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Via generalized interval arithmetic, we propose a Generalized Interval Arithmetic
Center and Range (GIA-CR) model for random intervals, where parameters in the
model satisfy linear inequality constraints. We construct a constrained estimator of
the parameter vector and develop asymptotically uniformly valid tests for linear
equality constraints on the parameters in the model. We conduct a simulation study
to examine the finite sample performance of our estimator and tests. Furthermore,
we propose a coefficient of determination for the GIA-CR model. As a separate
contribution, we establish the asymptotic distribution of the constrained estimator in
Blanco-Fernández (2015, Multiple Set Arithmetic-Based Linear Regression Models
for Interval-Valued Variables) in which the parameters satisfy an increasing number
of random inequality constraints.

1. INTRODUCTION

1.1. Motivation and Main Contributions

Interval data have become prevalent in empirical research in diverse disciplines.
Examples include: (i) The U.S. Energy Information Administration provides the
state level minimum and maximum retail prices of electricity (García-Ascanio
and Maté (2010)), and the U.S. Department of Agriculture provides daily low
and high prices on agricultural commodities and livestock (Lin and González-
Rivera (2016)); (ii) under the Health and Retirement Study (HRS) questionnaire
protocol, a respondent is asked to report her wealth. If she does not comply, then the
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28 YANQIN FAN AND XUETAO SHI

respondent is asked to report if her wealth falls within a sequence of brackets. The
HRS thus yields a wealth interval for each respondent; see Manski and Tamer
(2002) and references therein; (iii) in markets with microstructural frictions, the
researcher observes two prices for an asset at the same time: the bid price at which
an investor could sell and the ask price at which an investor could buy. The price
pair constitutes the bid-ask price interval, which measures the liquidity of the
market and the size of the transaction cost; see Demsetz (1968) and Lee (1993);
and (iv) in epidemiological studies, researchers focus on interval data frequently
(Cowling et al. (2009); Kenah, Lipsitch, and Robins (2008); Vynnycky and Fine
(2000)). During the recent coronavirus disease (COVID-19) outbreak, the study of
key disease transmission parameters has drawn lots of attention by researchers; see
Nishiura, Linton, and Akhmetzhanov (2020), Du et al. (2020), and Ganyani et al.
(2020). Examples of the key parameters include the generation interval defined as
time between infection events in an infector–infectee pair, and the (clinical-onset)
serial interval defined as the time between symptom onsets in an infector–infectee
pair.

Depending on the specific application, interval data may represent precise
observations on random intervals of interest such as the bid-ask price interval
in Example (iii) and the (clinical-onset) serial interval in Example (iv); or they
may represent incomplete observations on random variables which are not always
observed such as in Example (ii). In the former case, interval data are used to
estimate and conduct inference on parameters in models for random intervals or
simply interval models, while in the latter case, models of interest are for random
variables and parameters in such models are typically only partially identified with
interval data. See Aumann (1965), Debreu (1967), Hukuhara (1967), McShane
(1969), and Artstein and Vitale (1975) for some early studies on set valued
stochastic processes and sequences of random sets, and Manski and Tamer (2002),
Beresteanu and Molinari (2008), Beresteanu, Molchanov, and Molinari (2011),
and Bontemps, Magnac, and Maurin (2012) for the research on partially identified
models.

This paper studies construction, estimation, and inference in interval models,
where interval data represent precise observations on random intervals. Existing
interval models for random intervals include model MG proposed in Blanco-
Fernández et al. (2015) and the Center and Range (CR) model in Neto and
de Carvalho (2010); see the review of related works below. The CR model
and its constrained estimation have proven to be useful for forecasting random
intervals. However, formal statistical inference procedures and goodness-of-fit
measures for the CR model are lacking in the current literature. All the existing
measures of goodness-of-fit for the CR model are based on ad hoc combinations
of goodness-of-fit measures for the center and range regressions, respectively;
see Neto and de Carvalho (2010) and references therein. In addition, the CR
model only allows the center (range) of the dependent interval to depend on
the centers (ranges) of the covariate intervals. This could be restrictive in some
applications. In contrast to the CR model, model MG allows the center/range of the

https://doi.org/10.1017/S0266466621000360 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000360


UNIFORM INFERENCE IN LINEAR INTERVAL MODELS 29

dependent interval to depend on both centers and ranges of the covariate intervals.
However, the additional random constraints on the parameters in model MG

substantially complicate the asymptotic distribution of the estimators rendering
inference extremely difficult if not impossible.

The first main contribution of this paper is to construct a new class of interval
models referred to as Generalized Interval Arithmetic Center and Range (GIA-
CR) models by using generalized interval arithmetic. Parameters in GIA-CR
models satisfy linear inequality constraints. An example of such linear inequality
constraints is nonnegative constraints imposed to ensure valid interval forecasts.
It has long been recognized that incorporating inequality constraints in parameter
estimation may yield efficiency gain, see, e.g., Liew (1976), Judge et al. (1984), and
more recent works of Chernozhukov and Hong (2004) and Moon and Schorfheide
(2009). Moreover, as noted in Andrews (2001): “in cases where the restrictions on
the parameter space arise from prior information, tests that utilize this information
have a considerable power advantage over tests that do not.” Compared with the
CR model, the GIA-CR model allows the center/range of the dependent interval
to depend on both centers and ranges of the covariate intervals and as such
significantly broadens the scope of applications of linear interval models.

Second, we propose a constrained estimator of the parameter and a coefficient
of determination for the GIA-CR model. We establish asymptotic distributions
of both the constrained estimator of the GIA-CR model and the constrained
estimator of model MG in Blanco-Fernández et al. (2015). Although the asymptotic
distribution of the constrained estimator for the GIA-CR model can be derived
from results in Andrews (1999), the approach in Andrews (1999) is not applicable
to the constrained estimator of model MG because of the increasing number of
random inequality constraints. Instead, we exploit the powerful tools developed
in Knight (2001, 2006) for linear programming estimators and M-estimators of
boundaries, i.e., epi-convergence in distribution and point process convergence for
extreme values, to derive the asymptotic distributions of the constrained estimators
of model MG and the GIA-CR model.1

Third, we construct asymptotically uniformly valid tests for a class of linear
equality constraints in the GIA-CR model. Specifically, let θ∗ denote the true
parameter vector satisfying linear inequality constraints of the form: Rθ∗ ≥ r for
known matrix R and vector r under the maintained hypothesis. The considered null
hypothesis specifies the value of a subvector of Rθ∗. An important and motivating
example for this inference set-up is that of testing the correct specification of the
CR model against the Interval Arithmetic Center and Range (IA-CR) model in
which the parameters in the range regression satisfy nonnegativity constraints. Due
to the presence of undetermined inequalities in Rθ∗ ≥ r under the null hypothesis of
this type, the null asymptotic distribution of the constrained estimator for the GIA-

1We note that Chernozhukov and Hong (2004) employ the same techniques in likelihood-based estimation and
inference for two-sided and one-sided regression models and derives asymptotic properties of likelihood-based
estimators as well as Bayes and Wald inference.
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CR model is discontinuous in some model parameters posing technical challenges
in constructing asymptotically uniformly valid tests. In the case of subvector
inference in other contexts (see the works cited in the literature review below),
a two-step procedure for constructing critical values for asymptotically uniformly
valid inference has been widely adopted. In this procedure, a confidence set for the
nuisance parameter is constructed in the first step and a Bonferroni-type correction
is applied in the second step.2 For the GIA-CR model, although the null hypothesis
specifies the value of a subvector of Rθ∗, the remaining components in Rθ∗
could be linearly dependent rendering direct application of the two-step approach
with Bonferroni-type correction for subvector inference inapplicable. To address
this issue, we propose to use Gauss-Jordan elimination to identify the nuisance
parameter defined as an appropriate subvector of the remaining components in
Rθ∗. Given the identified nuisance parameter and the inequalities it satisfies, we
apply the two-step method based on confidence sets for the nuisance parameter
with Bonferroni-type correction to constructing asymptotically uniformly valid
tests for linear hypotheses in the GIA-CR model.

Lastly, to gauge the finite sample performance of the proposed estimator and
test, we conduct a simulation study. The results confirm the superior performance
of the proposed estimator and the asymptotically uniformly valid test for the
correct specification of the CR model against the IA-CR model in finite samples.
Since testing the correct specification of the CR model considered in the simu-
lation belongs to subvector inference, we compare our test with the Conditional
Likelihood Ratio (CLR) test introduced in Ketz (2018). We note, however, that
the CLR test is not (directly) applicable to the more general hypotheses studied in
Section 4 of this paper.

1.2. Related Works

This paper builds on works in two distinct literatures. The first is the literature
on interval models. Broadly speaking, there are two approaches to modeling
interval data. They are the interval arithmetic approach and the bivariate regression
approach. The interval arithmetic approach adopts interval arithmetic to model
directly relations between random intervals. The most general model based on
this approach in the current literature is model MG proposed in Blanco-Fernández
et al. (2015). Model MG makes use of the canonical decomposition of an interval in
terms of its center and range to model the dependent interval directly via covariate
intervals with an interval error term. To ensure that the interval error is well
defined, parameters in model MG must satisfy an increasing number of random
inequality constraints which are much stronger than the nonnegativity constraints
necessary to ensure that the predicted interval at any covariate interval is always
well defined. We refer interested readers to Blanco-Fernández et al. (2015) for

2To simplify the exposition, we refer to a parameter in which the asymptotic distribution of an estimator or the null
asymptotic distribution of a test statistic is discontinuous as the nuisance parameter.
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the constrained estimation of model MG and a review of the interval arithmetic
approach to modeling interval data.

The bivariate regression approach models jointly either the left and right end
points of the dependent interval or the center and range of the dependent interval.
An important example based on this approach is the CR model in which one
regression relates the center of the dependent interval to the centers of the covariate
intervals, and the other relates the range of the dependent interval to the ranges of
the covariate intervals. To ensure that the predicted range of the dependent interval
at any covariate interval is always nonnegative, parameters in the range regression
are restricted to be nonnegative. Neto and de Carvalho (2010) propose to estimate
the range regression of the CR model by a constrained OLS estimator restricting
the coefficients in the range regression to be nonnegative.3 Applications of the
CR model and methods based on modeling the left and right end points of the
dependent interval include Han et al. (2008); Han, Hong, and Wang (2012), and
González-Rivera and Lin (2013).

The second is the literature on uniform subvector inference. Methods for
constructing asymptotically uniformly valid subvector inference in the presence
of discontinuity have been proposed in different contexts. They include Bounds
tests, the least favorable approach, and tests based on confidence sets for nuisance
parameters. See Sect. 4.3.2 in Silvapulle and Sen (2005) for a brief discussion
of all three approaches.4 Among these proposals, the two-step approach based
on confidence sets for nuisance parameters and a Bonferroni-type correction has
proven to perform well. There are several works that adopt this approach. Berger
and Boos (1994) and Silvapulle (1996) study some specific parametric testing
problems. In a single-equation instrumental variables regression with possibly
“weak” instrumental variables, Staiger and Stock (1997) construct a confidence
region for the parameters based on such a method. Romano and Wolf (2000)
construct a confidence interval for a univariate mean that has finite sample
validity. For moment equality models with overidentifying inequality moment
conditions, Moon and Schorfheide (2009) propose asymptotically uniformly valid
tests and confidence sets for the parameters of interest. Chernozhukov et al. (2013)
construct confidence intervals for marginal effects in nonlinear panel data models.
For testing a finite number of moment inequalities, Romano, Shaikh, and Wolf
(2014) construct asymptotically uniformly valid confidence sets for parameters
characterized by the moment inequalities. Finally, McCloskey (2017) considers
general nonstandard testing problems in which the asymptotic distribution of a
test statistic is discontinuous in a nuisance parameter under the null hypothesis.
We refer interested readers to Romano et al. (2014) and McCloskey (2017) for
other related works using similar two-step approaches.

3Golan and Ullah (2017) propose an information theoretic approach to estimating linear interval models.
4Wolak (1987, 1989, 1991) develop tests for the null hypothesis of inequality constraints based on the least favorable
approach. Silvapulle and Sen (2005) provide a comprehensive and systematic treatment of constrained inference via
the least favorable approach.
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1.3. Organization of the Rest of This Paper and Notation

The rest of this paper is organized as follows. Section 2 introduces the GIA-CR
model and two constrained estimators: one for the GIA-CR model and one for
model MG. It also constructs a goodness-of-fit measure for the GIA-CR model.
Section 3 establishes an asymptotic theory for the constrained estimators for
the GIA-CR model and model MG. In Section 4, we first provide a detailed
construction and technical treatment of asymptotically uniformly valid tests for
the correct specification of the CR model against the IA-CR model. The theoretical
analysis in this part builds on Romano et al. (2014) and McCloskey (2017). Then
we construct asymptotically uniformly valid tests in the GIA-CR model. Section
5 reports results from a simulation study. The last section offers some concluding
remarks. Technical proofs are collected in Appendix A. Appendix B contains a
review of generalized interval arithmetic and random generalized intervals.

All limits are taken as n → ∞. Let |v| ≡ (|v1|, . . . ,
∣∣vp

∣∣)′ for any p-dimensional

vector v = (v1, . . . ,vp
)′

; v ≥ u means that vj ≥ uj for j = 1, . . . ,p; and ‖v‖ denotes
the euclidean norm of v. Ip denotes the identity matrix of dimension p. The notation
a ∼ b means that a/b → 1 as appropriate limits are taken. Let 1(·) be the indicator
function. The remaining notations concern operations on generalized intervals
and generalized random intervals; see Appendix B for details. For a generalized
interval A = [a1,a2], where a1,a2 are real numbers, let midA ≡ (a1 +a2)/2 and
sprA ≡ (a2 −a1)/2. A can also be expressed as A = [

midA± sprA
]
. For two

generalized intervals A and B, the addition is defined as

A+B ≡ [(midA+midB)± (sprA+ sprB)
]

.

A generalized interval A = [a1,a2] is a proper or simply an interval when a1 ≤ a2;
otherwise it is an improper interval. For two intervals A and B with sprA ≥ sprB,
the Hukuhara difference is an interval defined as

A−H B ≡ [(midA−midB)± (sprA− sprB)
]

.

