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Electron energisation by magnetic reconnection has historically been studied in the
Lagrangian guiding-centre framework. Insights from such studies include that Fermi
acceleration in magnetic islands can accelerate electrons to high energies. An alternative
Eulerian fluid formulation of electron energisation was recently used to study electron
energisation during magnetic reconnection in the absence of magnetic islands. Here, we
use particle-in-cell simulations to compare the Eulerian and Lagrangian models of elec-
tron energisation in a set-up where reconnection leads to magnetic island formation. We
find the largest energisation at the edges of magnetic islands. There, energisation related
to the diamagnetic drift dominates in the Eulerian model, while the Fermi related term
dominates in the Lagrangian model. The models predict significantly different energi-
sation rates locally. A better agreement is found after integrating over the simulation
domain. We show that strong magnetic curvature can break the magnetic moment con-
servation assumed by the Lagrangian model, leading to erroneous results. The Eulerian
fluid model is a complete fluid description and accurately models bulk energisation.
However, local measurements of its constituent energisation terms need not reflect loca-
tions where plasma is heated or accelerated. The Lagrangian guiding centre model can
accurately describe the energisation of particles, but it cannot describe the evolution of
the fluid energy. We conclude that while both models can be valid, they describe two
fundamentally different quantities, and care should be taken when choosing which model
to use.

Key words: plasma simulation, plasma heating, space plasma physics

1. Introduction

Magnetic reconnection is responsible for explosive energy release in space and
laboratory plasmas (Yamada, Kulsrud & Ji 2010; Gonzalez & Parker 2016). By
converting energy stored in the magnetic field to plasma energy, reconnection is able
to accelerate electrons to high energies (e.g. Øieroset et al. 2002; Drake et al. 2005;
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Fu et al. 2013; Oka et al. 2023). The energisation of electrons during magnetic
reconnection has primarily been studied in the Lagrangian guiding centre framework
(Northrop 1963), where the electron motion around the guiding centre is reduced
to a magnetic moment μ = mev

2
⊥/(2B), which is assumed to be conserved along

collisionless orbits (e.g. Drake et al. 2006a; Dahlin et al. 2014, 2015). Here, me is the
electron mass and v⊥ is the velocity component perpendicular to the local magnetic
field B that has the magnitude B = |B|. Under this assumption, one can derive a
differential equation for the evolution of a single guiding centre’s energy ε, as

dε

dt
= μ

∂ B

∂t
+ qe

(
v‖b + vg + vc

) · E, (1.1)

where b = B/B, qe is the electron charge, v‖ is the velocity component parallel
to the magnetic field, vg and vc are respectively the magnetic field gradient and
curvature drifts, and E is the electric field (e.g. Northrop 1963; Dahlin, Drake
& Swisdak 2014). The standard procedure is then to sum (1.1) over an ensemble
of guiding centres in a local region to derive a fluid-like equation describing the
evolution of the total electron kinetic energy density ELGCM,

dELGCM

dt
= Je‖E‖ + pe⊥

B

(
∂ B

∂t
+ uE · ∇ B

)
+ (

pe‖ + meneu
2
e‖
)

uE · k, (1.2)

where pe⊥ and pe‖ are respectively the electron pressure components perpendicular
and parallel to the local B, Je‖ is the parallel component of the electron current
density J e = qeneue, where ne = ∫

d3v fe is the electron density, with the electron
velocity distribution function (VDF) fe = fe(r, v, t); ue = n−1

e

∫
d3vv fe is the bulk

electron velocity; ue‖ is the component of u parallel to B; uE = E × B/B2 is the
E-cross-B-drift; and k = b · ∇b is the magnetic curvature. We will use the notation
from TenBarge, Juno & Howes (2024) to refer to the first, second and third terms
on the right-hand-side as W‖, Wbeta−grad B and Wcurv0, respectively. The first term is
related to acceleration by parallel electric fields, the second to betatron acceleration
and the third to Fermi acceleration due to the curvature drift. We will refer to this
model as the Lagrangian guiding centre model (LGCM). Equation (1.2) has been
used extensively in both spacecraft data analysis (e.g. Eriksson et al. 2020; Zhong
et al. 2020; Jiang et al. 2021) and numerical studies (e.g. Dahlin et al. 2014, 2015,
2016; Li et al. 2015) to quantify electron energisation during magnetic reconnection.

However, recent work by TenBarge et al. (2024) has shown that there are some
often overlooked nuances in (1.2). In particular, it is derived in a Lagrangian frame-
work, but often directly applied to an Eulerian grid. In their study, TenBarge et al.
(2024) used a continuum Vlasov–Maxwell solver to simulate single x-point recon-
nection and investigate the Lagrangian model of electron energisation. Their results
showed that while the right-hand side of (1.2) provides a qualitative approxima-
tion of the electron fluid energisation as quantified by J e · E when summed over the
whole simulation domain (differences up to around 20 %), it fails to reproduce J e · E
on a local, point-by-point, level. The authors then derived a complete Eulerian fluid
decomposition of J e · E, and expressed it in several different ways, one of which is

J e · E = Je‖E‖ + uE · ∇ pe⊥ + (pe‖ − pe⊥)uE · k + uE · (∇ · �a
e

) + meneuE · due

dt
:= W‖ + Wdiam + Wcurv1 + Wagyro + Wpol,

(1.3)
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where �a
e = Pe − pe⊥I − (pe‖ − pe⊥)bb is the (traceless) agyrotropic part of the

electron pressure tensor defined as Pe = me

∫
d3v(v − ue)(v − ue) fe, and I is the

identity matrix. Here, Wdiam is related to the diamagnetic drift, Wcurv1 to the Eulerian
curvature drift, Wagyro to the agyrotropic drift and Wpol to the polarisation drift.
We will refer to this model as the Eulerian fluid model (EFM). Equation (1.3) was
derived without approximations, and it was found to accurately describe J e · E on
a global and local level. For the case studied by TenBarge et al. (2024), the authors
found that the energisation term related to the diamagnetic drift (Wdiam) was, by
far, the most dominant on system scales, while all terms could have significant local
contributions to J e · E. We note in passing that other Eulerian decompositions of
J e · E, corresponding to different groupings of the different terms, have previously
been studied, such as the fluid compression/shear decomposition by Li et al. (2018).
However, in that specific case, the electrons are assumed to be well magnetised such
that the agyrotropic contribution is neglected.

