Compositio Mathematica 105: 95-108, 1997. 95
© 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Seeking invariants for blow-analytic equivalence*

TOSHIZUMI FUKUI

Nagoya I nstitute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466 Japan

Current address: Department of Mathematics, Faculty of Science, Saitama University,
255 Shimo-Okubo, Urawa, 338 Japan. e-mail: tfukui @rimath.saitama-u.ac.jp

Received 20 July 1995; accepted in final form 27 November 1995

Abstract. We introduce some blow-analytic invariants of real analytic function-germs and discuss
their properties. As a consequence, we obtain, for instance, the multiplicity of function-germsis a
blow-analytic invariant.

Key words: real analytic function-germ blowing-up, resolution, blow-analytic equivalence.

0. Introduction

We consider the classification problem of real function-germs. At the beginning
of this theory, H. Whitney showed in [22, (13.1)] that the diffeomorphism type
of the zero locus of W (z,y) = zy(z — y)(z — ty), (¢t > 2) near 0in R? varies,
when t varies. In general, there are modulus near ‘non-simple’ germs for the
differentiable equivalence, then the situation is very complicated and seems to
cause many problems. Speaking topological equivalence, it does not seems to
cause modulus, see [4], but appears some pathology: e.g. fi(z,y) = y* — z%1
(k = 1,2,...,) determine the same topological type near 0 in R2. Such pathology
isnot desirable to classify singularities.

Thus, we are interested in the following observation due to T.-C. Kuo ([14]).
Let 7: M — R? bethe blowing up at the origin. Thereis afamily of real analytic
isomorphism H; of M which induces afamily of homeomorphisms h; of R? with
Wy o hy = W, whenever t > 2. This suggeststhe notion of blow-analytic equiva-
lencefor real analytic functions, whichisreviewed in Section 2. In [16], T.-C. Kuo
introduced the notion of blow-analytic equivalence, and showed a satisfactory finite
classification theorem. In[14, 5, 6], proved were some theorems which asserts sev-
eral families are blow-analytically trivial. The next problem we have to consider
is to find criterions that two function-germs are not blow-analytically equivalent.
Thisis our subject.

Inthispaper, we present anideato show that two real analytic function-germsare
not blow-analytically equivalent. The first two sections devote some fundamental
facts on blowing up. In Section 3, we define the blow-analyticinvariant A,,(f), and
work on them in the next three sections. We next define blow-analytic equivalence
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for coherent subspace-germs and work subspaces defined by function-germs. |
think these results are satisfactory as afirst step on this problem.

1. Blowing-up

In this section, we review some basic definitions and facts of blowing-ups from
H. Hironaka's papers|[8, 9, 10].

(1.1) Let usdenote by K either the field of real numbers R or that of complex
numbers C. For alocal-ringed space X, we denote | X | the underlying topological
space of X, and Oy its structure sheaf. See the first paragraph of Chapter O.
Section 1 in [8], for the definition of local-ringed spaces. By a K-analytic space,
we mean an analytic K-space in the sense of the fifth paragraph of Chapter O.
Section 1 in [8]. For a coherent sheaf I of ideals on X, we have a local ringed
spaceY = (Y|, Oy ), where |Y| isthezero set of I in X and Oy istherestriction
of Ox/Ito|Y|. Wecall such aspaceY acoherent subspace of X .

(1.2) Let X beaK-analytic space, and D acoherent subspace of X defined by
some coherent sheaf J of idealson X. Then a morphism7: X — X issaid to
be the blowing-up of X aong D (or J), or with center D (or J), if the following
conditions satisfied.

(i) JO isinvertibleas O -module.

(if) For any morphism of K-analytic spaces f: X' — X, if JOx isinvertible,
then there exists aunique morphism f’: X’ — X withwo f' = f.

The existence of the blowing-up of X along D was shown in [8]. See the tenth
paragraph of Section 2 in Chapter 0 ibid.

(1.3) Let f: Z — X beaK-analytic map and Y a subspace of X defined by
the coherent sheaf I of ideals on X. We denote £ ~1(Y") the subspace of Z defined
by the ideal sheaf 10z on Z. If f isthe blowing-up of X along D, then f~1(Y)
is caled thetotal transformof Y by .

(14) Letr: X — X bethe blowing-up of X along D, and Y a subspace of
X.Ifq:Y — Y istheblowing up of Y along Y’ N D, then there exists a unique
isomorphism of Y to asubspace Y’ of X such that ¢ isinduced by «. Y is called
the strict transformof Y by .