For two generalized intervals A and B, A−GH B is a generalized interval denoting
the Generalized Hukuhara difference between A and B:

A−GH B ≡ [(midA−midB)± (sprA− sprB)
]

.

In contrast to the Hukuhara difference, the Generalized Hukuhara difference
always exists. Let d (A,B) denote the L2-type metric between intervals A and B
defined as

d (A,B) ≡ ((midA−midB)2 + (sprA− sprB)2
) 1

2 .

More discussion on the L2-type metric between two intervals can be found in
Appendix B.2. Let E(·) denote the expectation on a random variable. For a
generalized random interval X, define the Aumann expectation as

EA (X) ≡ [E(midX)±E(sprX)
]
,
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whenever E(midX) and E(sprX) exist. Define the Fréchet variance of a general-
ized random interval as

VarF (X) ≡ E
(
d2 (X,EA (X))

)
and the conditional expectation as

EA (X | ·) ≡ [E(midX | ·)±E(sprX | ·)] .
2. THE MODEL, ESTIMATION, AND COEFFICIENT OF

DETERMINATION

Let Y,X1, . . . ,Xk denote (k +1) random intervals, where Y is the dependent interval
and X1, . . . ,Xk are covariate intervals. We call random interval X a degenerate
random interval if Pr (sprX = 0) = 1. We allow some of the covariate intervals
X1, . . . ,Xk be degenerate intervals, and let d ≥ 0 denote the number of degenerate
covariate intervals. Without loss of generality, let the last d covariates be degen-
erate. Further let {Yi,X1i, . . . ,Xki}n

i=1 denote a random sample on (Y,X1, . . . ,Xk).
Define a (2k −d) dimensional random vector as Xi ≡ (

midX′
i,sprX′

i

)′
, where

midXi ≡ (midX1i, . . . ,midXki)
′ and sprXi ≡ (sprX1i, . . . ,sprX(k−d)i

)′
. We note that

sprXi only contains the ranges of (k −d) nondegenerate covariate intervals.

2.1. Model MG and the GIA-CR Model

To motivate the generalized interval arithmetic representation of our model, we
first introduce model MG proposed in Blanco-Fernández et al. (2015). It takes the
following form:

Yi = [X′
iα

∗ ± |Xi|′ β∗]+�i, (1)

where α∗ ∈R
2k−d and β∗ ∈R

2k−d
≥0 are the coefficient vectors and �i is the random

interval error defined as

�i ≡ Yi −H
[
X′

iα
∗ ± |Xi|′ β∗]

satisfying EA (�i | Xi) = [γ ∗ ± δ∗]. Define the parameter vector of interest as

θ∗ ≡ (α∗′,γ ∗,β∗′,δ∗)′ ∈ R
2l for l ≡ 2k −d +1,

where θ∗ is identified in model MG under the rank conditions in Assumption 3.2(i)
in Section 3. Notice that model MG does not include an intercept term as in the
linear regression model. Conditioning on Xi, the expectations of the midpoint and
spread of �i are γ ∗ and δ∗, which are both independent of Xi. To ensure that �i is
an interval, β∗ in model MG must satisfy the additional random constraints that

sprYi −|Xi|′ β∗ ≥ 0, for i = 1, . . . ,n.

Blanco-Fernández et al. (2015) propose an inequality constrained estimator of(
β∗,δ∗) without establishing its asymptotic distribution. The difficulty lies in the
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presence of an increasing number of random inequality constraints. By exploiting
tools used in Knight (2001, 2006) for linear programming estimators and M-
estimators of boundaries, we derive the asymptotic distribution of the constrained
estimator of model MG in Section 3. However, its complex nature makes inference
based on it extremely difficult if not impossible.

To facilitate inference and broaden the scope of applications of interval models,
we propose the GIA-CR model below. It generalizes model MG by dispensing
the random inequality constraints and by allowing for general linear inequality
constraints rather than β∗ ≥ 0 in model MG. We make use of the generalized
interval arithmetic and the concept of Generalized Hukuhara difference introduced
in Section 1 and discussed in Appendix B.5

Specifically, the GIA-CR model is composed of two parts: (i) the model in
(1), where the random generalized interval error �i is defined in terms of the
Generalized Hukuhara difference:

�i ≡ Yi −GH
[
X′

iα
∗ ± |Xi|′ β∗]

satisfying

EA (�i | Xi) = [γ ∗ ± δ∗] ; (2)

and (ii) the parameter space � for θ∗ defined as

� = {θ ∈ R
2l : Rθ ≥ r

}
, (3)

where R is a known matrix of dimension lR × 2l and r is a known vector of
dimension lR. The matrix R can be row rank deficient to incorporate constraints like
0 ≤ θ ≤ 1. Note that unlike model MG, both

[
X′

iα
∗ ± |Xi|′ β∗] and �i in the GIA-

CR model can be generalized intervals although our observations Yi,X1i, . . . ,Xki

are all intervals.6

Remark 2.1. In the GIA-CR model, we can replace Xi and |Xi| with any known
transformations of Xi. But for model MG and the important IA-CR model to be
introduced in Example 2.1 below, it is convenient to use |Xi| for the purpose of
forecasting. To avoid introducing too many notations, we use Xi and |Xi| in the
GIA-CR model as well.

The GIA-CR model has an alternative bivariate regression representation:

midYi = X′
iα

∗ +mid�i = midX′
iα

∗
m + sprX′

iα
∗
s +mid�i and (4)

sprYi = |Xi|′ β∗ + spr�i = |midXi|′ β∗
m + sprX′

iβ
∗
s + spr�i, (5)

5In Han et al. (2008; 2012), generalized interval arithmetic is used to construct linear time series models for
generalized random intervals, i.e., the observations are generalized intervals and no constraints are imposed on
model parameters. Instead, this paper focuses on the case that the observations are intervals and generalized interval
arithmetic is used to handle general linear inequality constraints.
6In fact, all the results in this paper remain valid when the observations are generalized intervals and the same
inequality constraints are imposed on the model.
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where α∗ ≡ (α∗′
m,α∗′

s

)′
with α∗

m ≡ (α∗
m,1, . . . ,α

∗
m,k

)′
and α∗

s ≡
(
α∗

s,1, . . . ,α
∗
s,(k−d)

)′
;

β∗ ≡ (
β∗′

m ,β∗′
s

)′
with β∗

m ≡ (
β∗

m,1, . . . ,β
∗
m,k

)′
and β∗

s ≡
(
β∗

s,1, . . . ,β
∗
s,(k−d)

)′
. The

center and range of �i satisfy that E(mid�i | Xi) = γ ∗ and E(spr�i | Xi) = δ∗.
Example 2.1 below presents the IA-CR model which is a special case of the

GIA-CR model.

Example 2.1 (The IA-CR model). Let R = (0l×l,Il) and r = 0l×1. Then the
parameter space � becomes

�F = {θ ∈ R
2l : β ≥ 0 and δ ≥ 0

}
.

Model (1) with parameter space �F is referred to as the IA-CR model. To ensure
that the predicted dependent interval at any covariate interval is an interval, the
regressor in the second term on the right hand side of (1) is |Xi| and all elements in
β∗ and δ∗ are required to be nonnegative. When there is no degenerate covariate,
� = �F, and α∗

s = β∗
m = 0, (4) and (5) reduce to the CR model in Neto and de

Carvalho (2010). More general than the CR model, the IA-CR model allows both
the center and range of each covariate interval to affect the center and range of the
dependent interval Yi.

2.2. Constrained Estimation and the Coefficient of Determination

The constrained estimator of the parameters in model MG in Blanco-Fernández,
Corral, and González-Rodríguez (2011) is defined by minimizing the sum of the
squared d-distances between Yi and

([
X′

iα ±|Xi|′ β
]+ [γ ± δ]

)
via the following

constrained minimization problem:

θ̂ = argmin
θ

n∑
i=1

d2
(
Yi,
[
X′

iα ±|Xi|′ β
]+ [γ ± δ]

)
(6)

= argmin
θ

[
n∑

i=1

(
midYi −X′

iα −γ
)2 +

n∑
i=1

(
sprYi −|Xi|′ β − δ

)2]
s.t. sprYi −|Xi|′ β ≥ 0, for i = 1, . . . ,n, and β ≥ 0.

Similarly, in the GIA-CR model, we construct the constrained estimator
of θ∗ by minimizing the sum of the squared d-distances between Yi and([

X′
iα ±|Xi|′ β

]+ [γ ± δ]
)

in the parameter space �:

θ̃ = argmin
θ∈�

n∑
i=1

d2
(
Yi,
[
X′

iα ±|Xi|′ β
]+ [γ ± δ]

)
(7)

= argmin
θ∈�

[
n∑

i=1

(
midYi −X′

iα −γ
)2 +

n∑
i=1

(
sprYi −|Xi|′ β − δ

)2]
.
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The estimators θ̂ and θ̃ are solutions to quadratic minimization problems with
linear inequality constraints and can be computed via built-in algorithms such as
quadprog and lsqlin in Matlab.

With the obtained estimators, the interval residual �̂i for model MG is
computed as

�̂i ≡ Yi −H
[
X′

iα̂ ±|Xi|′ β̂
] ;

and the generalized interval residual �̃i for the GIA-CR model is defined as

�̃i ≡ Yi −GH
[
X′

iα̃ ±|Xi|′ β̃
]

. (8)

For any i, �̂i is an interval because of the constraints that sprYi − |Xi|′ β ≥ 0 for
i = 1, . . . ,n; whereas �̃i is a generalized interval.

Remark 2.2. In model MG, the constraints are only imposed on β. Therefore,
the minimization problem in (6) can be solved separately for the mid and range
regressions. In fact, α̂ and γ̂ are OLS estimators of the slope coefficient and
intercept term in the linear regression of midYi on Xi and hence have closed-form

expressions. In contrast,
(
̂β

′
,δ̂
)

solves the following constrained optimization

problem and does not have closed-form expressions in general:(
̂β

′
,δ̂
)

= argmin
β,δ

n∑
i=1

(
sprYi −|Xi|′ β − δ

)2
s.t. sprYi −|Xi| ′β ≥ 0, for i = 1, . . . ,n, and β ≥ 0.

On the contrary, because the restrictions in the parameter space � for the GIA-
CR model are imposed on θ , the minimization problem in (7) cannot be solved
separately for the mid and range regressions.

Example 2.1 (continued). Similar to model MG, in the IA-CR model, the
constraints are imposed on β and δ. Therefore, the minimization problem can
be done separately: α̃ and γ̃ are OLS estimators; β̃ and δ̃ solve the following
constrained optimization problem:(
β̃

′
,δ̃
)

= argmin
β,δ

n∑
i=1

(
sprYi −|Xi|′ β − δ

)2
s.t. β ≥ 0 and δ ≥ 0.

The nonnegative constraints imposed in �F ensure valid forecasts. (2) implies that

EA (Yi | Xi) = [X′
iα

∗ ± |Xi|′ β∗]+ [γ ∗ ± δ∗] .
Using the constrained estimator, the predictor of Y0 at covariate interval x0 is
given by

Ỹ0 = [x′
0α̃ ±|x0|′ β̃

]+ [γ̃ ± δ̃
]

.
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As pointed out in Neto and de Carvalho (2010), the conceptual difficulty in
constructing measures of goodness-of-fit for the CR model is due to the presence
of two multiple linear regressions. As a result, some ad hoc combinations of the
coefficients of determination for the center and range regressions are adopted. For
example, Neto and de Carvalho (2010) propose the following three goodness-of-fit
measures for the CR model:

min
(
R2

c,R2
r

)
,
R2

c +R2
r

2
, and max

(
R2

c,R2
r

)
,

where R2
c and R2

r are the coefficients of determination for the center and range
regressions, respectively.

Based on the d-metric and the fact that EA (�i|Xi) = [γ ∗ ± δ∗], we now extend
the coefficient of determination for linear regressions for random variables to
the GIA-CR model for random intervals avoiding the ad hoc nature of existing
goodness-of-fit measures for the CR model. Define the residual sum of squares
for the GIA-CR model as

RSSG ≡
n∑

i=1

d2 (�̃i,
[
γ̃ ± δ̃

])=
n∑

i=1

d2 (Yi,Ỹi
)
,

where
[
γ̃ ± δ̃

]
is the estimated mean of �i, �̃i is defined in (8), and

Ỹi = [X′
iα̃ ±|Xi|′ β̃

]+ [γ̃ ± δ̃
]

.

Together with the analogous definition of the total sum of squares as TSSG ≡∑n
i=1 d2

(
Yi,Y

)
, where Y = n−1∑n

i=1 Yi, we define the coefficient of determination
for the GIA-CR model as

R2
G ≡ 1− RSSG

TSSG
= 1−

∑n
i=1 d2

(
�̃i,
[
γ̃ ± δ̃

])∑n
i=1 d2

(
Yi,Y

) . (9)

In the special case when Y is degenerate, i.e., a random variable, R2
G reduces to

the coefficient of determination for multiple regressions.
The coefficient of determination R2

G inherits all the properties of that for
multiple regression which are summarized in the following proposition. The value
of R2

G ranges from 0 to 1. Further, R2
G = 0 indicates no linear relationship between

the dependent interval and covariates; R2
G = 1 indicates that the fitted model

explains all variation of the dependent interval; and the value R2
G is nondecreasing

with inclusion of more covariates.

PROPOSITION 2.1. (i) 0 ≤R2
G ≤ 1 and (ii) R2

G is nondeceasing in the number
of covariates.