The work of TenBarge et al. (2024) raises several interesting questions. First, as
previously mentioned, it is well known that magnetic structures such as magnetic
islands play an important role in accelerating electrons to high energies through
Fermi-like processes (Drake et al. 2006a). Such islands are formed when recon-
nection is triggered at multiple locations along the current sheet (e.g. Karimabadi,
Daughton & Quest 2005; Drake et al. 2006b). Therefore, it is of interest to study
the EFM also in the multiple x-point case, and compare it to the LGCM. On a
related note, we know that the relative importance of the LGCM terms depends
on the guide field strength (Dahlin, Drake & Swisdak 2016), so it is natural to ask
how the EFM terms depend on the guide field. We thus pose the question: which
of the EFM terms are most important when reconnection leads to the formation of
magnetic islands, and is there a guide field dependence?

Second, the inability of the LGCM to reproduce J e · E begs the question what
is the reason for the erroneous LGCM prediction? Is it related to a false assump-
tion of μ-conservation, is it due to the Eulerian/Lagrangian framework inconsistency
discussed by TenBarge et al. (2024) or is it something else? Related to this, what hap-
pens to the electrons in the regions where the LGCM and EFM predict significantly
different J e · E?

Finally, one important feature of the LGCM is that each W term can be inter-
preted as having a different effect on the electron velocity distribution function. The
betatron term (Wbeta-gradB) is associated with perpendicular energisation, while the
curvature (or Fermi) term (Wcurv0) is associated with parallel energisation and ulti-
mately the formation of power-law tails if repeated interactions are possible. There
is a pedagogical value in these types of simple interpretations as they can aid in
developing physical intuition. With this in mind, it is tempting to ask the question:
can we make analogous interpretations of the fluid terms in (1.3)? That is, can we
associate local measurements of each EFM W -term with the generation of specific
VDF features?

In the present paper, we answer the aforementioned questions using particle-in-cell
(PIC) simulations of multi-x-point reconnection. We find that Wdiam is the dominant
EFM contributor to J e · E on large scales for low and intermediate guide fields, Bg ∈
{0, 0.2}, where Bg is normalised to the reconnecting field component. For large guide
fields (Bg = 1), W‖ instead becomes the largest contributor (albeit still comparable to
Wdiam). Locally, Wagyro and Wcurv1 can contribute significantly to electron energisation,
particularly in the lower Bg regime. We show that the assumption of μ-conservation
made by the LGCM is invalid in the low Bg case near the x-points and at the
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centre of the current sheets. This causes significant errors in the LGCM energisation
estimate. Moreover, we find that local deviations from J e · E are produced by the
LGCM even when μ is conserved. This is due to the fact that the LGCM, unlike the
EFM, does not describe the energy flux through the grid. Finally, we argue that we
cannot easily associate local measurements of the different EFM energisation terms
with the formation of features in the electron VDF.

2. Numerical set-up

In this study, we use the OSIRIS PIC-code (Fonseca et al. 2002) to study electron
energisation during multi-x-point magnetic reconnection in two spatial and three
velocity dimensions. We use a Harris current sheet (Harris 1962) set-up with peri-
odic boundary conditions in x and perfectly conducting boundaries in y. We let the
reconnection process grow from numerical noise. For all runs, we use an unper-
turbed magnetic field profile Bx(y) = B∞ tanh (y/λ) with an asymptotic magnetic
field strength B∞ corresponding to ωce∞/ωpe0 = 1/3. Here, the electron cyclotron
frequency ωce = |qe|B/me is evaluated at B = B∞, and ωpe0 = √

q2
e n0/(meε0) is the

reference electron plasma frequency, using the Harris sheet density perturbation n0.
The complete density profile is ne = n0sech2(y/λ) + n∞, where we use n∞/n0 = 0.2
and a current sheet thickness of λ/de0 = 1.25, where de0 = c/ωpe0 is the electron
inertial length. The narrow current sheet thickness was chosen to be consistent
with Dahlin et al. (2014) and for reconnection to trigger quickly. We use two
plasma components, one electron population and one ion population, with a uniform
ion-to-electron temperature ratio of Ti/Te = 1.

As our baseline numerical resolution, we use a time step 0.15ω−1
pe0 and cell

size �x = �y = 0.25de0. The size of the simulation domain is Lx × L y = 51.2di0 ×
12.8di0, where di0 = de0

√
mi/me is the ion inertial length. Each cell is initialised with

625 macroparticles of each species. We use guide field values of Bg/B∞ ∈ {0, 0.2, 1},
and low mass ratios mi/me ∈ {25, 100} similar to Dahlin et al. (2014) and TenBarge
et al. (2024). We note that neither of the aforementioned studies investigated the
Bg = 0 case, to avoid the problem of demagnetised electrons breaking the LGCM
assumption of μ conservation.