(2.5) A morphism obtained by a finite succession of blowing-ups can be also

obtained by a single blowing-up with suitably chosen center. For a proof, see [8,
p. 132].
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(1.6) Let D, (a = 1,2) be coherent subspaces of K-analytic space X, and J,,
(a = 1, 2) theideal sheaf of D, on X. If D3 isthe coherent subspace of X defined
by J1Jo,and . Xg — X areblowing-upsaong Dg, 8 = 1, 2, 3, then there exist
morphismsq,: X3 — X, (o = 1,2) withm3 = m,0¢, (o = 1, 2). See|9, (2.10)],
for a proof. Suppose that there exist an invertible sheaf I of ideals containing .J.
SinceI isprincipa, (J : I)I = J. ThusJ and J : I giveisomorphic blowing-ups.
Therefore, any blowing-up of X isisomorphic to that along some sheaf of ideals
not contained in any invertible sheaf of proper ideals.

(1.7) Let A be a well-ordered set with a minimal element O and a maximal
element . For A\ € A, we denote the successor of A by A + 1. By a succession of
blowing-ups, we meanasystem of morphisms{ fy ,: X — X,;; A > pu, A\, p € A}
which satisfies the following properties.

() fapo fup = for X p,v e AwithA > pu > v.
(i) fr := fry1,) isablowing-up of X, with some center for each A € A with
A+1leA
(iii) X isthe projective limit of the system {f,, : X,,;1 — X, < A} for each
A€ Awithh+1¢A.

We often abbreviate the above a succession of blowing-ups fy: X)11 — X, for
A €A

We say that the succession of blowing-ups above is locally finite, if each point
of X hasaneighborhood NV in | Xo| such that the center of f) meets f;,é(N) only
finite number of A € A.

(1.8) For the sake of convenienceto refer, we quote the real analytic version of
the H Hironaka's resolution theorem in [8]. See Section 5 of [9], also.

RESOLUTION THEOREM FOR REAL ANALYTIC SPACES ([8, p. 158]). Let
X = Xgbeareduced R-analytic space. Thenthereexistsalocally finite succession
of blowing-ups f) : X ;1 — X, with centers D, for A € A, which has the
following properties.

() D, isnonsingular and does not contain any simple point of X, for A € A.
(ii) X, arenormally flat along D) for A € A.
(iif) X, isnonsingular.

We call the resulting morphism f: X, — Xo = X aresolution of X.

SIMPLIFICATION THEOREM FOR IDEALS ([8, p. 158]). Let X = X bea
nonsingular R-analytic space, I = Iy a coherent sheaf of non-zero ideals on X,
and Fy a reduced analytic subspace everywhere of codimension 1 in X which has
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only normal crossings. Then there exists a locally finite succession of blowing-ups
fa: Xap1 — X, with centers D), for A € A, which has the following properties.

(i) Dy isnonsingular and irreduciblefor A € A.
(i) If I 41 isthe weak transformof I, by f\ for A € A, then (I, ,) isa positive
constant for y € D).
(iii) If Ey1 is the reduced analytic space red(f; 2(Ey) U fyH(Dy)) for A € A,
then E, has only normal crossingswith D).
(iv) E, hasonly normal crossings,and I, = Oy, .

We call the resulting morphism f: X, — Xo = X asimplification of I.

In this paper, we consider germs of real analytic spaces at some compact real
analytic sets. Resolutions (or simplifications) of such objects always exist.

Here we quickly review some definitions. Let J be a coherent sheaf of ideals
on X defining a subspace D. Then X is normally flat along D, if J?/JP*lisa
sheaf of free O p-modules for each non-negative integer p. For a coherent sheaf 1
of ideals on X, we denote v/(1,) the maximal integer m such that the mth power
of the maximal ideal of Oy , includes 1. If f : X — X isthe blowing-up along
nonsingular irreducible D, and m = v(1,) for the generic point = of D, then the
sheaf /O isdivisible by themth power of the sheaf of ideals of f-Y(D)onX.By
thisdivision, we obtain the weak transformof 7 by f. Let F and D be subspaces of
X . Wesay that E hasonly normal crossingswith D, if for each z € E there exists
alocal coordinate system (z1, ..., z,) @ z such that the ideal of E is generated
by amonomial in z;'s, and that that of D is generated by some of z;’s. In the case
D = X, wesimply say that £ has only normal crossings.

2. Definition of blow-analytic maps

Following [16], we define the notion of blow-analytic maps. Let f: X — Y bea
continuous map between R-analytic spaces. According to T.-C. Kuo, thefollowing
conditions are equivalent.

(i) There exists a surjective blowing-up 71 : X; — X aong some coherent
subspace D sothat f o 7w isareal anaytic morphism.
(ii) There exists a succession of blowing-ups w2 : X» — X with nonsingular
centersso that f o o isareal anaytic morphism.
(iii) There exists a proper modification 73 : X3 — X* of complex spaces, which
is acomplexification of areal morphism nrz: X3 — X, sothat f o rzisarea
analytic morphism.