3. ASYMPTOTIC PROPERTIES OF THE CONSTRAINED ESTIMATORS

The estimators θ̃ and θ̂ defined in (7) and (6) for the GIA-CR model and model
M G are both inequality constrained estimators and their asymptotic properties are
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more difficult to establish than unconstrained estimators. This is particularly true

for
(
β̂

′
,δ̂
)

due to the increasing number of random inequality constraints that it

must satisfy, i.e., sprYi −|Xi|′ β ≥ 0, for i = 1, . . . ,n. For a special case of model MG

referred to as model M with one covariate,
(
β̂

′
,δ̂
)

has a closed-form expression

and its asymptotic properties are established in Blanco-Fernández, Colubi, and
González-Rodríguez (2012). However, for general model M G, there is no closed-

form expression for
(
β̂

′
,δ̂
)

, and the approach in Blanco-Fernández et al. (2012)

breaks down.
Asymptotic properties of θ̃ can be established by applying the general results

in Andrews (1999). To handle the increasing number of inequality constraints
imposed on θ̂ , we exploit the powerful techniques used in Knight (2001, 2006)
for linear programming estimators and M-estimators of boundaries, i.e., epi-
convergence in distribution (Geyer (1994, 1996); Knight (1999); Pflug (1994,
1995)) and point process convergence for extreme values (Kallenberg (1983);
Leadbetter, Lindgren, and Rootzén (1987); Resnick (1987)). Since the same
techniques apply to θ̃ as well, we establish asymptotic properties of both θ̂ and
θ̃ , including consistency and asymptotic distributions in this section.

Throughout the rest of this paper, we make the following
assumption.7

Assumption 3.1. {Yi,X1i, . . . ,Xki}n
i=1 denotes a random sample on

(Y,X1, . . . ,Xk).

3.1. Consistency

Recall that θ ≡ (α′,γ ,β ′,δ
)′

. Define Z1n (·) as

Z1n (θ) = 1

n

n∑
i=1

(
midYi −X′

iα −γ
)2 + 1

n

n∑
i=1

(
sprYi −|Xi|′ β − δ

)2 +ϕ1n (θ),

where

ϕ1n (θ) =
{

0, if sprYi −|Xi|′ β ≥ 0, for i = 1, . . . ,n; and β ≥ 0
∞, otherwise

.

Using Z1n (·), we can reformulate the constrained estimator of model MG as an
unconstrained estimator: θ̂ = argminθ∈R2l Z1n (θ) . Similarly, let

Z2n (θ) = 1

n

n∑
i=1

(
midYi −X′

iα −γ
)2 + 1

n

n∑
i=1

(
sprYi −|Xi|′ β − δ

)2 +ϕ2 (θ),

7The asymptotic results we establish for the GIA-CR model for i.i.d. data have straightforward extensions to strictly
stationary short-memory time series such as various mixing processes. Due to space limitations, we will report details
in future work.
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where

ϕ2 (θ) =
{

0, if Rθ ≥ r

∞, otherwise
.

We obtain the alternative formulation for the estimator of the GIA-CR model
as: θ̃ = argminθ∈R2l Z2n (θ) . Let Ẋi ≡ (

X′
i,1
)′

, Pxx ≡ E

(
ẊiẊ

′
i

)
, and Qxx ≡

E

(∣∣Ẋi

∣∣ ∣∣Ẋi

∣∣′). We prove the consistency result using the notion of epi-convergence

under the following assumption. The definition of VarF (·) can be found in
Section 1.

Assumption 3.2. (i) Pxx and Qxx are nonsingular; (ii) VarF (�i) < ∞.

Assumption 3.2 imposes standard regularity conditions on the random intervals
in the model. Assumption 3.2 (i) is a rank condition ensuring that the true parameter
θ∗ is point identified. The following theorem states the consistency of θ̂ and θ̃ for
the GIA-CR model and Model MG.

THEOREM 3.1. Under Assumptions 3.1 and 3.2, θ̂
p→ θ∗ and θ̃

p→ θ∗.

3.2. Asymptotic Distribution

The asymptotic distribution of θ̂ in model MG remains unknown and is more
involved than that of θ̃ . We present it first.

3.2.1. Model MG. The constraints: sprYi − |Xi|′ β ≥ 0, for i = 1, . . . ,n, are
equivalent to the constraint that

min
i=1,...,n

[
sprYi −|Xi|′ β

]≥ 0. (10)

Because mini=1,...,n
[
sprYi −|Xi|′ β

]
essentially describes the conditional distribu-

tion of spr�i near the endpoint of its support, the behavior of the conditional
distribution function of spr�i near zero is the critical component determining the
asymptotic distribution of the estimator θ̂ .

The following assumption imposes restrictions on the conditional distribution
of spr�i commonly adopted in the extreme value literature. Let the conditional
distribution function of spr�i given |Xi| = x be Fs (· | x).

Assumption 3.3. Assume that

Fs (z | x) ∼ g(x)Fs (z) as z ↘ 0 uniformly in x,

where g(·) > 0 is a continuous function and Fs (·) is a distribution function.

Assumption 3.3 requires that for any x1 and x2, the tail behaviors of spr�i

conditional on |Xi| = x1 or |Xi| = x2 are equivalent up to a constant. If |Xi| and
spr�i are independent, this assumption is trivially satisfied with g(·) ≡ 1. Knight
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(2001), Chernozhukov (2005), and Chernozhukov and Fernández-Val (2011) also
impose similar assumptions. However, they require Fs(·) to have Pareto-type tail
distribution due to their specific settings, while we impose no such restriction. Let
1/κ ≡ limt→∞ tFs

(
1/

√
t
) ∈ [0, +∞]. The value of κ characterizes the distribution

of spr�i near its left endpoint and determines the effect of the random constraints
on the asymptotic distribution of θ̂ : (i) If spr�i has a relatively high probability
of being close to zero, e.g., when Fs (0) > 0, then limt→∞ tFs

(
1/

√
t
) = +∞ and

κ = 0; (ii) If spr�i is very “unlikely” of being near zero, e.g., when Fs (z) = 0 for
all z in a neighborhood of zero, then limt→∞ tFs

(
1/

√
t
)= 0 and κ = +∞; and (iii)

when Fs (z) behaves like h(z)z2 near zero, where h(z) is a slowly varying function
at zero,8 then κ ∈ (0, +∞).

Assumption 3.4. E
(|mid�i|4

)
< ∞, E

(|spr�i|4
)

< ∞, and E
(‖Xi‖4)< ∞.

Denote

M (ψ) ≡ ψ ′
(

Pxx 0
0 Qxx

)
ψ −2ψ ′

(
Il 0
0 Il

)
W, (11)

where ψ ∈R
2l and W ∼N (0,�) in whichN (0,�) denotes the normal distribution

with mean zero and covariance matrix � = Var
(

Ẋ
′
imid�i,

∣∣Ẋi

∣∣′ spr�i

)
. Further-

more, let ψ ≡ (p′,q,u′,v
)′

with p ∈ R
2k−d, q ∈ R, u ∈ R

2k−d, and v ∈ R.

THEOREM 3.2. Under Assumptions 3.1–3.4, we obtain:
√

n
(
θ̂ − θ∗) d−→ argmin

ψ
[M (ψ)+φ1 (ψ)],

where M (ψ) is defined in (11) and

φ1 (ψ) =

⎧⎪⎪⎨⎪⎪⎩
0, if

√
κ

g(Υi)
Γi ≥ Υ ′

i u, for i = 1,2, . . . ;
and 1

(
β∗

j = 0
)

uj ≥ 0 for j = 1, . . . ,2k −d

∞, otherwise

.

For each i, Γi ≡ (E1 +·· ·+Ei)
1
2 for unit mean i.i.d. exponential random variables

E1,E2, . . .; Υ1,Υ2, . . . are independent and identically distributed with the same
distribution as |Xi|; the Γi’s are independent of Υi’s, and they are both independent
of W.

Several observations surface from Theorem 3.2. First, the estimators of the
center and range regressions

(
α̂′,γ̂

)
and

(
β̂

′
,δ̂
)

are asymptotically dependent

through the covariance matrix �, unless mid�i and spr�i are conditionally
independent. Second, the asymptotic distribution of

√
n
(
α̂′ −α∗′,γ̂ −γ ∗) is nor-

8A function h(z) : (0, +∞) �−→ (0, +∞) is said to be slowly varying at z0 if for any m > 0, it holds that
limz↘z0 [h(z)/h(mz)] = 1.
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mal. Lastly, because of the inequality constraints, the asymptotic distribution

of
√

n
(
β̂

′ −β∗′,δ̂ − δ∗
)

takes a complicated form given by the distribution of

the minimizer of an inequality-constrained optimization problem. Although in
general, there is no closed-form expression for the asymptotic distribution of(
β̂

′
,δ̂
)

, it is clear from the minimization problem that it is nonstandard and

discontinuous in model parameters including parameters characterizing the tail
behavior of the conditional distribution of spr�i through φ1 (·). For example, the
value of κ determines whether the constraint in (10) binds or not leading to different

asymptotic distributions of
(
β̂

′
,δ̂
)

.

3.2.2. The GIA-CR Model. Employing the same techniques, we obtain the
following asymptotic distribution for the estimator θ̃ . Denote Rb as the lb × 2l
submatrix composed of the lb rows of R corresponding to binding inequalities in
Rθ∗ ≥ r.

THEOREM 3.3. Under Assumptions 3.1, 3.2, and 3.4, it holds that

√
n
(
θ̃ − θ∗) d−→ argmin

ψ
[M (ψ)+φ2 (ψ)],

where M (ψ) is defined in (11) and 4

φ2 (ψ) =
{

0, if Rbψ ≥ 0
∞, otherwise

.

Alternatively one may apply the approach in Andrews (1999) to obtain the
asymptotic distribution of θ̃ . Instead of studying the unconstrained minimization
problem, Andrews (1999) focuses on the constrained minimization problem and
shows that the asymptotic distribution of the estimator can be represented as the
minimizer of a quadratic function over a convex cone.

Theorem 3.3 shows that the asymptotic distribution of θ̃ is discontinuous in Rθ∗
at r; see also Example 2.1 below. The asymptotic distribution of the Wald-type
statistic in general exhibits discontinuity as well. This motivates the construction
of the asymptotically uniformly valid test in the GIA-CR Model in Section 4.

Example 2.1 (continued). The asymptotic distribution of the estimators for
the IA-CR model can be obtained directly from Theorem 3.3. The matrix Rb

corresponds to elements in
(
β∗′,δ∗) that are zeros. Specifically, if Assumptions

3.1, 3.2, and 3.4 hold, then

√
n

(
α̃ −α∗
γ̃ −γ ∗

)
d−→ P−1

xx Wm,
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where Wm ∼ N (0,�m) with �m being the covariance matrix of Ẋ
′
imid�i; and

√
n

(
β̃ −β∗

δ̃ − δ∗

)
d−→ argmin

u,v

[(
u′,v
)

Qxx

(
u
v

)
−2
(
u′,v
)

Ws +φs
(
u′,v
)]

,

where Ws ∼ N (0,�s) with �s being the covariance matrix of
∣∣Ẋi

∣∣′ spr�i, and

φs

(
u′,v
)=

{
0, if 1

(
β∗

j = 0
)

uj ≥ 0 for j = 1, . . . ,2k −d and 1(δ∗ = 0)v ≥ 0

∞, otherwise
.

The two convergences in distribution hold jointly. Like
√

n
(
β̂

′ −β∗′, δ̂ − δ∗
)

, the

asymptotic distribution of
√

n
(
β̃

′ −β∗′,δ̃ − δ∗
)

is discontinuous in some model
parameters.

For the CR model with only one covariate, we can solve the minimization
problem in Example 2.1 by following Andrews (1999). The CR model with one
covariate can be expressed as follows:

midYi = α∗
mmidXi +γ ∗ + εc

i and

sprYi = β∗
s sprXi + δ∗ + εr

i ,

where E
(
εc

i | Xi
)= 0, E

(
εr

i | Xi
)= 0, α∗

m ∈R, γ ∗ ∈R, β∗
s ≥ 0, and δ∗ ≥ 0. Let K =

diag1/2
(
Q−1

xx

)
, Z = (Z1,Z2)

′ = K−1Q−1
xx Ws, and ρij =

[
K−1Q−1

xx K−1
]

ij
for i,j = 1,2,

where diag(A) returns a diagonal matrix whose elements are equal to the diagonal
elements of matrix A. Suppose Assumptions 3.1, 3.2, and 3.4 hold.

(i) When β∗
s > 0 and δ∗ > 0,

√
n

(
β̃s −β∗

s
δ̃ − δ∗

)
d−→ N

(
0,Q−1

xx �sQ
−1
xx

) ;
(ii) When β∗

s = 0 and δ∗ > 0,

√
n

(
β̃s −β∗

s
δ̃ − δ∗

)
d−→ 1(Z1 ≥ 0)Q−1

xx Ws +1(Z1 < 0)K

(
0

Z2 −ρ12Z1

)
;

(iii) When β∗
s > 0 and δ∗ = 0,

√
n

(
β̃s −β∗

s
δ̃ − δ∗

)
d−→ 1(Z2 ≥ 0)Q−1

xx Ws +1(Z2 < 0)K

(
Z1 −ρ21Z2

0

)
;

(iv) When β∗
s = 0 and δ∗ = 0,

√
n

(
β̃s −β∗

s
δ̃ − δ∗

)
d−→ 1(Z1 > 0,Z2 > 0)Q−1

xx Ws +1(Z1 −ρ21Z2 > 0,Z2 ≤ 0)K

(
Z1 −ρ21Z2

0

)
+1(Z1 ≤ 0,Z2 −ρ12Z1 > 0)K

(
0

Z2 −ρ12Z1

)
.
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The asymptotic distribution of
(
β̃s,δ̃

)
takes a complicated form and is discon-

tinuous in β∗
s and δ∗: it is normal when β∗

s and δ∗ are both positive; nonnormal
otherwise.

4. WALD-TYPE TESTS FOR LINEAR HYPOTHESIS
IN THE GIA-CR MODEL

In this section, we construct asymptotically uniformly valid tests for the linear
hypothesis in the GIA-CR model of the following form:

H0 : R0θ
∗ = r0 against H1 : R0θ

∗ �= r0 (12)

under the maintained hypothesis that θ∗ ∈ � = {θ : Rθ ≥ r}, where R0 and r0

are known matrices of dimensions J × 2l and J × 1, respectively. Furthermore,
R0 ≡ (R′

00,R′
01

)′
is of full row rank, and R00 is a submatrix of R. Without loss of

generality, let R = (R′
00,R′

�

)′
and accordingly r = (r′−�,r′

�

)′
.

