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Abstract. In this paper, we study ovals of symmetries and the fixed points of
their products on Riemann surfaces of genus g > 2. We show how the number of these
points affects the total number of ovals of symmetries. We give a generalisation of
Bujalance, Costa and Singerman’s theorems in which we show upper bounds for the
total number of ovals of two symmetries in terms of g, the order n and the number m
of the fixed points of their product, and we show their attainments for » holding some
divisibility conditions. Finally, we give an upper bound for m in terms of n and g, and
we study conditions under which it has given parity.

2000 Mathematics Subject Classification. Primary 30F; Secondary 14H.

1. Introduction. Let X be a compact Riemann surface of genus g > 1. By a
symmetry of X we mean, in this paper, an antiholomorphic involution ¢ of X, which has
fixed points. By the classical result of Harnack, the set of fixed points of a consists of at
most g + 1 disjoint simple closed curves, which, following classical Hilbert terminology,
are called ovals. If a has g + 1 — ¢ ovals, then following Natanzon [5], we shall call it
an (M — g)-symmetry.

In [1] (see also [2]), the bounds for the total number of ovals of two symmetries
in terms of g and the order n of their product were given. Here, using a theorem of
Macbeath from [4] and a result from [6], we give a generalisation of these results, which
takes into account the number m of the fixed points of the product of symmetries. We
also show the sharpness of our bounds for infinitely many #.

In the remainder of the work, we focus attention on possible values of m for given
n and g. We find an upper bound for it and we study its attainments. Finally, we look
for the conditions that guarantee specified parity of m.

2. Preliminaries. We shall prove our results using the theory of non-Euclidean
crystallographic groups (NEC groups in short) by which we mean discrete and
cocompact subgroups of the group G of all isometries of the hyperbolic plane H.
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The algebraic structure of such group A is determined by the signature:

s(A) = (gsEs[my, .o om i {(nn, oo ng)s o, (ks - k)Y, (1)

where the brackets (n;1, . . ., n;,) are called the period cycles, the integers ny are the link
periods, m; proper periods , and finally, g the orbit genus of A.

A group A with signature (1) has the presentation with the following generators,
called canonical generators:

Xly.ooo, X, 05,1 <i<k,0<j<s;anday,bi,...,a,, bsifthesignis+ord,...,d,
otherwise,

and relators:

i . 2 i 71 . .
xri=1,...,r, Cj» (cj—1c§)", cioey "ciser, i=1,...,k,j=0,...,s
and

X1+ Xr€ --~eka1b1al_lbl_l -~~agbga;1b;1 Or X1 -+~ Xsey - - - exds - --d;,
according to whether the sign is 4+ or —. The elements x; are elliptic transformations
a;, b; hyperbolic translations, d; glide reflections and ¢; hyperbolic reflections. Every
element of finite order in A is conjugate either to a canonical reflection or to a power of
some canonical elliptic element x; or else to a power of the product of two consecutive
canonical reflections.

Now an abstract group with such presentation can be realized as an NEC group
A if and only if the value

r 1 | & 1
2 eg+k—2+z<1—;i>+zzz<1—n—y) ,

i=1 i=1 j=1

where ¢ = 2 or 1 according to the sign being + or — is positive. This value turns out to
be the hyperbolic area w(A) of an arbitrary fundamental region for such group, and
we have the following Hurwitz—Riemann formula:

[A 2 AT= pu(A)/ (D)

for a subgroup A’ of finite index in an NEC group A.

Now NEC groups having no orientation reversing elements are classical Fuchsian
groups. They have signatures (g; +;[m11, ..., m,];{—}), which shall be abbreviated as
(g;my, ..., m;). Given an NEC group A, the subgroup A™ of A consisting of the
orientation-preserving elements is called the canonical Fuchsian subgroup of A and for
a group with signature (1), it has, by [7], signature

(eg+k—1ymy,my,....;m,me, 0, ..., i) 2

A torsion-free Fuchsian group I' is called a surface group and it has signature
(g;—)- In such case, H/T is a compact Riemann surface of genus g and conversely,
each compact Riemann surface can be represented as such orbit space for some I'.
Furthermore, given a Riemann surface so represented, a finite group G is a group of
automorphisms of X if and only if G = A/T for some NEC group A.
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Let C(G, g) denote the centralizer of an element g in G. The following result from
[6] and the next theorem of Macbeath from [4] are crucial for the paper.

THEOREM 2.1. Let X =H/T be a Riemann surface with a group G of all
automorphisms of X, let G = A/ T for some NEC group A and let 0 : A — G be the
canonical epimorphism. Then, the number of ovals of a symmetry a of X equals

Y IC(G. 6(ci)) = 6(C(A, ),

where the sum is taken over a set of representatives of all conjugacy classes of canonical
reflections whose images under 0 are conjugate to a.