Proof. (i) = (ii): Let mp: X2 — X beasimplification of the sheaf of ideals
of D. Because of the universal property of 71, m, factors through 7.
(i) = (i): Since the composition of blowing-upsis ablowing-up, thisis obvious.
(i) = (iii): Thisis obvious, since a blowing up admits a complexification which
is a proper modification.
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(ili) = (i): Consequence of the real version of Hironaka's Chow’s lemma [11,
p. 504]. See[16], aso. O

A mapping f: X — Y of real spacesiscalled blow-analyticif it satisfiesone of the
equivalent conditions above. In [13, 14, 15, 19, 20, 5, 6] etc., the word ‘modified
analytic’ or ‘almost analytic’ were used instead of ‘ blow-analytic’. Following [16],
we use the word ‘blow-analytic’ here, because of importance of roles of blowing-
upsin our discussions.

3. Blow-analytic equivalencefor function-germs

Let (Xa, Fqo) (o = 1,2) be germs of R-analytic spaces X, at compact closed
connected subspaces E,, of X, and f,: (Xu, Eo) — (R,0) (o = 1, 2) germs of
real analytic functions. We say that f1 isblow-analytic equivalentto f, if there exist
some surjective blowing-ups 7, : Xo — X, (o = 1,2) with some centers D,
and a R-analytic isomorphism-germ H : (X1, 7y Y(E1)) — (X2, 75 *(E2)) with
fromo H = f1om. Wedenoteit by f; ba f2. We also denote [ f] the equivalence
classof f: (X, E) — (R,0). Thus f1 be f2isequivaentto [f1] = [f2].

Let A,, denotethe set of blow-analytic equivalenceclass of R-analytic function-
germs on germs of n-dimensional nonsingular irreducible R-analytic space X at a
compact closed connected subspace E, which is not a zero divisor.

Let f be agerm of a R-analytic function of an irreducible R-analytic space X
at acompact closed connected subspace E. Let p: (Y, E') — (X, E) beagerm of
aproper R-analytic map with E' = p~%(E). If Y is n-dimensional, nonsingular,
and irreducible, E’ is connected, and f o ¢ is not a zero divisor in Oy, then the
germ fop: (Y, E') — (R, 0) determinesaclassin A4,,. We denote A,,(f) the set
of all suchclassesin A,,.

THEOREM 3.1 If f; be fa,then A, (f1) = A, (f2) for eachn.
We prepare alemma to show this theorem.

LEMMA 32 Let f: (X, E) — (R,0) be a real analytic function-germ of a R-
analytic space-germ (X, £), and (D, D N E) a R-analytic subspace-germof X of
everywhere codimension more than or egual to one. For any class [®] in A4,,(f),
there existsa proper real analyticmap p: (Y, E') — (X, E) sothat [f o ¢] = [®],
E' = ¢~Y(E), and that ¢~1(D) isa proper subspace of Y.

Proof. By abuse of language, we do not distinguish germs and their represen-
tatives. Let pg: Y — X beaproper morphism with [f o ¢o] = [®].

Remark that f o g isnotazerodivisorin Oy. Let m: X3 — X bearesolution
of X,and m,: X' — X7 asimplification of the sheaf of ideals generated by f o .
Then the composition 7 = w0 m1: X' — X isthe blowing up along some sub-
space B. We sometimes call = asimplification of f. We may assumethat B isin
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f~10). Letw: Y’ — Y bethe blowing up along »~%(B). Then thereis aunique
morphism ¢’: Y' — X’. Let F bethe sheaf of germs of real analytic vector fields
tangent to each level surface of f o 7, vaglobal section of F which is not tangent
to 7~ (D). Because of Theorem 3in [3], suchv aways exists. Let h; : X' — X'
denote the one-parameter family of analytic isomorphisms generated by v. Then
themap ¢ = 7 o h; o ¢’ hasthe desired properties. O

Proof of (3.1). By abuse of language, we do not distinguish germs and their
representatives. Let ., : X, — X, (o = 1, 2) be the blowing-ups along D,,. We
assume that there is a real analytic isomorphism i : X3 — Xp with f1 07 =
fa om0 h. For each [®] in A,(f1), thereis a proper morphism¢: Y — X1 S0
that p~(D1) isaproper subspaceof Y, and that [f1 0 ¢] = [®]. Letw: Y — Y
be the blowing-up along (D7) and denote & : Y — X the unique morphism.
Obviously [f2 o m2 0 h o @] defines aclass of A, (f2), whichis [®]. Thisimplies
An(f1) C Ap(f2), and vice versa. O