One motivating example for our testing framework is that of testing the correct
specification of the CR model against the IA-CR model:

HCR
0 :

(
α∗′

s ,β∗′
m

)′ = 0 against HCR
1 :

(
α∗′

s ,β∗′
m

)′ �= 0,

under the maintained hypothesis that θ∗ ∈ �F = {θ : β ≥ 0 and δ ≥ 0}. Compo-
nents of α∗

s and β∗
m measure, respectively, the marginal effects of sprXi on midYi

and |midXi| on sprYi in the IA-CR model. Specification testing for the CR model
against the IA-CR model is thus equivalent to testing the joint null hypothesis
that sprXi has no effect on midYi and |midXi| has no effect on sprYi. Individual
marginal effects can also be tested using the test proposed in this paper. Testing
HCR

0 belongs to the standard subvector inference with
(
β∗′

s ,δ∗)′ being the vector
of nuisance parameters. For such a subvector hypothesis, the approach in Ketz
(2018) can be applied to construct a CLR test statistic such that asymptotically the
conditional null distribution of the test statistic given some sufficient statistic is
nuisance parameter free.

As another example, consider testing equality constraints on parameters in the
range regression of the GIA-CR model. Let R = (0lR×l,R∗) and R0 = (0J×l,R∗

0

)
for some known matrices R∗ and R∗

0. Our tests become tests for linear equality
constraints in linear regression models with linear inequality constraints. They
extend the Wald-type test in Gourieroux, Holly, and Monfort (1982) for the
special case that R∗

0 = R∗ and the test in Silvapulle and Sen (2005) for the case
that R∗ is a submatrix of R∗

0.9 In both cases considered in Gourieroux et al.
(1982) and Silvapulle and Sen (2005), the inequalities in the parameter space
are known to bind under H0 and as a result, the asymptotic distribution of the
inequality constrained estimator of θ∗ or the test statistic under the null hypothesis
is continuous in model parameters and is thus nuisance parameter free. When R00

is a proper submatrix of R, the asymptotic distribution of inequality constrained

9Rogers (1986) studies a modified Lagrange Multiplier test for the case that R∗
0 = R∗.
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estimators or the null asymptotic distribution of the test statistic is typically
discontinuous in nuisance parameters. Asymptotically uniformly valid tests for
H0 are not available in the current literature.

In the following subsections, we first introduce our test statistic and the asymp-
totic size of the test. Then we apply the two-stage approach with Bonferroni-type
correction in McCloskey (2017) to construct asymptotically uniformly valid tests
for HCR

0 against HCR
1 . Lastly, we construct tests for H0 in the GIA-CR model.

4.1. The Test Statistic and Asymptotic Size

The test statistic we adopt is of Wald-type:

Tn (R0,r0) = n
(
R0θ̃ − r0

)′ (
R0�n R′

0

)−1 (
R0θ̃ − r0

)
, (13)

for some positive definite weighting matrix �n →p � with � being a deterministic
positive definite matrix. �n can be chosen as the identity matrix or a consistent
estimator of(

P−1
xx 0
0 Q−1

xx

)
�

(
P−1

xx 0
0 Q−1

xx

)
.

When R00 is a proper submatrix of R, the null asymptotic distribution of R0θ̃ or
Tn (R0,r0) is discontinuous in R�θ∗.

We now introduce the test for H0 based on Tn (R0,r0) and its asymptotic
size. The GIA-CR model can be fully characterized by the finite dimensional
parameter θ∗ ∈ � and the infinite dimensional parameter μ∗ ∈ M that characterizes
the distribution of {(Yi,Xi) : 1 ≤ i ≤ n} and is consistent with the value θ∗. The
space M can be restricted to be some compact metric space with a metric that
induces weak convergence; see Andrews, Cheng, and Guggenberger (2020). Let
ω ≡ (θ∗,μ∗) ∈ W . Denote Pω as the probability model indexed by ω, Eω as the
expectation, Varω as the variance, and Prω as the probability computed with respect
to Pω. Let W0 be the collection of elements ω ∈ W consistent with the null
hypothesis and CVn be a (possibly) sample dependent critical value (CV) for the
test based on the test statistic Tn (R0,r0). The asymptotic size of the resulting test
is defined by

AsySz(Tn (R0,r0),CVn) ≡ limsup
n→∞

sup
ω∈W0

Prω (Tn (R0,r0) > CVn) . (14)

We aim to construct CVn that controls the asymptotic size of the test based on
Tn (R0,r0).

Following Andrews and Cheng (2012, 2014), Cheng (2015), and Andrews et al.
(2020), we will establish the asymptotic distribution of Tn under drifting parameter
sequences ωn ∈ W0 → ω ∈ W0, where W0 is the closure of W0. For brevity,
throughout the rest of the paper the terminology “ωn ∈ W0” refers to “drifting
parameter sequence ωn ∈W0 with limit ω ∈W0”. Let λmin (A) denote the smallest
eigenvalue of a matrix A. We make the following assumptions.
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Assumption 4.1. For any ω ∈ W0, (i) λmin

(
Eω

(
ẊiẊ

′
i

))
≥ λ1 for some λ1 >

0 and λmin

(
Eω

(∣∣Ẋi

∣∣ ∣∣Ẋi

∣∣′)) ≥ λ2 for some λ2 > 0; (ii) Eω

(|mid�i|4+ν
)

< M,

Eω

(|spr�i|4+ν
)

< M and Eω

(‖Xi‖4+ν
)

< M for some ν > 0 and M < ∞.

Assumption 4.2. For any ωn ∈ W0, �n
p→ �ω, where �ω is positive definite.

We finish this section by introducing notations that will be used in the subse-

quent analysis. Let Pω,xx ≡ Eω

(
ẊiẊ

′
i

)
, Qω,xx ≡ Eω

(∣∣Ẋi

∣∣ ∣∣Ẋi

∣∣′), and

Mω (ψ) ≡ ψ ′
(

Pω,xx 0
0 Qω,xx

)
ψ −2ψ ′

(
Il 0
0 Il

)
Wω, (15)

where ψ ≡ (
p′,q,u′,v

)
with p ∈ R

2k−d, q ∈ R, u ∈ R
2k−d, v ∈ R, and Wω ∼

N (0,�ω) in which �ω = Varω

(
Ẋ

′
imid�i,

∣∣Ẋi

∣∣′ spr�i

)
.

4.2. Testing Correct Specification of the CR Model Against
the IA-CR Model

To simplify notation, we denote the test statistic Tn (R0,r0) in (13) for testing HCR
0

as Tn:

Tn = n
(̃
α′

s,β̃
′
m

)(
R0�n R′

0

)−1 (̃
α′

s,β̃
′
m

)′
, (16)

where α̃s and β̃m are the estimators defined in (7) and

R0 =
(

0(k−d)×k I(k−d) 0(k−d)×1 0(k−d)×k 0(k−d)×(k−d) 0(k−d)×1

0k×k 0k×(k−d) 0k×1 Ik 0k×(k−d) 0k×1

)
.

The asymptotic distribution of Tn is discontinuous in
(
β∗′

m ,β∗′
s ,δ∗)′, because the

asymptotic distribution of
√

n
(
θ̃ − θ∗) is discontinuous in

(
β∗′

m ,β∗′
s ,δ∗)′ by apply-

ing Theorem 3.3. For any ω ∈ W0, it holds that
(
α∗′

s ,β∗′
m

)′ = 0. Therefore,(
β∗′

m ,β∗′
s ,δ∗)′ = (0,β∗′

s ,δ∗)′ under the null hypothesis.
We decompose the model parameter ω ∈ W0 into three groups: (η,π,ξ) based

on their roles in the asymptotic distribution, where η ≡ (
β∗′

s ,δ∗)′ ∈ R
k−d+1
≥0 ,

π ≡ (vec (Pxx),vec (Qxx),vec (�),vec (�))′ ∈ �, and ξ ∈ � consists of all other
parameters and is infinite-dimensional. The space � is consistent with the null
hypothesis H0. From the previous discussion, the null asymptotic distribution of Tn

is discontinuous in η; π affects the limiting distribution of Tn but not its continuity;
ξ does not affect the limiting distribution of Tn.

We consider the parameter sequence
{
(ηn,πn,ξn) ∈ R

k−d+1
≥0 ×�×� : n ≥ 1

}
and the localization parameter c and πω as the limit of

√
nηn and πn:

√
nηn → c = (c1, . . . ,ck−d,ck−d+1)

′ ∈ R
k−d+1
≥0 and

πn → πω = (vec
(
Pω,xx

)
,vec

(
Qω,xx

)
,vec (�ω),vec (�ω)

)′ ∈ �,
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where R≥0 ≡ R≥0 ∪ {+∞}. As shown in the lemma below, the asymptotic
distribution of Tn under the null hypothesis and the drifting parameter sequence
(ηn,πn,ξn) depends on c and πω; whereas ξn (or the limiting value ξω of ξn) does
not affect the limiting distribution under any parameter sequence ηn and πn.

Let

� = � (c,πω) ≡ argmin
ψ

[Mω (ψ)+φω (ψ)],

where Mω (ψ) is defined in (15) and

φω (ψ) =

⎧⎪⎨⎪⎩
0, if uj ≥ 0 for j = 1, . . . ,k, uj+k + cj ≥ 0 for j = 1, . . . ,k −d

and v+ ck−d+1 ≥ 0

∞, otherwise

.

Then R0� characterizes the limiting distribution of
√

n
(̃
α′

s,β̃
′
m

)′
under HCR

0 and
the drifting parameter sequence (ηn,πn,ξn).

LEMMA 4.1. Under HCR
0 and the parameter sequence (ηn,πn,ξn) ∈ R

k−d+1
≥0 ×

�×� such that
√

nηn → c, πn → πω and ξn → ξω, if Assumptions 3.1, 4.1, and 4.2

hold, then the asymptotic distribution of Tn is given by (R0�)′ (R0�ωR′
0

)−1
(R0�).

As shown in Lemma 4.1, the null asymptotic distribution of Tn under the drifting
sequences of distributions depends on the value of (c,πω). Let Cc,πω (1−ϑ) denote

the (1−ϑ) quantile of the distribution of (R0�)′ (R0�ωR′
0

)−1
(R0�) given c and

πω which can be simulated. Building on existing work, especially McCloskey
(2017), we adopt the two-stage approach with Bonferroni-type correction to
construct an asymptotically uniformly valid test for HCR

0 .
The detailed process consists of the following steps.
Step 1. (i) Construct the estimator π̂ . Consistent estimator π̂ can be decomposed

into two parts:
(
vec
(
Pω,xx

)
,vec

(
Qω,xx

))
is estimable from the sample {Xi}n

i=1; �ω

and �ω can be estimated by using the residuals computed with θ̃; (ii) Construct
confidence sets for

√
nηn. Let β̂s,OLS and δ̂OLS be the OLS estimators of β∗

s and δ∗.
Simple calculation shows that

√
n
(
β̂ ′

s,OLS,δ̂OLS
)′ −√

nηn
d−→ Z (�OLS),

where Z (�OLS) follows a multivariate normal distribution with zero mean and
covariance matrix �OLS. Denote ES� (τ) as a set such that Pr (Z (�) ∈ ES� (τ)) =
1− τ . The confidence set Iτ for

√
nηn is defined as

Iτ ≡
{
ς ∈ R

k−d+1
≥0 : ς ∈ √

n
(
β̂ ′

s,OLS,δ̂OLS
)′ −ES�̂OLS

(τ )
}

.

The value �̂OLS can be computed using the standard approach in least squares
estimation and is a consistent estimator for �OLS. In cases where Iτ is empty, let
Iτ = {0}.
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Step 2. We construct the ϑ level Bonferroni critical value CVb
n for some 0 <

τ ≤ ϑ as

CVb
n (ϑ,τ ) ≡ sup

c∈Iϑ−τ

Cc,π̂ (1− τ) . (17)

The following proposition establishes the asymptotic validity of the test.

PROPOSITION 4.1. Under Assumptions 3.1, 4.1, and 4.2, AsySz(Tn,

CVb
n (ϑ,τ )) ≤ ϑ .

Remark 4.1. Adjusted Bonferroni critical value and Minimum Bonferroni
critical value discussed in McCloskey (2017) are also applicable. The former
considers the joint distribution of Tn and

(
β̂ ′

s,OLS,δ̂OLS
)
, and computes the optimal

pair of significant levels for c and Tn; while the latter combines Bonferroni critical
value and Adjusted Bonferroni critical value. The computational burden for the two
critical values is significant when the dimension of βs is large. Interested readers
could refer to McCloskey (2017) for detailed implementation of such methods.

4.3. Testing H0 in the GIA-CR Model

In this subsection, we extend the test for the correct specification of the CR model
against the IA-CR model developed in the previous subsection to the problem
of testing H0 in (12). Since R00θ

∗ is a subvector of Rθ∗, the null asymptotic
distribution of the test statistic defined in (13) is discontinuous in R�θ∗, where θ∗
satisfies the inequalities: R�θ∗ ≥ r� . In contrast to the standard subvector inference
such as that considered in the previous subsection, components of R�θ∗ could be
linearly dependent rendering direct application of the first stage of the two-stage
approach with Bonferroni-type correction in the previous subsection problematic.
To address this potential issue, we suggest a three-stage approach for constructing
asymptotically uniformly valid tests for H0.

In the first stage, we identify binding and nonbinding inequalities in R00θ
∗ ≥

r−�; and employ the Gauss-Jordan elimination to identify a row basis of R� based
on which we define nuisance parameters and express the inequalities R�θ∗ ≥ r�

in terms of the nuisance parameters. In the second stage, we construct confidence
sets for the nuisance parameters. Lastly we construct the CV for our test using
Bonferroni-type correction.

4.3.1. Identification of Nuisance Parameters. Under H0, the inequalities in
R00θ

∗ ≥ r−� are known to bind or not to bind. Let R0b denote the submatrix of R00

composed of rows corresponding to binding inequalities in R00θ
∗ ≥ r−� . R0b can

be identified directly from the null hypothesis.
Let η ≡ R�θ∗ ∈ R

l� . The vector of nuisance parameters is defined in the
following.