For a symmetry a, we shall denote by ||a| the number of its ovals. The index
w; = [C(G, 0(c;)) : 8(C(A, ¢;))] will be called a contribution of c; to |a]|.

COROLLARY 2.2. Let D, = A/ T be the group of automorphisms of a Riemann surface
X = H/T generated by two non-central symmetries a and b and let C = (ny, ..., ny) be
a period cycle of A. If n is odd, then the reflections corresponding to C contribute to | al||
and ||b|| with at most 2 ovals in total. If n is even, then the reflections corresponding to C
contribute to ||a| and ||b|| with at most t ovals in total, where t is the number of even link
periods if s > 1 and some n; is even and with at most 2 ovals in total for the remaining
cases.

Proof. Let 6 : A — D, be the canonical epimorphism. The case of odd # is trivial;
here all canonical reflections belonging to C are conjugate, C(D,, 6(c)) has order 2 and
ce C(A, o).

Now for n even, the centralizer of any non-central element of D, has order 4.
Since ¢; € C(A, ¢;), we have that w; < 2 and since @ and b are not conjugate, we can
assume that s > 2 or s = 1 and n; is even. If ¢ belongs to two odd link periods, then we
can assume that ¢ neither contributes to ||a|| nor to ||b]|, while if ¢ belongs to an even
link period n; and cc’ has order n, then (c¢’)"/? € C(A, ¢). Now 0((cc'Y"/?c) # 1 since
ker 0 is a Fuchsian group, and therefore, we see that (C(A, c)) has order 4. O

We also need the following result of Macbeath from [4] concerning the number of
fixed points of an automorphism of a Riemann surface (c.f. [3] for the case of non-
orientable Riemann surfaces). By Ng({g)), we mean the normalizer in G of the group

generated by g.

THEOREM 2.3. Let G = A/ T be the group of orientation preserving automorphisms
of a Riemann surface X = H/T and let x1, X2, ..., X, be the set of canonical elliptic
generators of A with periods my, ..., m,, respectively. Let 6 : A — G be the canonical

epimorphism. Then, the number m of points of X fixed by g € G is given by the formula

m = |Ng((g)| Y_ 1/m,

where the sum is taken over those i for which g is conjugate to a power of 0(x;). [

We shall study the number of fixed points of the product of two symmetries @ and
b of a Riemann surface X, which has the order n. Let X = H/T and (a,b) = A/T
for some NEC group A with signature (1) and Fuchsian surface group I'. Let r and
s denote, respectively, the numbers of proper periods and link periods equal to 7 in
the signature of A. The subgroup of A/ T of orientation preserving automorphisms is
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generated by the product ab and is A*/T". Hence, using the above theorem and (2), we
obtain the following.

COROLLARY 2.4. The product of two symmetries a and b of a Riemann surface X,
whose order is equal to n, has 2r + s fixed points.

3. On ovals of two symmetries with specified number of fixed points of their product.
Here we study how the number m of the fixed points of the product of two symmetries
of a Riemann surface of genus g affects the total number ¢ of their ovals, and we
give upper bounds for 7 depending on the parity of n. We also show that, with some
small exceptions, our bounds are sharp for arbitrary arithmetically admissible m, n
and g > 2, that is for » dividing 2g + m — 2. Throughout the remainder of the paper,
a and b will denote two symmetries whose product has order n and has m fixed points.

THEOREM 3.1. Two symmetries a and b of Riemann surface X of genus g whose
product has order n and has m fixed points have at most

4g/n+m—2m—2)(n—1)/n

ovals in total.

Proof. Let t denote total number of ovals of ¢ and b and let G = (a4, b) = D,,. Now
G = A/ T for some surface Fuchsian group I' and an NEC group A with signature

(h, :l:: [Wll, . mr]; {Clv ey Cks (nl)v cee (l’l]), (_)7 A (_)})1 (3)

where C; = (n;, ..., n;,) with s; > 2 or s; =1 and n;; even and ny, ..., n are odd.
Throughout the paper, let p = eh + k+ [+ u — 1, where ¢ = 2 or 1 according to the
sign of A being + or —; it is known as the algebraic genus of A. Let s =5 + 5"
where s’ denotes number of link periods 7 and similarly let » = 7' + r”” where ’ denotes
number of proper periods equal n. Now by Corollary 2.4, we have m = 21" + s'. Also
t <2u+2l+ 5 + 5" by Corollary 2.2, and thus,