Since ablowing-up of anonsingular real analytic curveis an isomorphism, a class
in A; isexpressed by (R, 0) > ¢ — +t* € (R, 0), which we denote by [k*]. Since
[(2k+1)*] = [(2k+1)~], weoften denoteit by [2k +1]. Obviously A;(f) isaclass
of real analytic map (R, 0) — (R, 0) which factors through f: (X, £) — (R,0).
Let N denote the set of non-negative integers, and R, the set of non-negative real
numbers. Let z = (z1, ..., z,) beacoordinate system of (R",0).

n

Wethen havethat A;(f) = {[(X 1 kim;)T] € Ay k; €Nfor i =1,...,n}.
Proof. Elementary computation: Consider ananalyticmap¢: (R,0) — (R",0).
If wewritep(t) = (c1t*1, ..., ¢, th»)+-higher order terms, (c; # 0),then foyp(t) =
gt t2 iz kimi 4 higher order terms. This completes the proof. O

LEMMA 4.1 Let f: (R",0) — (R, 0) bethemapdefinedby f (z) = £ - ™.

Letz = (x1,...,x,) beacoordinate system at the origin 0 of R, f: (R",0) —
(R,0) area analytic function-germ, and 3° N c,2” the Taylor expansion of f
a 0, where z¥ = z7*---al» for v = (v1,...,14,) € N™. The Newton polygon
L (f) of f means the convex hull of the set {v + R} : ¢, # O}. For a =
(a1,...,a,) ER"andv = (v1,...,v,) € R, weset (a,v) = a1+ -+ aplp,

l(a) = min{{(a,v) :v e T (f)},andy(a) = {v € T+ (f) : (a,v) = (a)}. We
set fy(z) = 3¢, co” for asubset y of RY.. For a € N, we define [¢(a)?] by

[L(a)*] if f.(q) is positive semi-definite near O,
[l(a)’] = ¢ [(a)”] if f,(q) iSNegative semi-definite near O,
[¢(a)*] otherwise.
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LEMMA 4.2 For a function-germ f : (R",0) — (R,0), we have A;(f) D
{[l(a)?] € A1 :a € N"}.

Proof. Consider themap ¢ : (R,0) 3 ¢ — (c1t™,...,c,t*) € (R",0) for
genericc = (c1, ..., ¢n). Thenwehave fo(t) = f. (4 (c)t“®+higher order terms,
which shows the lemma. O

We say that f: (R",0) — (R, 0) is nondegenerateif the gradient of f,(x) hasno
zerosin (R — 0)™ for each compact facey of I' . (f).

PROPOSITION 4.3 For a nondegenerate function-germ f: (R",0) — (R, 0), we
have A1 (f) = {[{(a)’] € A1:a € N"} U {[p*]:p > po}. Here, po = min{/(a) :
a € N",dimvy(a) =n — 1, f,(4) isnot semi-definite near 0}.

Proof. It iswell-known that there isatoric modification 7: (X, E) — (R",0)
which is a simplification of the ideal generated by f, if f is nondegenerate. (See
[12],[1, pp. 234-250], [5], etc.) Forany a € N", thereisamap ¢: (R, 0) — (R",0)
with [f o ¢] = [l(a)?]. Let ¢ : (R,0) — (X, E) be the lift of ¢. Without
loss of generality, we may assume that the image of ¢ is in some coordinate
patch (R",y = (y1,...,yy)) of X, and that the map = is expressed by w(y) =
(5 -yt - yi). Thenweobtainthat for(y) = f/(y)ys™ - ™"
and the zero locus of f is nonsingular and transverse to each coordinate spaces.

Herea’ =t(ai,...,al). By (4.1), this completes the proof. O

Let f: (R*,0) — (R,0) be area analytic function-germ. Since the minimal
number k£ with [k] (or [k~ ]) € A1(f) isthe multiplicity multy(f) of f at O, the
degree of the leading term of a Taylor expansion of f at 0, we obtain the following.

COROLLARY 44 Let f, : (R",0) = (R,0) (o = 1, 2) bereal analytic function-
germs. If fl b'f\?' fz, then mUlto(fl) = mUlto(fz).

A similar result was also obtained by another method due to M. Suzuki [18].

EXAMPLE 4.5 Here, we consider some polynomial germs (R%,0) — (R,0).
Since [3] € A1([z® + y?]), we have [z2 + y?] # [z° + y?]. Such discussion shows
that [f] = [g] iff f = ¢, for f,g € {®* 2 +y?: k =1,2,...,}. But the use of
Ay (f) isrestrictive, since Ay ([z* + 4?)) = A1([z? + v?)).