Definition 4.1. The vector of nuisance parameters, denoted as ηu, is defined as
a subvector of η corresponding to a row basis of R�.
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The nuisance parameters may not be unique, because row basis of R� is not
unique. On the other hand, the dimension of ηu is uniquely determined. By
definition, the nuisance parameters are ηu = Ru

�θ∗, where Ru
� is a submatrix of R�

with rows forming a row basis of R� . When R� is of full row rank, Ru
� = R� and

the nuisance parameters are ηu = η. When R� is not of full row rank, we compute
Ru

� and � such that R� = �Ru
� by Gauss-Jordan elimination on the transpose of R� .

In terms of the nuisance parameters, the inequalities: η = R�θ∗ ≥ r� become:

�ηu ≥ r� . (18)

This step does not depend on ηu being unique, because any ηu would allow us
to express the inequalities R�θ∗ ≥ r� as (18). Below we present two examples
to illustrate this step. For notational compactness, we let θ = (θ1,...,θl∗) for an
integer l∗.

Example 4.1. Suppose l∗ = 4 and H0 : θ∗
1 = θ∗

2 . Then R0 = (1, −1,0,0).
(i) Let � = {θ : θ1 − θ2 ≥ 0,θ2 − θ3 ≥ 0,θ3 − θ4 ≥ 0}. Then

R =
⎛⎝ 1 −1 0 0

0 1 −1 0
0 0 1 −1

⎞⎠ and r =
⎛⎝ 0

0
0

⎞⎠ .

Under H0, the first inequality in � binds resulting in R0b = (1, −1,0,0) and

R� =
(

0 1 −1 0
0 0 1 −1

)
.

Since R� is of full row rank, the nuisance parameters are given by

ηu = η = R�θ∗ =
(

θ∗
2 − θ∗

3
θ∗

3 − θ∗
4

)
.

(ii) Let � = {θ : θ1 − θ2 ≥ 0,1 ≥ θ2 − θ3 ≥ 0,θ3 − θ4 ≥ 0}. Then

R =

⎛⎜⎜⎝
1 −1 0 0
0 1 −1 0
0 −1 1 0
0 0 1 −1

⎞⎟⎟⎠ and r =

⎛⎜⎜⎝
0
0
−1
0

⎞⎟⎟⎠ .

Under H0, the first inequality in � binds resulting in R0b = (1, −1,0,0) and

R� =
⎛⎝ 0 1 −1 0

0 −1 1 0
0 0 1 −1

⎞⎠ .

In this case, R� is not of full row rank. Applying Gauss-Jordan elimination to R′
�

yields

Ru
� =

(
0 1 −1 0
0 0 1 −1

)
and � =

⎛⎝ 1 0
−1 0
0 1

⎞⎠ .
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By definition, the nuisance parameters are given by

ηu = Ru
�θ∗ =

(
θ∗

2 − θ∗
3

θ∗
3 − θ∗

4

)
and the inequalities are

�ηu =
⎛⎝ θ∗

2 − θ∗
3−(θ∗

2 − θ∗
3

)
θ∗

3 − θ∗
4

⎞⎠≥
⎛⎝ 0

−1
0

⎞⎠ .

Example 4.2. Let l∗ = 8 and H0 : θ∗
1 = θ∗

2 = θ∗
3 = 0. Then

R0 =
⎛⎝ 1 0 0

0 1 0
0 0 1

03×5

⎞⎠ and r0 =
⎛⎝ 0

0
0

⎞⎠ .

Let � = {θ : Rθ ≥ r}, where R′ = (
R′

0,R′
�

)
and r = (0, −1,0,0, −1,0,0,0)′ in

which

R� =

⎛⎜⎜⎜⎜⎝ 05×3

1 0 0 0 0
−1 0 0 0 0
0 1 0 1 −1
0 2 1 1 0
0 1 −1 2 −3

⎞⎟⎟⎟⎟⎠ .

Under H0, the first and third inequalities in � bind and the second inequality does
not bind resulting in

R0b =
(

1 0 0
0 0 1

02×5

)
.

Since the rows of R� are linearly dependent, we apply the Gauss-Jordan elimina-
tion to the transpose of R�:

R′
� =

⎛⎜⎜⎜⎜⎜⎜⎝
03×5

1 −1 0 0 0
0 0 1 2 1
0 0 0 1 −1
0 0 1 1 2
0 0 −1 0 −3

⎞⎟⎟⎟⎟⎟⎟⎠
Gauss-Jordan elimination−→

⎛⎜⎜⎝
1 −1 0 0 0
0 0 1 0 3
0 0 0 1 −1

05×5

⎞⎟⎟⎠,
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and conclude that the first, third, and fourth rows of R� constitute a row basis of R� .
Finally, we get that

� =

⎛⎜⎜⎜⎜⎝
1 0 0

−1 0 0
0 1 0
0 0 1
0 3 −1

05×5

⎞⎟⎟⎟⎟⎠ and ηu =
⎛⎝ θ∗

4
θ∗

5 + θ∗
7 − θ∗

8
2θ∗

5 + θ∗
6 + θ∗

7

⎞⎠ .

4.3.2. The Null Asymptotic Distribution of Tn (R0,r0) Under Drifting Sequences
and the Testing Procedure. We consider the drifting model parameters(
ηu

n,πn,ξn
)
, where πn and ξn are defined in the same way as in Section 4.2. Since

the nuisance parameters ηu satisfy inequalities in (18), we consider local sequences
ηu

n such that

c = lim
n→∞

√
n
(
�ηu

n − r�

) ∈ R
l�
≥0.

The value of c is unique given ωn ∈ W0. Let

� = � (c,πω) ≡ argmin
ψ

[Mω (ψ)+φω (ψ)],

where Mω (ψ) is defined in (15) and

φω (ψ) =
{

0, if R0bψ ≥ 0 and R�ψ + c ≥ 0

∞, otherwise
.

LEMMA 4.2. Under H0 : R0θ
∗ = r0 and

(
ηu

n,πn,ξn
)

defined above, if Assump-
tions 3.1, 4.1, and 4.2 hold, then the asymptotic distribution of Tn (R0,r0) is given
by (R0�)′ (R0�ωR′

0

)−1
(R0�).

The null asymptotic distribution of Tn (R0,r0) stated in Lemma 4.2 suggests the
following procedure for computing the critical value of our test.

Step 1. (i) Consistently estimate πω using the constrained estimator θ̃ , denoted
as π̂ ;

(ii) Construct confidence sets for
√

n
(
�ηu

n − r�

)
. By definition, ηu

n = Ru
�θn.

Denote θ̂u as the unconstrained estimator defined as the minimizer of (6) without

any constraint. Since
√

n
(
θ̂u − θn

) d→ N (0,�) for some covariance matrix �, it
holds that

√
n
(
Ru

�θ̂u −ηu
n

) d−→ Z (�) ∼ N
(
0,Ru

��Ru′
�

)
.

The confidence set Iτ

(
ηu

n

)
for ηu

n is obtained as Ru
�θ̂u − 1√

n
ES�̂ (τ ), where ES� (τ)

is the set such that Pr (Z (�) ∈ ES� (τ)) = 1 − τ and �̂ is a consistent estimator
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of �. The confidence set Iτ for
√

n
(
�ηu

n − r�

)
is calculated as

Iτ =
{
ς ∈ R

l�
≥0 : ς = √

n(�ι− r�), ι ∈ Iτ

(
ηu

n

)}
.

In cases where Iτ is an empty set, let Iτ = {0}.
Step 2. Compute the ϑ level Bonferroni critical value CVb

n for some
0 < τ ≤ ϑ as

CVb
n (ϑ,τ ) ≡ sup

c∈Iϑ−τ

Cc,π̂ (1− τ),

where Cc,πω (1− τ) is the (1− τ)th quantile of (R0�)′ (R0�ωR′
0

)−1
(R0�) given

(c,πω). For any given (c,πω), the distribution (R0�)′ (R0�ωR′
0

)−1
(R0�) may not

have a closed form expression but can be simulated.
The following theorem shows that the test is asymptotically uniformly valid.

THEOREM 4.1. Assume that (R0�)′ (R0�ωR′
0

)−1
(R0�) is continuous at

Cc,πω (1− τ) for all (c,πω) ∈ R
l�
≥0 × �. Under Assumptions 3.1, 4.1, and 4.2,

it holds that AsySz
(
Tn (R0,r0),CVb

n (ϑ,τ )
)≤ ϑ .

The continuity assumption in Theorem 4.1 may restrict the range of τ . Take
� = {θ ∈ R

2l : βm,1 ≥ 0 and βs,1 ≥ 0
}

as an example: the assumption is satisfied
for all τ when H0 : β∗

m,1 = 1; and is satisfied for τ < 0.25 when H0 : β∗
m,1 = 0. In

the special case that R0θ
∗ involves parameters that are not subject to any inequality

constraint under �, the assumption is automatically satisfied.

5. A SIMULATION STUDY

In this section, we report results from a simulation study. The objective is twofold.
First, we compare the finite sample performance of three estimators θ̂ , θ̃ , and
θ̂u measured by the mean squared error (MSE), where θ̂ is defined in (6), θ̃ is
defined in (7), and θ̂u is the unconstrained estimator defined as the minimizer of
(6) without any constraint. Second, we compare the finite sample size and power
performance of the test introduced in Section 4.1 denoted as the UF test, the Wald
test based upon the unconstrained estimator θ̂u denoted as WU test, and the CLR
test introduced in Ketz (2018). Since the CLR test is developed for subvector
inference, we focus on testing the correct specification of the CR model against
the IA-CR model in this section.

5.1. Simulation Design

We generate data from the following IA-CR model with one covariate:

midY = α∗
mmidX +α∗

s sprX +mid� and

sprY = β∗
m |midX|+β∗

s sprX + spr�,
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where the random generalized interval error � is independent of X. We consider
five different DGPs: DGP1–DGP3 belong to model M G, where � is a random
interval; and DGP4 and DGP5 do not belong to model MG.

It follows from Theorems 3.2 and 3.3 that the asymptotic distributions of the
scaled and centered estimators θ̂ and θ̃ are discontinuous with respect to the value
of β∗. The asymptotic distribution of θ̂ further depends on the tail behavior of
the distribution of spr� through the value of κ . To cover all the possible situations
displayed in the theorems, we consider three different specifications of κ in DGP1–
DGP3. In DGP4 and DGP5, the support of spr� includes negative values, and thus
� is a random generalized interval. In DGP1–DGP5 below, mid� and spr� are
independent of each other, and the variance of spr� is designed to be the same.
Let (Z1,Z2,Z3,Z4) be the random variables that follow the distribution⎛⎜⎜⎝

Z1

Z2

Z3

Z4

⎞⎟⎟⎠∼ N

⎛⎜⎜⎝
⎛⎜⎜⎝

0
0
0
1

⎞⎟⎟⎠,

⎡⎢⎢⎣
1 0.8 0 0

0.8 1 0 0
0 0 2 0
0 0 0 8

⎤⎥⎥⎦
⎞⎟⎟⎠ .

Denote � (α,β) as the gamma distribution with shape parameter α and rate
parameter β.

DGP1 midX = Z1, sprX = Z2
2 , mid� = Z3, and spr� ∼ � (2,1/2) + 1. The

distribution of spr� corresponds to the case when κ = +∞.

DGP2 midX = Z1, sprX = Z2
2 , mid� = Z3, and spr� ∼ � (2,1/2). The distri-

bution of spr� corresponds to the case when κ ∈ (0, +∞).

DGP3 midX = Z1, sprX = Z2
2 , mid� = Z3, and spr� ∼ �

(
1,1/2

√
2
)

. The

distribution of spr� corresponds to the case when κ = 0.

DGP4 midX = Z1, sprX = Z2
2 , mid� = Z3 and spr� = Z4.

DGP5 midX = Z1, sprX = Z2
2 , mid� = Z3, and −spr� ∼ � (2,1/2)−4.

Within each DGP, we study two submodels, where
(
α∗

m,α∗
s ,β

∗
m,β∗

s

)= (1,1,1,1)

in model A, and
(
α∗

m,α∗
s ,β

∗
m,β∗

s

)= (1,0,0,1) in model B. The two submodels differ
in the value of β∗: β∗ is in the interior in model A and is at the boundary in
model B. DGP1–DGP3 differ in the value of κ . In DGP4 and DGP5, spr� has
positive probability of being negative; and in DPG5, δ∗ = 0 is also at the boundary.

For DGPs 1–5, θ̃ and θ̂u are consistent estimators; whereas θ̂ is consistent only
for DGPs 1–3.

5.2. MSE of the Estimators

We focus on the comparison between estimators for
(
β∗,δ∗) in terms of MSE for

the aforementioned data set configurations, because the major difference between
the three estimators lies in the constraints imposed in the minimization problem
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and the estimator vector for (α∗,γ ∗) is not affected by the constraints. The number
of repetitions is 5,000.

