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DERIVATION OF VOELLMY'S MAXIMUM SPEED AND RUN-OUT
ESTIMATES FROM A CENTRE-OF-MASS MODEL

By D. M. McCLUNG

(British Columbia Regional Station, Division of Building Research, National Research Council
of Canada, 3904 West Fourth Avenue, Vancouver, British Columbia V6R 1P5, Canada)

ABSTRACT. The commonly used maximum speed and run-out equations for flowing avalanches given by
Voellmy's (1955) method are considered from a more general model proposed by Perla and others. (1980).
Equations analogous to those of Voellmy are derived and the approximations are defined from the point of view of
the more general model.

RESUME. La vitesse maximum de Voellmy et estimations des courses d'avalanches a partiv d'un modéle a
masse concenrrée. Les équations d'usage courant pour la vitesse maximum et I'extension des avalanches de neige
lourde. données par Voellmy (1955) sont considérées comme des cas particuliers d’un modéle plus general
proposé par Perla et autres (1980). Des équations analogues a celles de Voellmy en sont deduites et ont defini leurs
approximations du point de vue d'un modéle plus genéral.

ZUSAMMENFASSUNG. Ableitung der Voellmy'schen Gleichungen fiir das Geschwindigheitsmaximum und die
Reichweite von Lawinen aus einem Massenschwerpunkismodell. Die gewdhnlich benutzten Gleichungen fiir das
Geschwindigkeitsmaximum und die Reichweite abgehender Lawinen. die von Voellmy (1955) hergeleitet wurden.
werden unter einer von Perla et al. (1980) vorgeschlagenen. allgemeineren Modellvorstellung betrachtet. Analoge
Gleichungen zu denen von Voellmy werden aufgestellt: der Grad der Néherung aus der Sicht des erweiterten
Modells wird bestimmt.

VOELLMY EQUATIONS FROM THE PCM MODEL

The differential equation governing the speed V of the centre-of-mass of a dry-flowing avalanche as
given by the model of Perla and others (1980). and here called the PCM Model. is

dv dv? . gL
= = g|sin &S) — @ cos AS)| % v (1)

|
dd 2 dS
where @(S) is the slope angle at position S along the incline, g is acceleration due to gravily. & is a constant
coefficient of sliding friction. and D/M is a constant turbulent drag coefficient written as a ratio of drag D
to mass M, and ¢ is time.

In order to derive equations similar to those of Voellmy (1955). Equation (1) is re-stated in a simple
way. The centre-of-mass concept is retained but the bulk of flowing snow is distributed over a flow height
H and an area of extent A4 over which the avalanche is in contact with the snow or earth surface. Equation
(1) re-stated. becomes

dr? 2g

—— = 2g|sin AS)—j cos XS)] —— V? (2)
T g|sin (S)— i cos KS)] T

where the turbulent drag term is assumed to be $pACp ¥'% and p is the average density of the flowing part
of the avalanche, called the core. This drag term is written in the form of an inverse drag coefficient.
following Voellmy, with the conversion g/&fH =D/M=Cp/2H.

It is of interest that F, the average core flow height, is generally only a fraction of the powder or dust
cloud height for dry avalanches. Measurements with load cells through the cross-section of dry-flowing
avalanches at the Tupper I avalanche path, Rogers Pass, British Columbia, show that H is on the order of
1 to 2m for that particular path and may be much less than the powder-cloud height. which is
characterized by suspended material.

In order to derive Voellmy's equations from Equation (2). consider the simple geometry he assumed.
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Figure | depicts this in terms of two segments of constant angle: (i) the upper segment of length S¢ and
slope angle #,, defining the region where the avalanche accelerates: and (ii) a lower segment of length
S, and slope angle f, representing the run-out or deceleration region of the avalanche. In order to use
Voellmy’s method the path must be broken into two such segments by assuming the point at which
deceleration begins.