5. Ajand graphs

Let 7: (X, E) — (R?,0) be ablowing up along some coherent subspace D. We
may assumethat D is of codimension 2, since we may do that 7, isnot contained
in a proper invertible ideal in Ok ;. Then, there is a coordinate system (z1, z2)
of (R?,0) so that I is generated by polynomials in z1, 2, because of [17] or
[21]. Thus we may assume that 7 is an algebraic map. By the discussion in [7,
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pp. 510-512], if X is nonsingular, then 7 : (X, E) — (R? 0) isisomorphic to a
sequence of blowing-ups along some real points. Thus, if X — X is a blowing
up between some nonsingular surfaces, then it is isomorphic to a composition of
blowing-ups at some points. o

Let f: (X,E) — (R,0) be areal anaytic function-germ, and 7 : (X, E) —
(X, E) asimplification of f, where E = n~1(E). Then the zero locus of f is
a divisor with only normal crossings, and we denote it by >, m;D; where
D; 1 = 1,...,s) denote its irreducible components, and m; the multiplicity
of f along D;. It is often convenient to consider a ‘graph’ of a simplification
m: (X,E) = (X, E) of f obtained by the following way: To each D; such that
m; # 0 there corresponds a vertex ‘(. If D; and D; intersect, then we draw
a line connecting the corresponding vertices. We record the multiplicity m; by

placing that integer above the corresponding vertex i.e. Q If fomispositive(resp.
negative) semi-definite near D;, Weassrgn thesign + (resp. —) tothe corresponding

vertex and denote it by ® (resp. @) B
Given the graph of asimplification 7: X — X of f admits operationsinduced

by more blowing-ups of X . For example, we can replace
a b a a+b b
(something)—=()—() <—(something) by (something)—=(— O —()<—(something),

(somethi ng)—\‘é—é <—(something) by (somethi ng)éé—aéb—é <—(some-
thing),. . ., (something)—>() by (something)—>()—(), and so on. We say a ver-
tex in such a graph is contractible if it corresponds to the exceptional set of the
blowing up above. The inverses of the operations above are contraction of graphs.
These operations generate an equival encerelation on the set of all such graphs. Let
G(f) be the equivalence class of the graphsof f € A,. For f, € Az (o = 1, 2),
[f1] = [f2] implies G(f1) = G(f2), by the discussion ibid.
PROPOSITION 5.1 If two graphs belong to the same equivalent class, and each
has the minimum number of vertices for graphsin the class, they are isomorphic.
Proof. Let G, beagraph and G, agraph obtained from G4 by a succession of
contractions above. Assumethat G has no contractible vertices. It then is not hard
to see that a contractible vertex of G1 cannot survivein G, except the case G2 =

Ca), é, &. This completes the proof. O
PROPOSITION 5.2 Let f: (R?,0) — (R,0) be a nondegenerate real analytic
function-germ. Then G(f) isthe class obtained by the following way:
(i) St V(D4 (f)) = {v = (§) € N?>: GCD(a,b) = 1,dimy(v) = 1}.
(i) Take a sequence of lattice points vq, ..., v, IN the first quadrant R2 such
that the successive pairs generate the Iattlce N2 and that {v1, .. vn} D

V(I4(f)- «

(iii) Assignthe vertex Q to each v; whenever £(v;) # O, and the sign + (resp. —)
to that vertexif £, () is positive (resp. negative) semi-definite near 0.
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(iv) Draw lines connecting vertices corresponding to the successive pairs of these
lattice points.
(v) Ifthezerolocusof f,(,,) hasm irreducible componentsnear O except the axes,

1 £(v;)
assign m vertices (), and draw m lines connecting these m verticesand () .

(vi) G(f) isthe class of this graph we obtained.

Proof. We set v; = (3’) (i = 1,...,n). Let RZ be a copy of R* with a co-
ordinate system (z;,y;). Definethe map m; : R? — R%? (i = 1,...,n — 1) by
mi(zs, i) = (2%, 22y *). Then we can glue 7, : RZ — R? together and
obtainamap 7: X — R2.If f : (R? 0) — (R,0) is nondegenerate, then = is a
simplification of theideal generated by f. This gives our assertion. O

EXAMPLE 5.3 Using (5.2), we can distinguish many polynomial-germsin 2 vari-
ables. For example, wehave[f] = [g]iff f = gfor f,g € {£ (2% 144?), (2% +
y?), 2%y £ y? T 23 £yt 2P 4 ayd a3 4 P 2 a2 £ (0P 4 ), £
(%2 — y?), 2% £ 22y? + P 23 7 23 4 wyP, 23 2B 2 (2 4 ), ay(z -
y)(z — 2y), z* — y*}. It is not hard to extend this list, using (5.2), (7.1) and (7.2).