2n(g — D/n= wu(A)
>2n(p—1+70=1/m)+¢" /2450 =1/n)/2+5"/4)
>2n(—=1+ (A =1/mm/2+7"/2+5"/4+ w+1)/2)
>2n(=1+ (= 1/mm/2+7"/2+(t—5)/4)
>2n(=1+ (= 1/mm/2+7"/2+t/4 —m/4)
> (1/2)(—4 + 2m(1 — 1/n) + 1 — m)

which gives t <4(g—1)/n+4+m—2m+2m/n=(4g+2m—4)/n+4—m=4g/
n+m—2m-—2)n—1)/n. O

THEOREM 3.2. The bound in the previous theorem is attained for every g, m > 2 and
every even n such that 2g +m = 2 mod n.

Proof. Let A be an NEC group with signature

O0; +; [ {2, .5.,2,n,.m., n)}),
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where s = (4g + 2m —4)/n+ 4 — 2m and consider an epimorphism 6 : A — D, =
(a,b | a®,b* (ab)") defined by 6(e;) =1 and which sends consecutive canonical
reflections corresponding to the period cycle into

a b(aby”*" a b(aby’*" ---ab a ba--a

s+1 m

So by the Hurwitz—Riemann formula for I’ = ker6, X = H/T has genus g and
by Theorem 2.1, symmetries ¢ and b have 4g/n+ m — 2(m — 2)(n — 1)/n ovals in
common. O

COROLLARY 3.3. The bound from Theorem 3.1 is not attained for m = 0 and m = 1.

Proof. By [1], the total number of ovals of two such symmetries does not
exceed 4g/n+ 2. On the other hand, for m <1, 4g/n+m—2(m—2)(n—1)/
n>d4dg/n+2. O

If m = 1, n = 2, then the total number of ovals is < 2g + (3/2) and the next theorem
deals with the case m = 0, n = 2.

THEOREM 3.4. Two commuting symmetries, whose product does not have fixed points
have at most g + 3 ovals in total and this bound is attained for every odd g > 2. The product
of commuting symmetries on a Riemann surface of even genus has fixed points.

Proof. We know that G = D, = A/T" and as m = 0 a group A has signature

by Corollary 2.4, where ¢h +1[ > 3 as u(A) > 0. By the Corollary 2.2, we have ¢ <
2[ and also we know that w(g — 1) = w(I')/4 = w(A) =2x(ch+1—-2) > 7 (2l — 4) >
7 (t — 4). So the first statement follows and also we see that gisodd as g = 2¢h + 2/ — 3.

To show the attainment of this bound for odd g > 2, consider an NEC group
A with signature (0; +;[—]; {(—), .!., (=)}) where / = (g + 3)/2 and an epimorphism
6 : A — D, that sends all ¢; into 1 and canonical reflections alternatively to ¢ and b.
As each period cycle produces two ovals in a or b, by Theorem 2.1, 6 defines desired
configuration of symmetries. g

Now we will show that, like in [1], the bound in Theorem 3.1 can be significantly
improved for odd n.

THEOREM 3.5. Two symmetries a and b of a Riemann surface of genus g, whose
product has odd order n and has m fixed points have at most

20g—1)/n+4—mn—1)/n
ovals in total.

Proof. As in the proof of Theorem 3.1, we have G = {(a, b) = D,, = A/ T for some
surface Fuchsian group I' and an NEC group A with signature (3), where s; > 2. Now
by Corollary 2.2, we have ¢t < 2k + 2/ + 2u and so

2n(g—D/n= nA)
>2n(eh+Il+k+u—-24r(1—-1/n)+51—1/n)/2)

>2n(eh+1t/2-2+(1—1/n)m/2)

> a(—4+t+m(l —1/n))

\%

which givest <2(g— 1)/n+m/n+4—-—m=2(g—1)/n+4—mmn—1)/n. ]
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THEOREM 3.6. The bound in the previous theorem is attained for every m,nand g > 2
for which 2g + m = 2 mod n.

Proof. Let A be an NEC group with signature
(0; +; [=L {(n, . m), (=), 24 (5D

where / = (g +m/2 — 1)/n+ 2 — m/2. Consider an epimorphism 6 : A — G defined
by 6(cio) =a for all i > 1, 6(¢;) =1 for all i and sending canonical reflections
corresponding to the non-empty period cycle alternatively to a and b starting with a
for even m and if m is odd defined on all canonical generators in the same way as before
except 0(cy,m—1) = aba with 6(c1,,) = a. This gives rise to the desired configuration of
symmetries. O

COROLLARY 3.7. If a and b are two non-commuting symmetries of a Riemann surface
of genus g whose product has m fixed points, then the total number of their ovals does not
exceed g+ 3 —m/2.