Henceforth, unless otherwise specified (e.g. in figure axes with explicit normalisa-
tion), we use the following normalisations in our calculations. Time is normalised
by ω−1

pe0, lengths by de0, E and cB by mec2/(ede0), where c is the speed of light
and e is the elementary charge. Compound quantities such as J e · E are normalised
accordingly.

3. Results
3.1. Global energisation and parametric dependence

We will start by investigating the energisation models on large scales. The tem-
poral evolution of J e · E is shown in figure 1, for the mi/me = 25, Bg = 0 run. The
evolution is qualitatively similar for all runs. As reconnection starts and magnetic
islands start to form (figure 1a), patches of positive J e · E are found at the x-points
and the edges of the magnetic islands. The total contribution of the different ener-
gisation terms in (1.2) and (1.3) over the whole simulation domain for this time are
shown in figures 2(a) and 2(b), marked by the first vertical line. We find that the cur-
vature/Fermi term Wcurv0 is the dominant contributor to J e · E in the LGCM, while
the diamagnetic term Wdiam dominates in the EFM. The dominance of these two
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(a)

(b)

(c)

FIGURE 1. Snapshots of Je · E for the mi/me = 25, Bg = 0 run at three different times
tωci∞ ∈ {8.7, 11.3, 16.0}, where ωci∞ = ωce∞me/mi . The black lines are contours of the vector
potential component Az .

terms is consistent with the previous studies by Dahlin et al. (2014) and TenBarge
et al. (2024).

As the system develops further (figure 1b), the islands contract, coalesce and move
with the embedding plasma flow. Locally, J e · E varies depending on the local island
dynamics. The largest values of J e · E are found in narrow regions at the magnetic
island edges. These regions are associated with local contraction of the island, and
Fermi-like processes are expected to occur there (Drake et al. 2006a; Dahlin et al.
2014). Similar regions of negative J e · E correspond to local expansion of the island.
Consequently, islands that are convecting have a bipolar J e · E signature, where
the leading edge (locally expanding) is negative, and the trailing edge (locally con-
tracting) is positive. At tωci∞ = 11.3 (second vertical lines in figures 2a and 2b), the
LGCM finds that the Fermi-related Wcurv0 is indeed large, while W‖ gives a slight neg-
ative contribution to J e · E together with Wbeta-gradB. In the case of the EFM, Wdiam

is still large, but now there are also significant net contributions from Wcurv1 > 0,
W‖ < 0 and Wagyro < 0, showing that multiple fluid drifts contribute to the net ener-
gisation. The same general picture remains valid as the islands continue to grow and
merge (figure 1c).

Looking at the temporal evolution of the W -terms in figures 2(a) and 2(b), we
find that the LGCM generally provides a qualitative approximation of J e · E (com-
pare the purple and the dashed black curves), particularly during the time interval
tωci∞ ∈ (7, 18) when J e · E is large. However, at times, the relative difference
between the LGCM sum and J e · E exceeds 80 %. Integrating over the duration
of the simulation reduces the relative difference to approximately 10 %. In the EFM
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(a)

(c)

(e)

(g)

(i)

(b)

(d)

(f)

(h)

(j)

FIGURE 2. Time evolution of energisation terms summed over the whole domain (arbitrary
units) for different mi/me ∈ {25, 100} and Bg/B∞ ∈ {0, 0.2, 1} as labelled in the panels. The
left column shows the guiding centre model results from (1.2) and the right column the corre-
sponding fluid model results from (1.3). The three vertical dashed lines in panels (a) and (b)
correspond to the times of the panels in figure 1. Note that we plot a shorter time interval for
the mi/me = 100 simulations in panels (g–j). The y-axis of panel (g) has been limited to better
show the deviation between Je · E and the LGCM sum. All data have been smoothed using a
moving average with a window of ±1ω−1

ci∞ to reduce noise.

case, the agreement between the sum of the W -terms and J e · E is almost perfect.
These results are consistent with those from TenBarge et al. (2024) in the single
x-point case.

The remaining panels in figure 2 show the results of the same analysis applied to
four other simulations with varying mass-ratio and guide field. Figures 2(c) and
2(d) show the case with moderate guide field Bg = 0.2, at the same mass ratio
mi/me = 25. There, the LGCM performs somewhat better than in the Bg = 0,
mi/me = 25 case discussed previously, and the betatron Wbeta-gradB term is slightly
less important than before. In the EFM case, we find that the increased Bg almost
removes the curvature contribution entirely and the agyrotropic contribution also
becomes less important. This is expected since including an out-of-plane magnetic
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field component reduces the magnetic curvature across the current sheet and, con-
sequently, the curvature drift. In addition, the guide field contributes to keeping the
electrons magnetised (e.g. Swisdak et al. 2005; Scudder et al. 2015), reducing the
agyrotropic pressure carried by demagnetised electrons. Increasing the guide field
to Bg = 1 (figures 2e and 2f ) further improves the accuracy of the LGCM to a very
good agreement with J e · E. The relative contribution of Wcurv0 decreases, while W‖,
which for lower Bg was a negative contributor to J e · E, becomes large and positive.
Analogously, in the EFM (figure 2f ), Wdiam decreases and W‖ becomes the largest
energisation term, albeit still comparable to Wdiam. The increased importance of W‖
in the LGCM for increasing guide fields was previously reported by Dahlin et al.
(2016).