6. P.o.setsof f

Let N denote the set of positive integers. Let P be atriple (P, v, o) where P is
apartially ordered set, v isamap of P to the set of nonempty additive sub-semi-
groups of N, and o isamap of P to {{+1},{—1},{+1,—1}} satisfying the
following conditions.

(i) v(e) = Yo Nyv(e) fore € P.
(i) o(e) = {—1,+1} if and only if there existsan e1 > e withv(e1) Z 2N,

Let P, = (P, Vo, 0a) (e = 1,2) be two such triples. A morphism ¢ of P; to
P», we often denoteit by ¢: P1 — P2, meansamorphisme: Py — P, aspartialy
ordered sets which satisfiesv1(e) C v2(p(e)),o1(e) C o2(¢(e)) foreache € P.

Let f: (X,E) — (R,0) beareal analytic function-germs, and 7 : (X, E) —
(X, E) asimplification of f. Then the zero locus of f o 7 is adivisor with only
normal crossingsand denoteit by "7 _; m;D;, wherem,; isthemultiplicity of for
along an irreducible component D;. Setting e; = N,y D; for I C {1,...,s} and
P the set of connected componentsof e;’sfor nonempty I C {1,...,s}, Pformsa
partially ordered set by the order defined by theinclusion. Let e € P beaconnected
component of e;. Setting v(e) = {>_kim; : ki € N4,i € I}, and o(e) = the
possible signs of values of f o 7 near e, P = (P,v,0) is atriple satisfying the
conditions above. We say that P isap.o.set belonging to f.

EXAMPLE 6.1 The Hasse diagrams of some (simplest) p.o.sets belonging to the
function-germ defined by z2 + y2 + 22 (or z° + y2 + z2) near 0 are the following.
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x+y+z w+y—z x+y+z 24 y?— 22

R Al

PROPOSITION 6.2 Let f, : (Xu,Es) — (R,0) (@« = 1,2) be real analytic
function-germswith [f1] € A,,(f2). For each poset P, belonging to f>, there exist
some poset P1 belonging to f1 and a morphism of P; to P».

Proof. By assumption, there is a proper morphism ¢ : (X1, E1) — (X2, E2)
with [f1] = [f2 0 ¢]. Let mp: X5 — X, be a simplification of f,. Then 7y isa
blowing up with some center, say B. Let w1 : X] — X3 be the blowing up along
©"Y(B), ¢': X — X} the unique morphism, and =’ : X; — X} asimplification
of f o m1. We write the zero locus of f o 7y by -5 m;D; and that of f o pomp
by Y%, m} D). Setting ¢’ an irreducible component of Nicrr Dj, we define p(e')
the intersection of D;’s containing ¢’ o 7’ (e’). This ¢ isthe desired morphism. O

EXAMPLE 6.3 After someroutine calculation using (5.1), we show that there are
no morphism of poset belonging to germ defined by #2412 to that belonging to the
function-germ defined by 2° + 2 + 22 near 0, and [ + y?] & Ao([z® + % + 27)).
Thisshowsthat [23+y?+22] # [2°+y?£2?]. Since[y? —2?] & Aa([z3+y%+22]),
we havethat [z° + y? 4 2?] # [x° + y? — 2?]. Such discussion showsthat [f] = [g]
iff f=gforf,g € {e? 1 442 +22k=12..}.

7. Blow-analytic equivalencefor coherent subspace-germs

Let (Xq, Ey) (a = 1,2) beR-analytic space-germs, and (V,,, Vo, N Ey) (e =1, 2)
are subspace-germsof (X,, E,). We say that (X1, V1; E1) is blow-analytic equiv-
alent to (X, Vo; E») if there exist some surjective blowing-ups , : X, = Xo
(a = 1,2) with some centers D,, and an R-anaytic isomorphism-germ H :
(X1,m Y(Er) = (X2,m; (E2)) S0 that H(my (V1) mp H(Br)) = (mp (V)

3 Y(E2)). We denote it by (Xq, Vi E1) "8 (X, Vo Eb). we aso denote

[(X,V; E)] theequivalenceclassof (X, V; E). Thus(Xl,Vl,El) S (X2, Va; E)
isequivalent to [(X1, Va; Eq)] = [(X2, Va2; E»)].

Letf: (X, E) — (R, 0) beareal analyticfunction-germ. Wedenote f; ba v f2
if f1 and f> define subspaceswhich are blow-analytic equivalent.

Let V' be acoherent subspace of X defined by the coherent sheaf I of ideals on
X. A blowing- up7r X — X issaidtobeasimplification of V, if X isnonsingular
and the space 7—1(V) isadivisor with only normal crossings. The following (7.1)
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is a consequence of the existence of a simplification of any coherent subspace of
nonsingular analytic spaces.

