptions that need discussion for a magmatic system: constant
temperature, no percolation, a planar geometry and equal density of the liquid sulphides
and silicate crystals. Typical parameter values for liquid sulphides are as follows: the
relative liquid density is �ρ ≈ 1000 kg m−3 and the viscosity is η ≈ 20 Pa s (Robertson
et al. 2016); the granular parameters are grain diameter of d = 0.5 mm (Chung & Mungall
2009), μs = 0.35, m = 4 × 10−4 kg m−1; the interfacial tension between the sulphide
and silicate liquids is γ ≈ 0.3 N m−1 (Robertson et al. 2016) and the contact angle on
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silicate crystals is θ ≈ 150◦ (Mungall & Su 2005); finally, we take a crystal mush thickness
L = 1 m. This furnishes a granular ‘viscosity’ of b ≈ 1 (Kamrin & Koval 2012; Gray &
Edwards 2014). These values give α ≈ 0.1 and a time scale of Tg ≈ 0.6 ms. Hence stage
1 is very fast, whilst stages 3 and 4, which are controlled by the viscous slumping, have an
effective time scale of the order of minutes. Over these time scales, the system is accurately
modelled as isothermal.

The thickness of the liquid layer H at which the hydrostatic pressure �ρgH exceeds
the capillary entry pressure of the pore space 2γ | cos θ |/a is H ≈ 60 cm, where the pore
throat radius a is approximately a third of the grain radius, d/2. Thus the assumption that
no percolation occurs is reasonable for the profiles shown earlier with L = 1 m. Sulphide
ores with thicknesses in the tens of centimetres are economically valuable (Robertson et al.
2016).

We simplified the model by considering two-dimensional geometry and phases with
equal densities. However, the results would be similar for an axisymmetric geometry with
erosion followed by levee break-off and then partial containment of the liquid. If the
layers had different densities, then the mathematical model would be considerably more
complicated, but the flow regimes would be unchanged. The gradient in the free surface,
∂H/∂x, would not generally be continuous at the edge of the liquid but the granular flux
and effective friction μ would be continuous, ensuring similar evolution of the levee as
for equal densities. The free-surface gradient would be steeper than μs just upstream of
the levee if the liquid deposit were of lower density and vice versa with a more dense
liquid deposit. Further research is needed to investigate the stability of the flow in more
complicated geometries and in the case of a much heavier liquid layer as is relevant to
liquid sulphides. It would also be valuable to consider granular fracture and some liquid
penetration of the granular layer.

Declaration of interests. The authors report no conflict of interest.
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Edward M. Hinton https://orcid.org/0000-0002-2204-1204.

Appendix A. Numerical method

The two coupled partial differential equations (PDEs) (2.14) are integrated numerically
using the method of lines. The PDEs are semi-discretised in space using central
differences, and a minmod flux limiter to accurately resolve the steep interface that arises
in stage 2 (Kurganov & Tadmor 2000). Time stepping is achieved with the fourth-order
Runge–Kutta method. The boundary conditions are ∂hu/∂x = ∂hl/∂x = 0 at either end
of the domain. The numerical method required two regularisations. First, the granular
material was coated with a thin viscous layer of thickness hu = 10−5 in addition to the
initial viscous deposit. This ensured that the gradient was not singular at the edge of the
viscous deposit. Secondly, the yield criterion function was regularised with

max
(

0,

∣∣∣∣∂H
∂x

∣∣∣∣ − μs

)
= 0.5

⎡
⎣∣∣∣∣∂H

∂x

∣∣∣∣ − μs +
√(∣∣∣∣∂H

∂x

∣∣∣∣ − μs

)2

+ 10−9

⎤
⎦ . (A1)

The spatial discretisation is chosen to be symmetric about x = 0 whilst avoiding this point.
Typically, we used �x = 0.004 and �t = 0.25�x2/α. We found that smaller values of the
regularisation parameters and the spatial step size led to imperceptible changes to the
results. The total mass of the upper layer was found to be conserved to within 0.05 %.
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