Increasing the mass ratio to mi/me = 100 does not change the results significantly.
In the Bg = 0 case, the LGCM results (figure 2g) are qualitatively very similar to the
mi/me = 25 case (figure 2a), with Wcurv0 being the dominant positive contributor,
while W‖ and Wbeta-gradB are negative. In the EFM case (figure 2h), the relative con-
tribution of Wcurv1 is noticeably smaller than in the mi/me = 25 case, while the other
terms are less affected by the mi/me change. Finally, in the Bg = 0.2 case (figures 2i
and 2j), the increased mass ratio does not affect the relative importance of terms in
either of the models (cf. figures 2c and 2d).

In summary, we conclude that the domain-integrated LGCM is generally dom-
inated by Wcurv0 and the EFM is generally dominated by Wdiam when Bg � 0.2.
Increasing the guide field to Bg = 1 leads to W‖ becoming larger than (or com-
parable to) Wcurv0 and Wdiam. The only significant mi/me dependence is found for
the Eulerian Wcurv1, which becomes less important in the Bg = 0 case as mi/me is
increased from 25 to 100. While the EFM accurately reproduces the total J e · E
over the simulation domain for all runs, we find that the LGCM estimate of elec-
tron energisation agrees better with J e · E for increasing values of Bg. Since the
LGCM assumes μ-conservation, and a larger Bg leads to stronger magnetisation,
this result hints that the deviation between the LGCM and J e · E is related to the
presence of non-adiabatic electrons.

Similarly to TenBarge et al. (2024), we find that the local and volume-integrated
pictures of electron energisation are very different. Next, we will investigate the
spatial distribution of J e · E and the energisation terms for the mi/me = 25 case in
more detail.

3.2. Local differences between the LGCM and EFM descriptions
The spatial structures of J e · E and the W -terms of (1.2) and (1.3) are shown in

figure 3. The left column shows the results of the Bg = 0 simulation at tωci∞ = 16.
As was seen in figure 1, we find the strongest J e · E at the edges of the magnetic
islands (figures 3a and 3b) and we will focus our attention to these regions.

In the LGCM, Wcurv0 (figure 3c, red) is the dominant energisation term due to
the strong magnetic curvature associated with the island. In the Eulerian view, the
strong diamagnetic drift associated with the pressure gradient at the island edges
results in significant Wdiam (figure 3d, magenta), which is the main contributor to
J e · E. Approaching the island from the left, the sum of the energisation terms in
(1.2) and (1.3) (black dashed lines in figures 3c and 3d) are both in good agreement
with J e · E (purple) until around x/di0 ≈ 9.8, marked by the dash-dotted vertical
line. After this point, J e · E starts to decrease. This is well captured by the EFM,
which reveals a decreasing Wdiam while Wcurv1 ≈ −Wagyro. In contrast, the LGCM
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIGURE 3. Spatial dependence of Je · E and the W terms inside magnetic islands for Bg = 0
(left column) and Bg = 0.2 (right column). (a) Je · E for the whole simulation domain.
(b) Je · E for the magnetic island boxed in panel (a). The black lines are contours of Az . The
dashed green lines show the y-range in which the data in panels (c) and (d) are averaged. (c) The
different terms in the guiding centre model (1.2) as a function of x . (d) Same as panel (c) for
the fluid model (1.3). The vertical dash-dotted line indicates where the LGCM and Je · E start
to qualitatively deviate. The data in panels (c) and (d) have been averaged in y over the interval
marked by the dashed green lines in panel (b), and smoothed in x by a moving mean of window
size ±0.5de0. (f–h) Same format as panel (a–d) for the Bg = 0.2 case.

deviates from J e · E by predicting further energsation deeper into the island as a
result of a large Wcurv0. Analogous results (with opposite signs) are obtained for the
right edge of the island where J e · E has a negative peak.

In the Bg = 0.2 case (right column of figure 3), the LGCM works better than
in the Bg = 0 case, but it still predicts energisation slightly deeper into the island
than the measured J e · E. In both cases, Wcurv0 is the dominant term. The EFM
remains accurate, with the main difference being that Wcurv1 is less important than
in the Bg = 0 case. The local differences between the models brings us to the second
question posed in the introduction: why does the LGCM fail inside the islands and
what actually happens to the electrons at these locations?

Since the LGCM assumes adiabatic electrons, we start by scrutinising this assump-
tion. One important parameter which can be used to quantify whether the motion of
a particle is adiabatic is the so-called adiabaticity parameter κ = √

rcurv/rge, where
rcurv = 1/|k| is the magnetic curvature radius and rge = v⊥me/(eB) the electron
gyroradius (Büchner & Zelenyi 1989). An electron with κ < 1 experiences strong
magnetic field changes over its gyro-orbit and its magnetic moment is not conserved.
We note that one may define a generalised adiabaticity parameter, accounting for
all spatial variations of B. We do that in Appendix A for reference, but since the
alternative definition does not affect the following discussion qualitatively, we will
continue using the more widely used definition, given above.