PROPOSITION 7.1 Let (X, V,; Eo) (o = 1,2) be subspace-germs defined by
some coherent sheaves of ideals in some nonsingular R-analytic spaces X,,. Then
(X1, V1; E1)] = [(X2,V2; E)], if and only if, (Xq, Va: Eq) (@ = 1,2) admit
isomor phic simplifications of V.

Let fo: (Xa, Bo) = (R,0) (a = 1, 2) bereal analytic function-germs on real

analytic manifolds X,,. It is easy to see that f1 ba v fo, if f1 ba =+ f>. We show
the converse.

PROPOSITION 7.2 f1 ®2V £, implies 1 %2 + f,.

The proof is essentially sameto the discussion in [16, Sect. 3].

Proof. To savenotations, we do not distinguish germsand their representatives.
since f1 **" f,, there exist blowing-ups m, : X, — X, (o = 1,2) and analytic
isomorphism H: (X1, 77 2(E1)) — (X2, 75 *(E2)) whichinducesanisomorphism
of m, 1((f2)) tomy Y((f1)). Letn': X — X, beasimplification of f10m1. Thenfor
eachpoint P of X thereexistsacoordinatesystemy = (y1, . .., y) of X near P so
that fiomon’(y) = y7"* - - - y» for somemy, ..., my,. Since foompo H generatethe
ideal generated by f1om1, foompo Hon'(y) = uyy™ - - -y~ for someunit function
u hear P. Changing sign of f», if necessary, we may assumethat v > 0. Let I bean
openinterval (—e, 1+ ¢) for small positivenumber ¢. Defineamap F': X xI — R
by F(y,t) = t(f1omon'(y)) + (L —t)(f20m o H on'(y)). We have that
F(y,t) = (t+ (1—t)u)yy™ - - -y~ near P. Replacingyy by (t+ (1—t)u)/ ™y,
we obtain that F'(y,t) = y;"* -y near P. Letp: X x I — I be the natural
projection. Then the vector field 9/0t on I hasalocal lift near each pointin X x I.

Let F denote the sheaf of germs of analytic vector fields on X x I which are
consistent with the canonical stratification of 7~1(0) and tangent to each level
surfaces of F', and Fy the subsheaf of those germs which vanish under dp. Then,
by Theorem 3in [3], 0 — HO(Fo) — HO(F) — HO(F/Fo) — Oisexact. The
local lifting of 9/0t, constructed above, together yield an element in HO(F/F),
which, by exactness, is the image of a global section v of F. Integration of v gives
the desired isomorphism of X. O

Let B, denote the set of blow-analytic equivalence class of R-analytic prop-
er coherent subspace-germs of n-dimensional nonsingular irreducible R-analytic
spacegerm (X, E), where E is a compact closed connected subspace of X .

Let (V,V N E) be a coherent subspace-germ of an R-analytic space-germ
(X, E), and Iy, the coherent sheaf of idealson X defining V. Let ¢: (X', E') —
(X, E) be agerm of a proper R-analytic map with E' = o (E). If X' isn-
dimensional, nonsingular, and irreducible, E’ is connected, and I,y Oy is not
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identically zero, then the germ ¢~ 1(X,V; E) = (X', o~(V); E') determines a
classin B,. We denote B,,(X,V; E) the set of all such classesin B,,. We set
B, (f) = B,(X,V; E) where V isthe subspace defined by the ideal generated by
function-germ f: (X, E) — (R, 0).

THEOREM 7.3 If (X1,Vi;E1) & (X2, VaiEz), then B, (X1, Vi Ey) =
By, (X2, Va; E») for eachn.

We prepare alemma to show this theorem.

LEMMA 7.4 Let T be a coherent sheaf of ideals on X, D a coherent proper
subspaceof X of everywherecodimension morethan or equal to one. For any class
(Y, V', E")] in B,(X,V, E), there exist a R-analytic map ¢: (Y, E') — (X, E)
sothat [ 1(X,V; E)] = [(Y,V'; E')] and ¢~ 1(D) isa proper subspaceof Y.
Proof. By abuse of language, we do not distinguish germs and their represen-
tatives. Let po: Y — X be aproper morphism with [f o o] = [®]. Remark that
c,ogl(V) is a proper subspace of Y. Let mp: X3 — X be aresolution of X, and
m2: X' — X1 asimplification of the sheaf of ideals of 77 (V). Then the compo-
sitiont = m o m: X' — X isthe blowing up along some subspace B. We may
assumethat BisinV.Letw: Y’ — Y bethe blowing up along ¢ ~1(B). Then
thereisaunique morphism ¢’: Y’ — X'. Let F be the sheaf of germs of real ana-
lytic vector fields tangent to 7~ ('), v a global section of F which is not tangent
to 7~ (D). Because of Theorem 3in [3], suchv aways exists. Let h; : X' — X'
denote the one-parameter family of analytic isomorphisms generated by v. Then
themap ¢ = 7 o h; o ¢’ hasthe desired properties. O