Table 1 compares the MSE between different models under different data
configurations. For all cases considered, as the sample size increases, the MSE
of each estimator decreases. For model MG, which corresponds to DGP1–DPG3,(
β̂,δ̂
)

is the most efficient estimator among the three at any given sample size.
More importantly, the fatter the tail distribution of spr� is, the more efficient
the estimator

(
β̂,δ̂
)

is compared to
(
β̃,δ̃
)

and
(
β̂u,δ̂u

)
. The distribution of spr�

verifies κ = +∞ in DGP1, which corresponds to a thin tailed distribution; the
value κ = 0 in DGP3 implies a fat tailed distribution. The tail distribution of spr�
in DGP2 is in the middle, such that κ ∈ (0, +∞). For DGP1, the estimator vector(
β̂,δ̂
)

is slightly better than
(
β̃,δ̃
)

when the sample size is small and the two are
the same when the sample size is large. On the other hand, the MSE for

(
β̂,δ̂
)

is
smaller than

(
β̃,δ̃
)

in DGP2, especially when β∗
m = 0. This phenomenon is more

pronounced in DGP3 when the tail distribution of spr� is fat. The MSE for
(
β̂,δ̂
)

is half of that for
(
β̃,δ̃
)

in DGP3 A, and is less than a quarter in DGP3 B. The
constraints that sprYi − |Xi|′ β ≥ 0 for i = 1, . . . ,n provide little information on
the parameter β when spr� has a relatively small probability of being close to
zero. During the computation of the minimization problem, the constraints almost

Table 1. MSE comparison

n
(
β̂,δ̂
) (

β̃,δ̃
) (

β̂u,δ̂u
)

n
(
β̂,δ̂
) (

β̃,δ̃
) (

β̂u,δ̂u
)

DGP1 A 100 0.5847 0.6145 0.6504 DGP1 B 100 0.3891 0.4200 0.6620

500 0.1207 0.1234 0.1234 500 0.0743 0.0764 0.1226

1,000 0.0626 0.0626 0.0626 1,000 0.0397 0.0397 0.0628

DGP2 A 100 0.5628 0.6302 0.6707 DGP2 B 100 0.0216 0.4003 0.6437

500 0.0947 0.1291 0.1294 500 0.0422 0.0801 0.1253

1,000 0.0410 0.0607 0.0607 1,000 0.0218 0.0404 0.0639

DGP3 A 100 0.3453 0.6324 0.6779 DGP3 B 100 0.2011 0.4194 0.6887

500 0.0629 0.1283 0.1283 500 0.0182 0.0784 0.1247

1,000 0.0318 0.0635 0.0635 1,000 0.0097 0.0396 0.0643

DGP4 A 100 N/A 0.6218 0.6723 DGP4 B 100 N/A 0.4072 0.6629

500 N/A 0.1244 0.1247 500 N/A 0.0825 0.1290

1,000 N/A 0.0637 0.0637 1,000 N/A 0.0395 0.0621

DGP5 A 100 N/A 0.4163 0.6637 DGP5 B 100 N/A 0.1650 0.6903

500 N/A 0.0913 0.1297 500 N/A 0.0319 0.1240

1,000 N/A 0.0434 0.0638 1,000 N/A 0.0154 0.0636
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never bind in this case. On the other hand, if spr� is close to zero with a relatively
high probability, the constraints bind for some i ∈ 1, . . . ,n. This improves the
accuracy of the estimator vector

(
β̂,δ̂
)
, because the true parameter vector satisfies

the constraint. Section 3 provides more detailed discussion about the effect of the
tail of the distribution of spr� on the asymptotic property of

(
β̂,δ̂
)
. For the same

reason, the MSEs for estimator vectors
(
β̃,δ̃
)

and
(
β̂u,δ̂u

)
in DGP1 A–DGP4 A are

close to each other, whereas
(
β̃,δ̃
)

is significantly more efficient than
(
β̂u,δ̂u

)
when

some of the parameters are at the boundary, as in DGP1 B–DGP4 B, DGP5 A, and
DGP5 B. When the correct constraints bind during the estimation, the accuracy of
the constrained estimator improves.

5.3. Size and Power of the Tests

In this section, we study and compare the finite sample size and power of the
UF test, the WU test, and the CLR test when the null hypothesis involves range
regression and the nuisance parameters are either at the discontinuity point or not.

For each DGP, we consider testing the correct specification of the CR model
against the IA-CR, i.e., testing H0 :

(
α∗

s ,β
∗
m

) = 0 against H1:
(
α∗

s ,β
∗
m

) �= 0 under
the maintained hypothesis that

(
β∗′,δ∗) ≥ 0 using one of the three tests. The test

statistic for the WU test takes the same form as (16) with
(̃
α′

s,β̃
′
m

)
replaced by(̂

α′
s,u,β̂

′
m,u

)
. The CLR statistic is constructed using the unconstrained estimator θ̂u.

For the UF test, �n equals to an estimator of(
P−1

xx 0
0 Q−1

xx

)
�

(
P−1

xx 0
0 Q−1

xx

)
using θ̃ , while �n for the WU test and CLR test is calculated using θ̂u.

The critical value for the WU test is the 95% quantile of the chi-squared
distribution with 2 degrees of freedom, and the one for the CLR test is simulated
based on the procedure in Ketz (2018). When implementing the UF test, the
confidence set Iτ for c is constructed as a Wald ellipsoid using β̂s,OLS and δ̂OLS.
The Bonferroni CVb

n (ϑ,τ ) for some 0 < τ ≤ ϑ is defined in (17). Following
Romano et al. (2014) and McCloskey (2017), the tuning parameter τ is set as
ϑ − ϑ/10. We refer interested readers to Romano et al. (2014) and McCloskey
(2017) for a general discussion of the choice of τ . A special choice of τ is to set
it as ϑ . This corresponds to the least favorable critical value. The test based upon
the least favorable critical value controls the asymptotic size, but its finite sample
performance is poor comparing to the UF, WU, and CLR tests. To save space, we
focus on the UF, WU, and CLR tests.

There are three inequality constraints in the maintained hypothesis:(
β∗

m,β∗
s,δ

∗) ≥ 0. In DGP1–DGP4, only one constraint is binding under the null
hypothesis; whereas in DGP5, both β∗

m = 0 and δ∗ = 0 hold under H0. In the
simulation, the nominal size is 5%, and the number of repetitions is 5,000. Table 2
reports the finite sample size and power performance of each test. We let α∗

s = 0
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Table 2. Size and power performance-reject percentage

DGP1 β∗
m = 0 β∗

m = 0.25 β∗
m = 0.5 β∗

m = 0.75 β∗
m = 1

n UF WU CLR UF WU CLR UF WU CLR UF WU CLR UF WU CLR
100 5.14 5.94 5.68 7.26 7.54 7.68 13.26 12.88 13.04 22.16 20.88 21.08 34.02 32.78 33.24
200 5.02 5.54 5.46 9.04 9.18 9.30 19.68 18.50 20.12 38.14 36.08 38.04 58.26 56.62 59.66
500 4.92 5.36 5.14 12.52 12.78 13.00 39.22 37.38 40.96 72.60 71.48 73.80 94.68 94.22 95.08

DGP2 β∗
m = 0 β∗

m = 0.25 β∗
m = 0.5 β∗

m = 0.75 β∗
m = 1

n UF WU CLR UF WU CLR UF WU CLR UF WU CLR UF WU CLR
100 5.22 5.84 5.68 7.66 7.10 7.74 13.42 12.56 13.88 23.28 20.38 22.40 34.12 32.24 33.28
200 4.94 5.24 5.06 8.68 8.32 8.70 18.56 17.74 18.44 37.82 36.00 38.02 58.46 57.08 58.22
500 4.88 5.18 4.94 13.56 13.40 13.62 38.48 37.66 38.88 75.18 74.32 75.68 94.06 93.78 94.22

DGP3 β∗
m = 0 β∗

m = 0.25 β∗
m = 0.5 β∗

m = 0.75 β∗
m = 1

n UF WU CLR UF WU CLR UF WU CLR UF WU CLR UF WU CLR
100 5.28 5.74 5.62 7.28 7.14 7.46 13.26 11.94 13.80 22.18 20.76 22.72 36.32 34.32 36.88
200 5.04 5.46 5.22 9.88 9.42 9.84 20.22 18.86 20.96 36.14 35.04 37.26 59.22 57.64 59.42
500 4.94 5.46 5.16 12.46 12.34 12.80 39.20 39.08 39.96 72.40 72.36 73.02 93.84 93.52 93.98

DGP4 β∗
m = 0 β∗

m = 0.25 β∗
m = 0.5 β∗

m = 0.75 β∗
m = 1

n UF WU CLR UF WU CLR UF WU CLR UF WU CLR UF WU CLR
100 4.68 4.32 4.26 6.24 6.64 6.80 10.12 10.98 12.68 17.26 17.68 19.48 30.12 30.54 33.68
200 4.76 4.70 4.68 7.82 8.12 8.48 16.14 16.50 17.90 34.02 34.20 36.22 60.98 61.30 63.58
500 4.62 4.88 4.84 12.44 12.70 12.48 36.28 36.60 36.64 71.64 71.80 72.48 92.62 92.70 94.08

DGP5 β∗
m = 0 β∗

m = 0.25 β∗
m = 0.5 β∗

m = 0.75 β∗
m = 1

n UF WU CLR UF WU CLR UF WU CLR UF WU CLR UF WU CLR
100 4.82 4.66 4.74 7.42 6.86 6.92 13.80 11.74 12.06 24.20 21.44 21.48 35.88 33.58 33.96
200 4.86 4.94 4.88 8.92 8.26 8.30 20.66 18.80 18.92 39.04 36.20 36.42 60.08 58.18 58.06
500 4.92 5.10 5.06 12.20 12.08 12.24 40.06 38.98 39.02 73.78 72.72 72.80 94.64 93.88 93.94

throughout the simulation and change the value of β∗
m to obtain the size and power

of the tests. β∗
m = 0 corresponds the case where H0 holds; whereas when β∗

m equals
0.25, 0.5, 0.75, and 1, the alternative hypothesis is true, and we deviate more and
more from the null hypothesis.

First, by comparing the rejection probabilities in the case β∗
m = 0, we see that the

finite sample size of the UF test introduced in the paper is the closest to the nominal
size 5%, especially when n is small. The finite sample null rejection probability
of the WU test tends to depend heavily on the distribution of spr�, and the size
distortion of the WU test is the most severe among the three tests when the sample
size is small. The CLR test outperforms the WU test, but is slightly less accurate
than the UF test when n is small. In DGP4 where the distributions of mid� and
spr� are indeed Gaussian, the Wald test based upon θ̂u has the best finite sample
size. However, even in this case, the UF and CLR tests have comparable size
performance.

Second, the UF test has better finite sample power than the WU test in cases
where the distribution of spr� is skewed. Except in DGP4 where the WU test is
destined to perform well, the UF test dominates the WU test. In particular, when
n is small and when there are more binding inequalities under H0 like DGP5, the
power of the UF test can be much higher than that of the WU test. The CLR test
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consistently beats the WU test. Between the UF and the CLR tests, the UF test
tends to have better power performance than the CLR test in small samples and
when many inequalities bind such as in DGP5.

In summary, both the UF test and the CLR test have advantages over the WU
test. The CLR test has better finite sample performance over the WU test in almost
all cases, and the UF test outperforms the WU test when the distribution of the
error is skewed. The UF test and CLR test have similar finite sample performance
in cases for which both are applicable, and the UF test can be applied to many
other hypotheses to which the CLR test does not apply.

6. CONCLUDING REMARKS

We have made several contributions in this paper. First, we have proposed a
flexible model, i.e., the GIA-CR model for random intervals via the generalized
interval arithmetic approach and constructed a constrained estimator of parameter
vector in the GIA-CR model. As a special member of the generalized model,
the IA-CR model extends and overcomes the drawbacks of both model MG and
the CR model. Second, as a measure of goodness-of-fit, we have extended the
coefficient of determination for linear regressions for random variables to our
GIA-CR model for random intervals. Third, we have developed asymptotically
uniformly valid tests for linear hypotheses in the GIA-CR model including a test
for the correct specification of the CR model against the IA-CR model. Fourth, we
have conducted a simulation study to examine the finite sample performance of our
estimator and test. As a separate contribution to the current literature on interval
arithmetic approach to modeling interval data, we have established the asymptotic
distribution of the constrained estimator of model MG.

APPENDICES

A. Technical Proofs

A.1. Proof of Proposition 2.1. Using the alternative expression of RSSG, R2
G can

be computed as

R2
G = 1−

∑n
i=1 d2 (Yi,Ỹi

)∑n
i=1 d2

(
Yi,Y

) .

The nonnegativity of
∑

i d2
(
Yi,Ỹi

)∑
i d2
(
Yi,Y

) implies that R2
G ≤ 1; and for {Yi,X1i, . . . ,Xki}n

i=1

and θ̃ such that Yi = Ỹi for all i, it holds that d2 (Yi,Ỹi
) = 0 and thus R2

G = 1.
By (7) and the fact that

n∑
i=1

d2 (Yi,Y
)=

n∑
i=1

d2
(

Yi,
[
γ̌ ± δ̌

])
, where
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(
γ̌ ,δ̌
)′ = argmin

γ,δ

n∑
i=1

d2 (Yi, [γ ± δ]),

it holds that

n∑
i=1

d2 (Yi,Ỹi
)=

n∑
i=1

d2 (Yi,
[
X′

iα̃ ±|Xi|′ β̃
]+ [γ̃ ± δ̃

])
≤

n∑
i=1

d2
(

Yi,
[
γ̌ ± δ̌

])
=

n∑
i=1

d2 (Yi,Y
)

.

The inequality comes from property of the minimization operation: Ỹi’s are obtained by a
constrained minimization problem over α,γ ,β, and δ, with α = 0 and β = 0 satisfying the
constraint. Therefore,

∑n
i=1 d2 (Yi,Y

) ≥∑n
i=1 d2 (Yi,Ỹi

)
and R2

G ≥ 0, where the equality

holds if α̃ and β̃ are zero vectors. The first part of the proposition holds. The second
part follows directly from the characteristics of the minimization problem that defines
θ̃ in (7). �

A.2. Proof of Theorem 3.1. We first show that θ̂ →p θ∗. Define

Z1 (θ) = (α∗′ −α′,γ ∗ −γ
)

Pxx

(
α∗ −α

γ ∗ −γ

)
+σ 2

mid�

+ (β∗′ −β ′,δ∗ − δ
)

Qxx

(
β∗ −β

δ∗ − δ

)
+σ 2

spr� +ϕ1 (θ),

where σ 2
mid�

= Var (mid�), σ 2
spr� = Var (spr�), and

ϕ1 (θ) =
{

0, if Pr
(
sprY −|X|′ β ≥ 0

)= 1; and β ≥ 0

∞, otherwise
.

It holds that θ∗ = argminθ Z1 (θ). First, notice that Pr
(
sprY −|X|′ β∗ ≥ 0

)= 1 and β∗ ≥ 0

by the model specification. Second, by Assumption 3.2, both σ 2
mid�

and σ 2
spr� are finite.

Therefore, Z1 (θ) reaches its minimal value σ 2
mid�

+ σ 2
spr� at θ∗. At last, since Pxx and

Qxx are both nonsingular by Assumption 3.2, they are positive definite and θ∗ is the unique
solution to the minimization problem. Therefore, θ∗ = argminθ Z1 (θ).