In figures 4(a), 4(b) and 4(c), we present |J e · E|, the sum of the right-hand
side of (1.2), |WLGCM| and |WLGCM/J e · E| for the Bg = 0 case. The largest rela-
tive discrepancies between the LGCM and J e · E are found at the x-points and in
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIGURE 4. Deviations from Je · E in the LGCM for (a–d) Bg = 0 and (e–h) Bg = 0.2. Panels
(a) and (b) show respectively Je · E and the sum of the guiding centre model terms in (1.2),
WLGCM. Only values larger than 10−5 have been included. (c) |WLGCM/Je · E| using the data
in panels (a) and (b). The thick black contour shows the κ = 1 threshold, where the bounded
regions contain κ < 1. The colourbar is saturated. (d) The adiabaticity parameter κ computed
using the perpendicular thermal speed. Blue regions correspond do κ < 1, i.e. where the motion
of thermal electrons is not adiabatic, and red regions to κ > 1. The colourbar has been limited to
the range log10(κ) ∈ [−0.5, 0.5] to highlight the adiabatic/non-adiabatic transition. (e–h) Same
format as panel (a–d) for the Bg = 0.2 case.

the centre of the magnetic islands (figure 4c), where |WLGCM| is up to a few orders
of magnitude larger than |J e · E|. These locations are regions where the thermal κ
(using vte⊥ = √

2Te⊥/me in rge) is very small (κ 	 1), as shown in figure 4(d). Since
κ 	 1 implies non-adiabatic electron motion, we conclude that the deviations in
these regions can likely be attributed to the erroneous assumption of μ conservation
made by the LGCM. The fact that electrons can exhibit non-adiabatic behaviour
during magnetic reconnection is well known (Zenitani & Nagai 2016), and the fail-
ure of the LGCM near the current sheet centre and at the x-points in the low-Bg

limit is not surprising. In other regions, the error does not correlate well with κ. One
such example is the separatrices of the larger reconnection sites. There, the LGCM
deviates from J e · E even though κ 
 1.

In the Bg = 0.2 case, the presence of the out-of-plane component leads to a
reduced magnetic curvature (i.e. a larger rcurv), and we generally find κ 
 1 (figure
4h). Small values of κ are still found near the x-points and κ occasionally drops below
1. It should be noted that the plotted κ is for thermal electrons and electrons with
v⊥ > vte⊥ have smaller κ. A large fraction of the electrons might therefore be non-
adiabatic when the thermal κ ≈ 1. The fact that there are still significant deviations
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even though κ > 1 (figures 3g and 4h) suggests that there is another issue at play
other than the lack of μ-conservation. This suspicion is reinforced by the fact that
the LGCM locally deviates from J e · E even in the Bg = 1 case (see Appendix B),
where κ 
 1 everywhere.

We conclude that the non-adiabatic motion of electrons near x-points and
the current sheet centre, particularly in the Bg = 0 case, is a large source of error in
the LGCM. However, this is not the entire picture, and there is still the issue of the
transition between the Lagrangian and Eulerian frameworks when (1.2) is evaluated
on an Eulerian grid. This problem was discussed by TenBarge et al. (2024), and in
the following section, we will expand on their discussion to pin-point the issue and
illustrate how this affects the local electron energisation estimate.

3.3. Eulerian versus Lagrangian energisation
Specifically, the problem with evaluating (1.2) on an Eulerian grid (assuming μ

is conserved) is that it gives the impression that it provides an Eulerian view on
electron energisation, i.e. that it describes the evolution of the total electron energy
within a fixed volume element. However, (1.2) is derived in a Lagrangian framework
from the single guiding centre equation (1.1), which describes the rate of energy
gain a single guiding centre experiences at some given time. To derive (1.2) from
(1.1), one takes a small volume (such that all charges experience the same fields)
and adds up (1.1) for all guiding centres within the volume. Thus, what the quantity
dELGCM/dt in (1.2) describes is the rate of energy gain per unit volume of the specific
guiding centres that are currently in the volume element. Importantly, this means
that the electron energy flux into or out of the volume is irrelevant for dELGCM/dt .
This detail distinguishes the Lagrangian description from the Eulerian description,
which is concerned with the evolution of the total electron energy content within the
volume. The Eulerian electron energy equation therefore contains divergence terms
related to the electron energy flux:

∂EEFM

∂t
+ ∇ · (K + H + q) = J e · E, (3.1)

where EEFM = meneu2
e/2 + trace(Pe)/2 := K + U is the total electron energy den-

sity with K and U being respectively the bulk kinetic and thermal contributions,
K = K ue is the kinetic energy flux density, H = U ue + Pe · ue is the enthalpy flux
density, and q is the heat flux density (e.g. Helander & Sigmar 2005). The energy
equation describes the evolution of the electron energy density inside a fixed vol-
ume element, a quantity that is fundamentally different from the aforementioned
Lagrangian dELGCM/dt .

As evident from (3.1), J e · E is a source term and it can be balanced by the
time derivative and divergence (i.e. energy flux density) terms. The importance of
the divergence terms on smaller scales is readily seen in figure 5, where the spatial
distribution of the different components of (3.1) are shown in panels (a)–(h). The
large J e · E found at the edges of magnetic islands is mainly balanced by the diver-
gence terms in the energy equation (see figures 5a and 5h, where Q = K + H + q),
where ∇ · H dominates (figure 5c) over ∇ · K (figure 5b) and ∇ · q (figure 5d). The
time derivative terms (figure 5e–g) tend to have the opposite sign to the divergence
terms, and the internal energy term (figure 5f ) dominates over the kinetic energy
term (figure 5g). The large contribution of the energy flux terms, particularly ∇ · H ,
is consistent with in situ studies of magnetic reconnection (Eastwood et al. 2020;
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(a)

(b)

(c)

(e)

(f)

(g)

(h)

(i)

(d)

FIGURE 5. The contribution of the different terms in (3.1) to Je · E in the Bg = 0, mi/me = 25
simulation. (a–h) Spatial profiles for the different terms at tωci∞ = 16. The top row of panels
show the three terms in (3.1), where Q = K + H + q. The first and second columns of panels
show the different divergence and time derivative terms, respectively. The divergence terms
in panel (a–d) have been smoothed using a 5-point moving average to reduce noise. (i) Time
dependence of the different terms summed over the whole simulation domain.