Proof of (7.3). By abuse of language, we do not distinguish germs and their
representatives. Let 7, : X, — X, (o = 1,2) bethe blowing-ups aong D,,. We
assume that there is a real analytic isomorphism b : X; — Xo with fiom =
f2 o m o h. For each [(Y,V'; E')] in B,(X1,V1; E1), there is a proper mor-
phism ¢ : Y — X; so that ¢~ (D) is a proper subspace of Y, and that
[ (X1, Vi; B1)] = [(Y,V'; E')]. Letw: Y — Y betheblowing-upalong ¢ (D)
anddenote@: Y — X theuniquemorphism. Obviously [(m20ho@) ~1(Xa, Va; E2)]
defines a class of B,,(f2), whichis[(Y,V'; E')]. Thisimplies B, (X1, V1; E1) C
By, (X2, V2; E7), and vice versa O

8. Bi, graphs, and p.o.setsfor the subspaces defined by function-germs

By (7.2), forgetting about signs from A,,(f), we obtain some results on B,,(f)
from that of A,,(f).

Since a blowing-up of nonsingular real analytic curve is an isomorphism, a
classin B; isgenerated by (R,0) > ¢ — t¥ € (R, 0), which we denote by [k]. By
discussions similar to Section 4, we obtain the followings.
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LEMMA 81 Let f: (R",0) — (R, 0) be a real analytic function-germ defined
by f(.’L‘) = .’L‘Tl ceegit, Then, Bl(f) = {[(E?:]_ /ﬂml)] € By: k; € Nfor i =
1,...,n}.

LEMMA 8.2 Let f: (R",0) — (R, 0) beareal analytic function-germ. Then, we
have B1(f) D {[¢(a)] € B1:a € N"}.

PROPOSITION 8.3 Let f: (R",0) — (R,0) be a nondegenerate real analytic
function-germ. We then have B1(f) = {[¢(a)] € B1:a € N} U{[p] : p > po}.
Here, po = min{{(a) : a € N",dimy(a) = n—1, f,(,) is not semi-definite near 0}.

COROLLARY 84 Let f,: (R",0) — (R,0) (o = 1, 2) bereal analytic function-
b.a

germs, and V,, the subspacesdefined by theidealsgenerated by f,.. If (R", V7;0) ~
(R™, V2; 0), then multo(f1) = multy(fy).

(85) Let f: (X,E) —>~(F3, 0) be a real analytic function-germ on real ana-
Iytic surface X. Let 7 : (X, E) — (X, E) be a simplification of f. Forgetting
the signs in the graph defined in Section 5, we obtain a graph for this simplifi-
cation 7. More blowing ups of X induce operations of graphs described by the

a b a
following: Replace (something)—()—()<—(something) by (something)—=(—

a+b b a a a
6—Q<—(something), and (something)—=() by (something)—=(—(). These

operations generate an equivalence relation on the set of all such graphs. For
fo: (R2L0) = (R,0) (a = 1,2) f1 "2V £, implies that the equivalence classes
of graphsof f; and f;, coincide. We obtain that the graphsin that equivalence class-
es with possible minimal numbers of vertices are same, by a discussion similar to
(5.1). For nondegenerate-real analyticgerm f: (R",0) — (R, 0), thegraphof f is
obtained by a procedure similar to (5.2), and we omit the details.

(8.6) Forgetting about the sign morphism ¢ of p.o.sets, we can also discuss
them analogously to Section 6. We omit the details, becauseit is almost same.

9. Conjectures
To end the paper, we formulate several conjecturesin this direction.

CONJECTURE 9.1 Let £, (R2,0) — (R,0) (a = 1, 2) bereal analytic function-

germs. Then f1 %Y £, implies T4 (f1) = T'.(f2 o h) for a suitably chosen

coordinate change h of (R?, 0).

For function-germs in 3 variables, the conjecture analogous to (9.1) cannot be
expected. In fact, set fi(v1, 72, 73) = 23 + todw3 + 2125 + 21 ([2]). By [6],

fo he f1, but there are no coordinate changes i with T (fo) = T'+(f10 h).
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CONJECTURE 9.2 Let f,: (R",0) — (R,0) (« = 1,2) be weighted homoge-
neous polynomial-germswith isolated singularities at the origin. Then, f1 basV f2
impliesthat f1 and f, have same weightsin suitably chosen coordinate systems of

(R",0).
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