Proof. 1t follows directly from Theorems 3.1 and 3.5. O

By the degree of hyperellipticity of a conformal involution p of a Riemann surface
X, we shall understand the genus of the orbit space X/ p.

COROLLARY 3.8. Two (M — q)- and (M — ¢')-symmetries of a Riemann surface
of genus g, whose product has m fixed points, commute for g > q+q +2 —m/2.
Furthermore, in such case, m = 2g + 2 — 4p, where p denotes the degree of hyperellipticity
of the involution ab.

Proof. Assume to a contrary that these symmetries do not commute. Then, we have
2¢64+2—qg—q¢ <g+3—m/2andsog<g+¢ +1—m/2. Now if a and b are two
commuting symmetries of a Riemann surface of genus g, then G = (¢, b)) = D, = A/T
for some surface Fuchsian group I" and an NEC group A with signature

(502, .7, 232, 0, 2), o, (2, %, 2), (<) L (5D, %)

Since the algebraic genus p of A is just the degree of hyperellipticity of ab, then for
p=ch+k+I—1,wehaven(g—1)=u)/4d=puA)=2x(p—-14+m/4) =7(2p —
2+m/2)andsom = 2g + 2 — 4p. O

4. On the number of fixed points of the product of two symmetries.

THEOREM 4.1. Let a and b be two symmetries of a Riemann surface X of genus g
whose product has order n. Then, ab has at most 2(g +n — 1)/(n — 1) fixed points.

Proof. As before, let G = (a, b) = D, = A/ T for some surface Fuchsian group I'
and an NEC group A with signature (3). Then,

2n(g— D/n = pu(h)
>2np—14+7r(1—=1/n)+7" /2451 —1/n)/2+5"/4)
>2n(—1+ (1 —1/nm)m/2)
=n(=2+m(l —1/n).

So the statement follows since m < 2(g — 1)/n+2)n/(n—1)) =2(g+n—-1)/
(n—=1) d
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From the next theorem, it follows in particular that the above bound is attained
for arbitrary arithmetically admissible g and »n with n even.

THEOREM 4.2. Given g > 2, m, an even n such that g =0 mod (n — 1) and 2(g +
n—1)/(n—1)=m mod 4, there exists a Riemann surface X of genus g having two
symmetries whose product has order n and has m fixed points.

Proof- Let 2g/(n — 1) + 2 be denoted as M and so m = M — 4k for some integer
k. Consider an NEC group A with signature

O [T () (2. 2 m/2))

and an epimorphism 6 : A — D, = (a, b) defined by 6(¢;) = 1 for all i, 6(c;y) = a for
reflections corresponding to empty period cycles and which sends canonical reflections
corresponding to the non-empty period cycle onto

a bab---abab ababa---a

m+1 2k

Here again by the Hurwitz—Riemann formula, we have get a Riemann surface of genus
g that admits two symmetries ¢ and b whose product has m fixed points. ]

Now we shall give some conditions under which m have specified parity.
Particularly interesting is the case when the product of symmetries has an odd number
of fixed points.

THEOREM 4.3. If n is a power of 2, then m is even. If n is even but is not a power
of 2, then for infinitely many g, there exists a Riemann surface of genus g having two
symmetries, whose product has order n and m is odd.

Proof. Let as always G = (a,b) = A/T" and let 6 : A — G be the corresponding
epimorphism. If there are no link periods equal to n, then by Corollary 2.4, m = 2r for
r being the number of proper periods equal to z in the signature of A. So we can assume
that there are link periods n. As both symmetries have ovals, the order of symmetry
conjugate to a and symmetry conjugate to b is n and 6(c;p) is conjugate to 6(c;;,), the
number of link periods # is even in each of the non-empty period cycles. Hence, the
number of fixed points of ab is even by 2.4.

For the second part, let k£ # 1 be the smallest odd divisor of n. Given an integer u
consider an NEC group A with signature

O;+3[n, ¥ n, uls {(n, k, ke, n/K)}),
where u =n/ged(n, u+ (k—1)/2) and an epimorphism given by 6(x;) = ab for

i=1,...,u, 0(x.1) = (ba)*t* D2 g(e) = (ab)*~1/?> and which sends reflections
corresponding to non-empty period cycle to

a b a(bay’*= ' b a(ba)<~".
Then, 0 gives rise to a configuration of two symmetries whose product has order n and

has 2u + 1 or 2u + 3 fixed points on a Riemann surface of genus g = (u+2)n — u —
n/pu—n/k —(k—1)/2. 0
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