Fargette et al. 2024). We conclude that, on a local level, most of J e · E is balanced
by the electron energy flux densities, with the dominant term being the enthalpy flux
density. This is a key reason why the LGCM locally deviates from J e · E, even when
the assumption of magnetic moment conservation is valid.

On system scales, however, the picture is very different. For our choice of bound-
ary conditions, the system is closed in the sense that there is no net particle
energy flux into or out of the simulation domain. Therefore, when we inte-
grate the divergence terms of (3.1) over the whole simulation, the corresponding
surface terms vanish, leaving us with J e · E ≈ ∂EEFM/∂t , as seen in figure 5(i).
This is why the domain-integrated LGCM can accurately reproduce J e · E when
μ-conservation applies (figure 2e). In that case, (1.2) describes the evolution of the
total energy of all guiding centres, and since they are confined to the simulation
domain, this is the same thing as the evolution of the total electron energy in the
simulation domain. So, when we look at a closed system in its entirety, indeed∫

d3x(dELGCM/dt) = ∫
d3x(∂EEFM/∂t) = ∫

d3x J e · E. The difference between the
domain-integrated LGCM and J e · E observed in the Bg = 0 case (figure 2a) can
thus be attributed to the lack of μ conservation due to the small κ (figure 4d).
The fact that the LGCM equation is locally invalid in the Bg = 0 case explains why
the domain-integrated LGCM both overestimates and underestimates J e · E in the
Bg = 0 case (figure 2a), and subsequently why the time-integrated energisation more
accurately reproduces J e · E.

Until this point, we have followed TenBarge et al. (2024) and uncritically assumed
that, since dELGCM/dt accurately describes the energisation of individual guiding
centres, it must equal the work done on the electrons as quantified by J e · E. In
other words, since we can write (1.2) as the scalar product of a net current den-
sity J e,LGCM and E, J e,LGCM should be equal to the bulk fluid current density J e.
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This, however, is evidently not the case. As already mentioned by TenBarge et al.
(2024), the guiding centre model is a particle model that is gyroperiod integrated,
and it consequently does not describe certain bulk fluid properties such as the dia-
magnetic drift and the corresponding currents. Therefore, in general, J e,LGCM �= J e,
since J e describes the total electron current. In hindsight, it is therefore quite clear
that we should never have expected dELGCM/dt to accurately model J e · E to begin
with, even when μ is conserved.

Finally, we note that while (1.2) is derived in the Lagrangian framework, the right-
hand terms are expressed in terms of bulk fluid quantities which, in our case, are
known on the points defined by the Eulerian grid. It is perfectly valid to evalu-
ate (1.2) on an Eulerian grid (if μ is conserved); one must just keep in mind that
a local measurement of dELGCM/dt describes the energy evolution of the guiding
centres that are presently in the local volume, not the evolution of the electron
energy within the volume. In their paper, TenBarge et al. (2024) state, regarding
the LGCM results, that ‘[. . .] neither globally nor locally does the sum of the
energisation mechanisms agree well with J e · E, suggesting that the Lagrangian
description, unsurprisingly, does not work well in an Eulerian simulation’, which
may give the impression that there is an inherent conflict between their Eulerian
solver and the LGCM. We want to stress that the inherently Eulerian nature of
a continuum Vlasov–Maxwell solver does not affect the applicability of (1.2). The
deviations from J e · E observed by TenBarge et al. (2024) on a global level can
likely be attributed to the demagnetisation of electrons near the x-point, as their
choice of Bg = 0.1 is not large enough to keep the electrons well magnetised (see
our Bg = 0.2 and Bg = 1 results in figures 2c and 2e). The local deviations are likely,
as discussed above, a result of the combination of non-conserved μ and energy
fluxes.

4. Discussion
4.1. Interpretation of EFM energisation terms

With a better understanding of the differences between the LGCM and EFM, we
are in a position to investigate the last question posed in the introduction, namely:
can we associate local measurements of each EFM W -term with the generation of
specific VDF features in a manner analogous to the betatron and Fermi terms of
the LGCM? For example, one might be tempted to infer that Wdiam > 0 leads to the
formation of an anisotropic thermal feature in the electron VDF. Below, we provide
some arguments as to why this is not necessarily the case.

Take the dominant Wdiam = uE · ∇ pe⊥ term as an example. This term describes the
scalar product of the diamagnetic drift udiam = −∇ pe⊥ × B/(qene B2) with qene E.
Unlike the curvature and magnetic gradient drifts that are present in the LGCM,
the diamagnetic drift does not need to correspond to the drift of individual electrons.
Rather, the pressure gradient introduces a local anisotropy in the momenta carried
by gyrating electrons. If we apply a homogeneous electric field directed along J e

over such a pressure gradient, the individual electrons will experience no net energy
gain over a gyroperiod even though locally J e · E > 0. What does happen, however,
is that all electrons (and therefore also the pressure gradient) start E × B-drifting
in the direction of the higher pressure. Thus, on a fluid level, the work done by
the electric field on the diamagnetic bulk flow goes into pushing the fluid along the
pressure gradient at the E × B-velocity, as evident by the relation qeneudiam · E =
uE · ∇ pe⊥.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377825100408
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 30 Jul 2025 at 14:32:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377825100408
https://www.cambridge.org/core


Journal of Plasma Physics 13

To illustrate how the above scenario affects the local energy evolution of the
plasma, we consider an Eulerian volume element that is initially in the high-pressure
region. At the start, the uniform plasma is E × B-drifting across the volume element,
resulting in ∇ · Q = ∂EEFM/∂t = J e · E = 0. When the pressure gradient enters the
Eulerian element, however, the presence of the diamagnetic drift yields a positive
J e · E = Wdiam. At the same time, there is a net outward flux of high-pressure plasma
that is being replaced by inflowing low-pressure plasma. In terms of the energy
equation, this corresponds to J e · E > 0, ∇ · Q > 0 and ∂EEFM/∂t < 0. This is exactly
the situation we find at the island edge around x/di0 = 10 in figure 5. We therefore
end up with the perhaps counterintuitive conclusion that in the EFM, a positive
J e · E can lead to a decreasing energy density, due to the work being diverted into
energy fluxes. We also note that the J e · E > 0 region is not the source of the bulk
flow, since the entire plasma is drifting, and it would do so even in the absence of
the pressure gradient.