I'he solution of Equation (2) with #(S) =6, is given by

V(S)=|Co exp (— 2gS/EH) + EH(sin By — it cos fy)]'"? (3)
where Cy is a constant determined by initial conditions. With F(0)=0. Cy = — EH(sin 6y — i cos &), and
Equation (3) becomes

V(S) = |EH(sin By — it cos B X | —exp ( — 2gS/EH )] (4)
Now with the assumption (2gS8,/&H ) 5 1, at the end of the first segment Equation (4) becomes

Vo= WV(So)=|EH(sin 8y — ji cos o)~ (5)
This equation is commonly used to calculate maximum speed for flowing avalanches by the Voellmy
method.
With @ =#,, the solution for the second or run-out segment becomes

(8)=|C, exp (—2gS/EH) — EH( @ cos @, — sin 0,)]". (6)

Using the initial condition F(0)= V. when S = 0. Equation (6) yields
W(S)=1{| V¢ + EH(ji cos B, —sin 6,)] exp (—2gS/EH ) — EH(ji cos B, — sin 8,)}'2, )

In addition, g is greater than zero. as required for flowing avalanches. and the condition dF/dS < 0
must be applied at the beginning of the run-out zone so that the avalanche decelerates on the lower
slope. Application of these conditions to Equation (7) implies that & 1is in the range
tan #, < i < tani(f, + 0,).

Application of the condition F(S,)=0 to Equation (7) defines the stop position of the centre of mass.
and the exponential is written as exp (—2gS,/EH )~ 1—2¢gS8,/EH. The latter condition amounts to the
assumption that 3(2gS,/EH)* < 1.

With these assumptions the solution for the run-out distance or the length of the deceleration region of
the avalanche becomes

S Vo
" 2e(jcos 6, —sinf, + VZ/EH)

Equation (8) may be compared to the approximate run-out equation given by Voellmy (1955) with the
modification suggested by Salm (1979)

(8)

S Ve
" 2g(icos O, —sin 6, + VZ/2EH)

(9)

Fig. 1. Geometry for two-segment approximation of avalanche path used
by Voellmy (1955). The two segments have lengths So and S¢ and
slope angles 0o and 0r.
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Salm’s modification as expressed by Equation (9) amounts to the replacement of tan &, by sin f, in the
denominator and the use of H instead of Hy, which is defined in the original equations given by Voellmy
as the average height of debris piled up. Inspection of Equations (8) and (9) shows that they arc identical
except for a factor of two in the third term of the denominator. Using the original Voellmy equations and
ignoring the replacement sin &, —tan ,, it is necessary to assume that Hp=0.5H to get equivalence
between Equation (8) and the original equations. Field observations at Rogers Pass, British Columbia,
show that there is no justification for assuming Hp=0.5H if H is taken as the flow height of the core
material.

The two assumptions needed to obtain Equations (5) and (8), (2gSo/EH) > 1. with 3(2gS,/EH) < 1,
imply that the deceleration region S, is much shorter than the acceleration region S,. Velocity profile data
by Bryukhanov (1968) and Van Wijk (1967) show that this is not generally a safe assumption.

It is of further interest that for the two-segment problem there is no need to make the restrictive
assumptions (2gSo/EH) > | and $(2gS,/EH)? < 1 which were necessary o obtain equations analogous (o
Voellmy's. Equation (4) may be used to give the maximum speed. V(Sy)=Fy: whereas the condition
V(S,)=0 applied to Equation (7) gives

EH Ve + EH(ji cos 6, —sin 6;)
=—1In
2g EH(u cos &, —sin 6,)

as the version of Equation (8) without the restrictive approximations. This equation is identical to one
derived by Salm (1979) except that he has given /1 a slightly different interpretation.

G (10)

DisCcuUSSION

Equations analogous to those of Voellmy have been derived for maximum speed and avalanche run
out from the PCM Model. Attention has been focused on the approximations necessary for development
of such similar equations and it is emphasized that these are not. in general. good assumptions based on
field experience and measurements. Voellmy's actual derivation began from essentially the same
differential equation and the two-segment geometry assumed here. Voellmy’s derivation. however. is based
on energy considerations and the approximations used have been. to the present. unclear in terms ol the
PCM Model. The purpose of this short note is to clarify the relation between Voellmy’s equations and the
PCM Model.
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