Next we aim to show that argminθ Z1n (θ)
p→ argminθ Z1 (θ). Z1n (θ) is a convex function

because its epigraph is a convex set. Moreover, since argminθ Z1 (θ) is unique, it suffices
to show that Z1n (θ) epi-converges to Z1 (θ) by the Convexity Lemma of Geyer (1996) and
Knight (1999).

The finite dimensional convergence and finiteness of Z1 (θ) on an open set provide the
epi-convergence, given that Z1n (θ) is convex. For

s0 ≡ sup

{
max

1≤j≤2k−d
bj : Pr

(
sprY −|X|′ b ≥ 0

)= 1,b ∈ R
2k−d
≥0

}
,

if s0 is strictly positive, one can always find an open set Ob ⊂ R
2k such that

Pr
(
sprY −|X|′ b ≥ 0

) = 1 for any b ∈ Ob. Then on the set Oα × Oγ × Ob × Oδ , where
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Oα ⊂ R
2k−d , Oγ ⊂ R, and Oδ ⊂ R are any open sets, Z (θ) is finite. We now show the

finite dimensional convergence to complete the proof.
By the weak law of large numbers and the model specification, we have that

1

n

∑(
midYi −X′

iα −γ
)2 p−→ (

α∗′ −α′,γ ∗ −γ
)

Pxx
(
α∗′ −α′,γ ∗ −γ

)′ +σ 2
mid� and

1

n

∑(
sprYi −|Xi|′ β − δ

)2 p−→ (
β∗′ −β ′,δ∗ − δ

)
Qxx

(
β∗′ −β ′,δ∗ − δ

)′ +σ 2
spr�,

for any pair
(
α′,γ ,β′,δ

)
. Thus, according to Knight (2001), it suffices to show that for given

θ1, . . . ,θm,

Pr
(
ϕ1n

(
θ1
)

= 0, . . . ,ϕ1n
(
θm)= 0

)
−→ Pr

(
ϕ1

(
θ1
)

= 0, . . . ,ϕ1
(
θm)= 0

)

when n → ∞. The former probability equals to

Pr
(

sprYi ≥ |Xi|′ βj, for i = 1, . . . ,n and j = 1, . . . ,m
)

= Prn
(

sprYi ≥ max
1≤j≤m

|Xi|′ βj
)

−→
⎧⎨⎩1, if Pr

(
sprY ≥ max1≤j≤m |X|′ β j

)
= 1

0, if Pr
(

sprY ≥ max1≤j≤m |X|′ β j
)

< 1

= Pr
(
ϕ1

(
θ1
)

= 0, . . . ,ϕ1
(
θm)= 0

)
.

Therefore, we can conclude that Z1n (θ) epi-converges to Z1 (θ) and θ̂
p→ θ∗ when s0 > 0.

On the other hand, if s0 = 0, then β∗
j = 0 for all j = 1, . . . ,2k − d. The minimization

problem can be separated into two parts with one part containing only α̂ and γ̂ and the other
contains only β̂ and δ̂. Since no constraints are imposed on

(
α̂′,γ̂

)
, the consistency of

(
α̂′,γ̂

)
follows from standard arguments in the least squares estimation. Because Z1n

(
α′,γ ,0′,δ

)
is finite, to prove that

(
β̂

′
,δ̂
) p→ (

β∗′,δ∗)= (0′,δ∗), it suffices to show that for any b �= 0,

Pr (Z1n (θ) < ∞) → 0 when n → ∞. This follows from the fact that for b �= 0,

Pr
(
sprYi ≥ |Xi|′ b, for i = 1, . . . ,n

)= Prn (sprYi −|Xi|′ b ≥ 0
)= 0,

where the last equality is implied by s0 = 0. Therefore, β̂
p→ 0. The convergence of δ̂ follows

from the law of large numbers since δ∗ = E(sprY) when β∗ = 0.
The first part of the theorem then follows by combining the two cases of s0 > 0

and s0 = 0.
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The proof for θ̃
p→ θ∗ is essentially the same. Define

Z2 (θ) = (α∗′ −α′,γ ∗ −γ
)

Pxx

(
α∗ −α

γ ∗ −γ

)
+σ 2

mid�

+ (β∗′ −β ′,δ∗ − δ
)

Qxx

(
β∗ −β

δ∗ − δ

)
+σ 2

spr� +ϕ2 (θ),

where σ 2
mid�

= Var (mid�) and σ 2
spr� = Var (spr�). With Assumption 3.2, we have that

θ∗ = argminθ Z2 (θ), because Rθ∗ ≥ r and Pxx and Qxx are nonsingular. The convexity
of Z2n (θ) is implied by its quadratic component and the geometry of the feasible set.
Since ϕ2 (θ) is not random, the epi-convergence of Z2n (θ) to Z2 (θ) follows from the
finite dimensional convergence of the quadratic component. At last, since Z2 (θ) is finite
on any open set that is contained in R

2k−d ×R×R
2k−d
≥0 ×R≥0, we obtain the consistency

of θ̃ . �

A.3. Proof of Theorem 3.2. We will prove the theorem for the different cases: (i)
κ ∈ (0, +∞); (ii) κ = +∞; and (iii) κ = 0. Let M1 (ψ) = M (ψ)+φ1 (ψ).

Note that
√

n
(
θ̂ − θ∗) is the solution to the minimization problem:

min
ψ

M1n (ψ) ≡ min
p,q,u,v

⎡⎢⎢⎢⎣
∑n

i=1

(
mid�i −γ ∗ − 1√

n
X′

ip− q√
n

)2

+∑n
i=1

(
spr�i − δ∗ − 1√

n
|Xi|′ u− v√

n

)2

−∑n
i=1
(
mid�i −γ ∗)2 −∑n

i=1
(
spr�i − δ∗)2 +φ1n (ψ)

⎤⎥⎥⎥⎦,

where

φ1n (ψ) =

⎧⎪⎨⎪⎩
0, if

√
nspr�i ≥ |Xi|′ u, for i = 1,2, . . . n;

and uj +√
nβ∗

j ≥ 0, for j = 1, . . . ,2k −d

∞, otherwise

.

The goal is to show that argminψ M1n (ψ)
d→ argminψ M1 (ψ). Since the set of ψ

for φ1n (ψ) being finite is convex, the convexity of M1n (ψ) is straightforward due to
its quadratic component. Recall that by the Convexity Lemma of Geyer (1996) and

Knight (1999), the following three conditions are sufficient for argminψ M1n (ψ)
d→

argminψ M1 (ψ) provided that M1n (ψ) is convex: (a) M1n (ψ) converges to M1 (ψ) in the

finite-dimensional sense (
f .d.→), (b) M1 (ψ) is finite on an open set, and (c) M1 (ψ) is uniquely

minimized with probability 1.
We now prove that these three conditions are satisfied when limt→∞ tFs

(
1/

√
t
) ∈

(0, +∞).
For any Borel subsets D of D := [0, + ∞) × X , where X is the support of |Xi|,

define the point process (random measure): υn (D) :=∑n
i=11

{(√
nspr�i, |Xi|

) ∈ D
}
. The

point process υn (·) tends in distribution with respect to the vague topology to a Poisson
point process (random measure) υ (·) in the metric space of point measure Mp (D). The

limit Poisson process has the mean measure: E [υ (D)] = ∫
D

2
κ wg(x)dμ(x)dw and can

be represented by υ (D) := ∑∞
i=11

{(√
κg− 1

2 (Υi)Γi,Υi

)
∈ D
}

for all Borel subsets D

of D := [0, + ∞) ×X , where g(·) is defined in Assumption 3.3, Γi = (E1 +·· ·+Ei)
1
2
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for unit mean i.i.d. exponential random variables E1,E2, . . ., and Υ1,Υ2, . . . are i.i.d. with
distribution Pr (Υi ∈ A) = μ(A), where μ(·) is the probability measure of |Xi|. The Γi ‘s
are independent of Υi’s. By Assumption 3.3 and the fact that limt→∞ tFs

(
1/

√
t
) = 1/κ ,

limn→∞E [υn (D)] = E [υ (D)] and limn→∞ Pr {υn (D) = 0} = e−E[υ(D)]. The claimed
weak convergence result follows from Kallenberg’s theorem (Resnick, 1987).

Using the above convergence result of the point process, we are now ready to
show the finite dimensional weak convergence of M1n (ψ). The following convergence
result is straightforward:⎡⎢⎣ ∑n

i=1

(
mid�i −γ ∗ − 1√

n
X′

ip− q√
n

)2 −∑n
i=1
(
mid�i −γ ∗)2

+∑n
i=1

(
spr�i − δ∗ − 1√

n
|Xi|′ u− v√

n

)2 −∑n
i=1
(
spr�i − δ∗)2

⎤⎥⎦
d−→ ψ ′

(
Pxx 0
0 Qxx

)
ψ −2ψ ′

(
Il 0
0 Il

)
W,

with W ∼ N (0,�) and � being the covariance matrix of
(

Ẋ′
imid�i,

∣∣Ẋi
∣∣′ spr�i

)
. The

asymptotic independence between W and the point process follows from the standard proof
of asymptotic independence of sample average and sample minimal-order statistics, see e.g.
Resnick (1987) and Lem. 21.19 in Van der Vaart (2000). A more detailed proof can be found
in Chernozhukov and Hong (2002). Thus, it remains to show that for given ψ1, . . . ,ψm,

Pr
[
φ1n

(
ψ1
)

= 0, . . . ,φ1n
(
ψm)= 0

]
−→ Pr

[
φ1

(
ψ1
)

= 0, . . . ,φ1
(
ψm)= 0

]
,

as n → ∞. Since no randomness is involved in the constraint uj + √
nβ∗

j ≥ 0 for j =
1, . . . ,2k − d, its limit is straightforward. Thus, we only need to focus on the constraint√

nspr�i ≥ |Xi|′ u for i = 1,2, . . . n. Exploiting the convergence in distribution of υn (·) to
the Poisson random measure υ (·), we have that

Pr
[
φ1n

(
ψ1
)

= 0, . . . ,φ1n
(
ψm)= 0

]
= Pr

⎡⎣ n∑
i=1

1

(√
nspr�i < max

1≤j≤m
|Xi|′ uj

)
= 0

⎤⎦
→exp

(
−
∫
X

max
1≤j≤m

g(x)

κ

(
x′uj

)
2dμ(x)

)
= Pr

[
φ1

(
ψ1
)

= 0, . . . ,φ1
(
ψm)= 0

]
.

Therefore, M1n (ψ)
f .d.→ M1 (ψ) as n → ∞.

The other two conditions can be easily verified. On the set Op ×Oq ×(−∞,0)2k−d ×Ov,
where Op ⊂ R

2k−d , Oq ⊂ R and Ov ⊂ R are any open sets, M1 (ψ) is finite by its
definition. And, for any realization of W, {Γi, i ≥ 1} and {Υi, i ≥ 1}, M1 (ψ) will be uniquely
minimized due to the quadratic form of M (ψ) and the geometry of the constraint. If the
minimal of M (ψ) is in the constraint set, the uniqueness is trivially satisfied. If the minimal
of M (ψ) lies outside the constraint set, the solution to the minimization problem will be the
intersect of the level set of M (ψ) with the boundary of the constraint set. The level set of
the quadratic component of M (ψ) takes the shape of an ellipse in high dimension, while the
constraint set is convex with boundary consisting of high dimensional planes. They can only
intersect at one point. Thus, the latter two conditions in the Convexity Lemma are satisfied.

Hence, when limt→∞ tFs
(
1/

√
t
) ∈ (0, +∞), argminψ M1n (ψ)

d→ argminψ M1 (ψ) as
n → ∞.
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The above result also holds when limt→∞ tFs
(
1/

√
t
)= 0. Rewrite M1 (ψ) by substitut-

ing κ = +∞: M1 (ψ) = M (ψ)+φ1 (ψ), with

φ1 (ψ) =

⎧⎪⎪⎨⎪⎪⎩
0, if Υ ′

i u ≤ +∞, for i = 1,2, . . . ;
and 1

(
β∗

j = 0
)

uj ≥ 0 for j = 1, . . . ,2k −d

∞, otherwise

.

Since Υi follows a tight probability measure, we can further simplify

φ1 (ψ) =
{

0, if 1
(
β∗

j = 0
)

uj ≥ 0 for j = 1, . . . ,2k

∞, otherwise
.

The finite dimensional convergence of the quadratic component of M1n (ψ) follows the
same argument. We now show that for any given ψ1, . . . ,ψm, as n → ∞,

Pr
[
φ1n

(
ψ1
)

= 0, . . . ,φ1n
(
ψm)= 0

]
−→ Pr

[
φ1

(
ψ1
)

= 0, . . . ,φ1
(
ψm)= 0

]
.

By writing the probability as an expectation of a conditional probability, we have that

Pr
[
φ1n

(
ψ1
)

= 0, . . . ,φ1n
(
ψm)= 0

]
= Pr

⎡⎣ n∑
i=1

1

(√
nspr�i < max

1≤j≤m
|Xi|′ uj

)
= 0

⎤⎦
= Prn

[√
nspr� ≥ max

1≤j≤m
|X|′ uj

]
= E

n
[

Pr

[
spr� ≥ 1√

n
max

1≤j≤m
|X|′ uj | X

]]
= E

n
[

1−g(|X|)F−
s

(
1√
n

max
1≤j≤m

|X|′ uj
)]

=
[

1−E

[
g(|X|)F−

s

(
1√
n

max
1≤j≤m

|X|′ uj
)]]n

,

where F−
s (a) ≡ limz↑a Fs (z). The indeterminate form has the limit of

exp

(
− lim

n→∞nE

[
g(|X|)F−

s

(
1√
n

max
1≤j≤m

|X|′ uj
)])

.

For |X| ∈ X such that max1≤j≤m |X|′ uj ≤ 0, we have that F−
s

(
1√
n

max1≤j≤m |X|′ uj
)

=
0; if max1≤j≤m |X|′ uj > 0, the inequality limn→∞ nF−

s

(
1√
n

max1≤j≤m |X|′ uj
)

≤
limn→∞ nFs

(
1√
n

max1≤j≤m |X|′ uj
)

= 0 holds. By the dominated convergence theorem,

we obtain that

Pr
[
φ1n

(
ψ1
)
=0, . . . ,φ1n

(
ψm)=0

]
→exp(0)=1=Pr

[
φ1

(
ψ1
)
=0, . . . ,φ1

(
ψm)=0

]
.