So far, we have considered an E-field that is homogeneous over the electron
gyro-orbits, such that no single electron gains energy during a gyroperiod in the
field. If, in contrast, there are E-field gradients, then the individual electrons can
gain a net energy by the E-field over their gyroperiod, leading to the formation
of some interesting VDF feature. Importantly, however, Wdiam describes the local
energisation due to the local electric field and the local fluid current; it does not
distinguish between situations where individual electrons gain energy and situations
where they do not. It is therefore not possible to conclude from a local measurement
of Wdiam whether or not individual electrons are energised, or how the VDF will
change.

For completeness, a few words on what differentiates the LGCM from the EFM
in this context. The reason the LGCM is able to provide insights into the evolution
of the VDF (assuming μ conservation) is twofold. First, the LGCM follows the
evolution of collections of guiding centres, not the evolution of the total energy
content within fixed grid cells as the EFM. This means that it exclusively provides
information about particle energisation, and no information about energy fluxes.
Second, the LGCM is already integrated over the gyroperiod, meaning that the
effects of electric field gradients (or lack thereof) on the electron gyro-scales are
already accounted for. There are, of course, also limitations to the electric field
scales that allow for μ-conservation (Stephens, Brzozowski & Jenko 2017), but here
we assume that the LGCM is applied validly.

4.2. Extrapolating to the physical mass ratio
The results presented in §§ 3.2 and 3.3 were obtained in the mi/me = 25 case.

Similar results were also obtained for mi/me = 100. Specifically, values of κ < 1
and large errors in the guiding centre model at the x-points and near the current
sheet centre were also found in the mi/me = 100, Bg = 0 case. How these results
change for more realistic mass ratios remains to be investigated. It is possible that an
increased mass ratio could affect the relative importance of the W -terms. However,
as mentioned in the above paragraphs, the EFM energisation terms do not nec-
essarily reflect the evolution of the VDF, and any application of a decomposition
of J e · E into the EFM W -terms must be designed accordingly. Moreover, accu-
rately computing the EFM terms using in situ data is a challenging task since, in
addition to the p⊥ and p‖ required by the LGCM, the EFM also requires accurate
measurements of pressure gradients in Wdiam ∝ ∇ pe⊥ and Wagyro ∝ ∇ · �a

e .
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One important result from our analysis is that the LGCM can produce significant
errors due to the erroneous assumption of μ-conservation when κ < 1. In our simu-
lations, we found regions of low κ at the x-points, near the island edges, and inside
the islands for Bg = 0 (figure 4d). Increasing the guide field to 0.2 increased κ ,
particularly inside the islands, but low-κ regions still remained. Since the recon-
necting current sheet is on electron scales, increasing the mass ratio should not
affect κ near the current sheet centre or in the electron diffusion region. Indeed,
from spacecraft observations, it is well known that electrons demagnetise in these
regions (e.g. Burch et al. 2016; Torbert et al. 2018; Cozzani et al. 2019). However,
since the magnetic islands grow into ion-scale structures, the associated curvature
radius should increase for increasing mass ratios. We might therefore expect that
the LGCM problem of demagnetised electrons at magnetic islands should be less
of a concern for physical mass ratios. However, the islands still grow from electron
scales, so this argument would only be valid in the later stages of reconnection.
How well the electron magnetic moment is conserved may also depend on several
other parameters like the plasma beta and the current sheet type (Harris versus
force-free). These parameters can therefore affect the validity of the LGCM. In any
case, we know from spacecraft data that electron scale structures with strong gradi-
ents can be present in physical reconnection outflows in geospace (e.g. Zhou et al.
2019; Leonenko et al. 2021). It is therefore important to be aware of the fact that
the LGCM assumes μ conservation, and to test that assumption before applying
the model.

5. Conclusions

In the present paper, we build on the recent work by TenBarge et al. (2024)
to study the Eulerian fluid model (EFM; (1.3)) and the Lagrangian guiding centre
model (LGCM; (1.2)) of electron energisation during multiple x-point reconnec-
tion using particle-in-cell simulations. We set out to answer the series of questions
summarised below.

(i) Which EFM energisation terms are most important during multi-x-point recon-
nection and are they affected by the guide field (Bg) or the ion-to-electron mass
ratio?

(ii) What is the reason for the different predictions by the LGCM and EFM, and
what does that tell us about the electrons?

(iii) The energisation terms in the LGCM are often interpreted as leading to spe-
cific changes in the electron velocity distribution function (VDF). Can we
make similar interpretations for the EFM energisation terms?

(i) We find that the energisation related to the diamagnetic drift (Wdiam) is gener-
ally, on large scales, the dominant contributor to J e · E in the EFM (see figure 2).
For large guide fields (Bg = 1), the contribution of parallel electric fields, W‖,
becomes the most important term (albeit still comparable to Wdiam). The increased
importance of W‖ for larger Bg has previously been observed for the LGCM (Dahlin
et al. 2016). The only clear mass-ratio dependence is found for the Eulerian curva-
ture term (Wcurv1) in the Bg = 0 case, where it becomes less important as mi/me

is increased from 25 to 100. Locally, other energisation terms can contribute
significantly to electron energisation (see figure 3).

(ii) We show that the assumption of magnetic moment conservation made by the
LGCM is invalid in the low Bg � 0.2 case near the x-points and at the centre of the
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current sheets where the magnetic field is strongly curved. This causes significant
errors in the LGCM energisation estimate. For Bg = 1, the electrons remain mag-
netised, and we find a good agreement between the simulation domain integrated
LGCM and J e · E. Local deviations from J e · E are produced by the LGCM in
all simulations, even when μ is conserved. This is due to the fact that the LGCM
and the EFM describe two fundamentally different quantities. The LGCM describes
the evolution of the total energy of the guiding centres that are currently within
a given volume element. In contrast, the EFM describes the evolution of the total
electron energy content within the volume element. The latter includes the effects of
energy fluxes through the volume element, whereas the former does not. This has the
consequence that the two models can both be correct, while simultaneously giving
seemingly contradictory local energisation rates if there is a net energy flux into or
out of the volume element under consideration. By examining the different terms
of the electron energy equation in figure 5, we find that the energy flux terms are
important in balancing J e · E on a local level, explaining the difference between the
two models when μ is conserved.

(iii) Finally, we argue that, unlike the LGCM, we cannot associate local measure-
ments of the different EFM energisation terms with the formation of structures in
the electron VDF. In essence, this is due to the fact that the EFM includes the local
effect of energy fluxes and fluid drifts which need not correspond to the drift of
individual particles.

In summary, the EFM describes a complete decomposition of J e into fluid drifts,
and it therefore accurately reproduces J e · E. Local measurements of each con-
stituent energisation term, however, need not describe locations where the plasma
is either heated or accelerated. In contrast, the LGCM accurately describes the
energisation of particles if it is used validly, i.e. when μ is conserved, but it does
not describe the local evolution of the bulk fluid energy. Local deviations between
the energisation measures of the two models, even when μ is conserved, can be
attributed to the contrasting Eulerian and Lagrangian perspectives, and does not
mean that one of the models is wrong. A thorough understanding of what one
wishes to describe is therefore necessary before one decides to use either of the
energisation models.
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(a) (d)
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FIGURE 6. Difference between κ and κ∗ for Bg/B∞ = 0 (left column) and Bg/B∞ = 0.2 (right
column). (a) Ratio between the LGCM sum and Je · E. The thick black and purple contours
correspond to κ = 1 and κ∗ = 1, respectively. (b) κ calculated using rcurv. The thick black con-
tours correspond to κ = 1. (c) κ∗ calculated using L∇ B . The thick purple contours correspond
to κ∗ = 1. (d–f ) Same format as panel (a–c). All colourmaps are saturated.

Appendix A. Generalised adiabaticity estimate
The standard adiabaticity parameter κ = √

rcurv/rge uses the magnetic field curva-
ture radius (Büchner & Zelenyi 1989), rcurv = 1/|b · ∇b|, to quantify the adiabaticity,
and does not account for the scales of magnetic field gradients. A generalised
length scale that incorporates all magnetic field variations can be constructed as
L−1

∇ B = ‖∇ B/B‖, where ‖ · ‖ denotes the spectral norm. This length scale captures
both curvature and gradient effects. We can then define an adiabaticity measure
analogous to κ as κ∗ = √

L∇ B/rge. Figure 6 shows that the regions where κ predicts
non-adiabatic electrons (κ < 1) are confined within regions of κ∗ < 1, as expected.
Because the magnetic field is strongly curved, the two quantities are similar, and
the κ∗ < 1 regions only extend slightly outside the κ < 1 regions in the Bg = 0 case
(figure 6b, c). In the Bg = 0.2 case, the generalised κ∗ picks up potentially non-
adiabatic regions at island boundaries (κ∗ ≈ 1), which are not captured by κ. These
are regions with strong magnetic field gradients.

In summary, other length and time scales can also affect the adiabaticity of elec-
trons (Stephens et al. 2017). However, κ is sufficient to show that electrons can
be non-adiabatic in both the low and intermediate guide field cases, and that κ < 1
correlates strongly with large deviations between the LGCM sum and J e · E.

Appendix B. Local energisation and demagnetisation for Bg = 1
In this appendix, we present the data corresponding to figures 3 and 4 for the

Bg = 1 case in figure 7.
Figure 7(c) shows that the sum of the LGCM energisation terms deviates signifi-

cantly from J e · E in the Bg = 1 case. The EFM (figure 7d), however, provides an
accurate estimate of J e · E. We note that the reversed polarity of J e · E compared
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FIGURE 7. (a–d) Spatial dependence of Je · E and the W terms inside magnetic islands
for Bg = 1. Same format as figure 3. (e–h) Deviation between the LGCM sum and Je · E for
Bg = 1. Same format as figure 4. Note that we have increased the range of the colourmap in
panel (h) compared to figure 4, as log10(κ) > 0.5 everywhere in this case.

with the Bg = 0 and Bg = 0.2 cases (see figure 3) is due to the fact that the island in
the Bg = 1 case is convecting in the opposite (−x) direction.

As shown in figure 7(g), the LGCM tends to provide an energisation estimate that
is much less than |J e · E|, particularly inside the magnetic islands. These deviations
cannot be explained by electron demagnetisation as quantified by κ , since κ 
 1
throughout the whole simulation domain (figure 7h).
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