Therefore, the finite dimensional convergence of M1n (ψ) is verified. By the same argument
as in the first case where κ ∈ (0, +∞), we can show that M1 (ψ) is finite on an open set
and that its minimizer is unique with probability one. The Convexity Lemma then provides

that argminψ M1n (ψ)
d→ argminψ M1 (ψ) when κ = +∞.

The proof for the case when limt→∞ tFs
(
1/

√
t
) = +∞ is essentially the same. Since

the part 1
(
β∗

j = 0
)

uj ≥ 0 for j = 1, . . . ,2k −d does not contain any randomness, we focus
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the proof on the constraint
√

nspr�i ≥ |Xi|′ u for i = 1,2, . . . n. For any given ψ1, . . . ,ψm,
it holds that

Pr
[
φ1n

(
ψ1
)

= 0, . . . ,φ1n
(
ψm)= 0

]
=
[

1−E

[
g(|X|)F−

s

(
1√
n

max
1≤j≤m

|X|′ uj
)]]n

with the limit

exp

(
− lim

n→∞nE

[
g(|X|)F−

s

(
1√
n

max
1≤j≤m

|X|′ uj
)])

.

If max1≤j≤m |X|′ uj ≤ 0, F−
s

(
1√
n

max1≤j≤m |X|′ uj
)

≤ F−
s (0) = 0, because F−

s (0) = 0. If

max1≤j≤m |X|′ uj > 0, we have that limn→∞ nF−
s

(
1√
n

max1≤j≤m |X|′ uj
)

≥
limn→∞ nFs

(
1

2
√

n
max1≤j≤m |X|′ uj

)
= ∞ by condition limt→∞ tFs

(
1/

√
t
) = +∞.

Therefore for the given u’s, when Pr
(

max1≤j≤m |X|′ uj ≤ 0
)

= 1,

exp

(
− lim

n→∞nE

[
g(|X|)F−

s

(
1√
n

max
1≤j≤m

|X|′ uj
)])

→ 1;

and when Pr
(

max1≤j≤m |X|′ uj ≤ 0
)

< 1,

exp

(
− lim

n→∞nE

[
g(|X|)F−

s

(
1√
n

max
1≤j≤m

|X|′ uj
)])

→ 0.

Now consider Pr
[
φ1

(
ψ1
)

= 0, . . . ,φ1
(
ψm)= 0

]
. The probability can be calculated as

Pr
[
φ1

(
ψ1
)

= 0, . . . ,φ1
(
ψm)= 0

]
= Pr

[
max

1≤j≤m
Υ ′

i uj ≤ 0, : for : i = 1,2, . . .

]

=
⎧⎨⎩1, if Pr

(
max1≤j≤m |X|′ uj ≤ 0

)
= 1

0, if Pr
(

max1≤j≤m |X|′ uj ≤ 0
)

< 1
,

where the last equality follows from the fact that the distribution of Υi is the same as |X|
and i goes to infinity. Therefore, we have shown that for any given ψ1, . . . ,ψm,

Pr
[
φ1n

(
ψ1
)

= 0, . . . ,φ1n
(
ψm)= 0

]
−→ Pr

[
φ1

(
ψ1
)

= 0, . . . ,φ1
(
ψm)= 0

]
,

as n → ∞. The rest is the same as in case limt→∞ tFs
(
1/

√
t
)= 0.

Hence, we have shown that argminψ M1n (ψ) converges in law to argminψ M1 (ψ) for
all different values of limt→∞ tFs

(
1/

√
t
)
. The claimed theorem can be concluded. �

A.4. Proof of Theorem 3.3. The proof is similar to the proof for Theorem 3.2.√
n
(
θ̃ − θ∗) is the solution to the minimization problem:

min
p,q,u,v

⎡⎢⎣ ∑n
i=1

(
mid�i −γ ∗ − 1√

n
X′

ip− q√
n

)2 −∑n
i=1
(
mid�i −γ ∗)2

+∑n
i=1

(
spr�i − δ∗ − 1√

n
|Xi|′ u− v√

n

)2 −∑n
i=1
(
spr�i − δ∗)2 +φ2n (ψ)

⎤⎥⎦,
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where

φ2n (ψ) =
{

0, if Rψ ≥ √
n
(
r −Rθ∗)

∞, otherwise
.

For the vector
(
r −Rθ∗), some elements are zero and the rest are strictly negative. The zero

elements correspond to the submatrix Rb of R by definition. This implies that φ2n (ψ) →
φ2 (ψ) pointwise as n → ∞. The rest of the proof is the same for Theorem 3.2 by showing
finite-dimensional convergence, M (ψ)+φ2 (ψ) being finite on an open set, and M (ψ)+
φ2 (ψ) being uniquely minimized with probability 1. �

A.5. Proof of Lemma 4.1. By Assumption 4.2, the claimed result follows if we
show that R0� represents the asymptotic distribution of

√
n
(̃
α′

s,β̃
′
m
)′ under the null

hypothesis and the parameter sequence (ηn,πn,ξn). Under H0, it holds that β∗
m = 0. Simple

manipulation of the proof for Theorem 3.3 would provide that
√

n
(̃
α′

s,β̃
′
m
)′ d→ R0�, with

the Lindeberg-Lévy Central Limit Theorem replaced by Lyapunov Central Limit Theorem
under Assumption 4.1, see Lem. A.3 in Cheng (2015). �

A.6. Proof of Proposition 4.1. We prove the proposition by verifying assumptions

in McCloskey (2017). Notice that the distribution (R0�)′
(
R0�ωR′

0

)−1
(R0�) is finite

with probability 1 for all c and πω in the localization parameter space. Assumption PS,
Sel, and Inf in McCloskey (2017) are trivially satisfied. By the expression in Lemma 4.1,
Cc,πω (1−ϑ) is continuous in c and πω. Moreover, R0� follows a continuous distribution.
Thus, Assumption Cont in McCloskey (2017) is satisfied. The requirement for the confi-
dence set Iτ that limn→∞ Pr

(√
nηn ∈ Iτ

) ≥ 1 − τ fulfils Assumption CS in McCloskey
(2017). It suffices to prove that Assumption DS in McCloskey (2017) is satisfied for the
first claim of the proposition.

Lemma 4.1 provides that the asymptotic distribution of the test statistic Tn is

(R0�)′
(
R0�ωR′

0

)−1
(R0�) under the full parameter sequence (ηn,πn,ξn); and the

asymptotic convergence of
√

n
(
β̂ ′

s,OLS,δ̂OLS

)′ − √
nηn

d→ Z (�OLS) is straightforward.

We follow Lem. 2.1 in Andrews et al. (2020) to establish the equivalence of results under
full sequences and subsequences provided that Assump. B2 in Andrews et al. (2020) holds.
Therefore, the goal is to show that for any subsequence there exists a full sequence that
has the same limit (possibly infinity) and has its subsequence equal to the original one.
Denote the subsequence as

{
ηpn,πpn : n ≥ 1

}
such that

(√
pnηpn,πpn

)→ (c,πω). We aim
to construct a full sequence

{
η#

n,π#
n : n ≥ 1

}
satisfying that

(√
nη#

n,π#
n
) → (c,πω) and(

η#
n,π#

n
) = (ηpn,πpn

)
, ∀n ≥ 1. To clarify the notation, let the full sequence be indexed by

m:
{
η#

m,π#
m : m ≥ 1

}
. For ∀m = pn, define

(
η#

m,π#
m
)= (ηpn,πpn

)
; and for ∀m ∈ (pn,pn+1

)
,

define

δ#
m =

⎧⎨⎩
√

pnδpn√
m

, if
√

pnδpn → ck−d+1 ∈ R≥0

δpn, if
√

pnδpn → +∞
and

β#
s,j,m =

⎧⎨⎩
√

pnβs,j,pn√
m

, if
√

pnβs,j,pn → cj ∈ R≥0

βs,j,pn, if
√

pnβs,j,pn → +∞
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for j = 1, . . . ,k−d and π#
m = πpn . It is trivial that the constructed full sequence satisfies the

second requirement that
(
η#

pn
,π#

pn

)
= (ηpn,πpn

)
for ∀n ≥ 1. To see that the first requirement

is also satisfied, please refer to pp. 225–226 in Cheng (2015) for a detailed derivation. �

A.7. Proof of Lemma 4.2. With Assumption 4.2, the lemma follows if we can show

that
√

n
(
θ̃ − θn

) d→ � under the model parameters
(
ηu

n,πn,ξn
)
. The estimator is defined as

θ̃ = argminθ∈R2l Z2n (θ). Note that
√

n
(
θ̃ − θn

)
is the solution to the minimization problem:

min
p,q,u,v

⎡⎢⎣ ∑n
i=1

(
mid�i −γn − 1√

n
X′

ip− q√
n

)2 −∑n
i=1 (mid�i −γn)2

+∑n
i=1

(
spr�i − δn − 1√

n
|Xi|′ u− v√

n

)2 −∑n
i=1 (spr�i − δn)2 +φn (ψ)

⎤⎥⎦,

where

φ2n (ψ) =
{

0, if Rψ +√
n(Rθn − r) ≥ 0

∞, otherwise
.

By Lyapunov Central Limit Theorem, we obtain that⎡⎢⎣ ∑n
i=1

(
mid�i −γn − 1√

n
X′

ip− q√
n

)2 −∑n
i=1 (mid�i −γn)2

+∑n
i=1

(
spr�i − δn − 1√

n
|Xi|′ u− v√

n

)2 −∑n
i=1 (spr�i − δn)2

⎤⎥⎦ d−→ Mω (ψ) .

Decompose R into three submatrices: R� , R0b and R0s, where R0s denotes the nonbinding
inequalities in R00θ ≥ r−� . By the definition of c, it holds that �ηu

n − r� = R�θn − r� → c
when n → ∞; under the null hypothesis, R0b and R0s represent the binding and nonbinding
inequalities R00θ ≥ r−� . Therefore, we have φ2n (ψ) → φω (ψ) pointwise as n → ∞. We

obtain that
√

n
(
θ̃ − θn

) d→ � and the claimed lemma. �

A.8. Proof of Theorem 4.1. The theorem follows from the same proof for Proposi-

tion 4.1 with the continuity of (R0�)′
(
R0�ωR′

0

)−1
(R0�) at Cc,πω (1−ϑ) for all (c,πω) ∈

R
l�≥0 ×� being assumed in the theorem. �

B. A Review of Generalized Interval Arithmetic and Random General-
ized Intervals

B.1. Interval Arithmetic. Given a1,a2 ∈ R and a1 ≤ a2, an interval A is defined by
its left and right end points: A = [a1,a2] = {x ∈ R : a1 ≤ x ≤ a2}, or by its center and range:
A = [midA± sprA

]
, where midA = (a1 +a2)/2 and sprA = (a2 −a1)/2 ≥ 0. The set of all

intervals is denoted by I (R). For all A,B ∈ I (R) and λ ∈ R, it holds that

(i) A+B ≡ [(midA+midB)± (sprA+ sprB)
]

and
(ii) λA ≡ [λmidA±|λ|sprA

]
.

Combining (i) and (ii), we obtain that for all A,B ∈ I (R) and λ ∈ R,

A+λB = [(midA+λmidB)± (sprA+|λ|sprB)
]

. (B.1)
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It follows from (ii) that −A ≡ (−1)A = [−midA± sprA
] = [−a2, −a1]. Subtraction

between two intervals A and B is defined as

A−B = A+ (−B) = [(midA−midB)± (sprA+ sprB)
]

.

As a result, we have:

A−A = [0± (2sprA)
] �= [0,0] and

A−B+B = [midA± (sprA+2sprB)
] �= A.

To partly remedy this situation, Hukuhara (1967) introduces an alternative difference
operation on intervals referred to as Hukuhara difference and denoted as (−H). Specifically,
for any A,B ∈ I (R), A −H B = C if there exists C ∈ I (R) such that A = B + C. It can be
shown that Hukuhara difference A−H B exists if and only if sprA ≥ sprB and when it exists,

A−H B ≡ [(midA−midB)± (sprA− sprB)
]

.

In contrast to subtraction (−), Hukuhara difference satisfies: A−H A = [0,0] and A−H B+
B = A. However, Hukuhara difference between two intervals may not exist which limits the
scope of applications of the interval arithmetic approach to modeling interval data.

B.2. Generalized Interval Arithmetic and an L2-type Metric for
Generalized Intervals. In the paper, we make use of generalized intervals studied
in the mathematics literature, see e.g., Kaucher (1980) and Markov (1996), to fully explore
advantages of the interval arithmetic approach to modeling interval data. Specifically, for
a1,a2 ∈R, a generalized interval is an ordered couple denoted as A = [a1,a2]: it is a proper
or simply an interval when a1 ≤ a2; otherwise it is an improper interval. A generalized
interval can also be represented as A = [midA± sprA

]
: it is proper if sprA ≥ 0; improper

if sprA < 0. Denote K (R) as the space of generalized intervals. For A,B ∈ K (R), it turns
out that the addition and scalar product operations can be computed in the same way as in
(B.1), see Kaucher (1980) and Markov (1996) for details.

With generalized intervals, we can extend Hukuhara difference to any two intervals. Let
A and B be two intervals. Generalized Hukuhara difference10 is defined as follows:

A−GH B ≡ A+ (−B
)= [(midA−midB)± (sprA− sprB)

]
,

where B = [midB∓ sprB
]

is the conjugation or dual of B. In contrast to Hukuhara difference,
the Generalized Hukuhara difference between two intervals A and B always exists: when
sprA ≥ sprB, A −GH B is an interval and A −GH B = A −H B; otherwise it is an improper
interval. It is easy to see that A−GH A = [0,0] and A−GH B+B = A.

Let A and B be two generalized intervals. We define an L2-type metric dλ between A and
B as

dλ (A,B) ≡
(
(midA−midB)2 +λ(sprA− sprB)2

) 1
2

for some λ ∈ (0,∞) and the norm of A ∈ K (R) as ‖A‖2 = (midA)2 + λ(sprA)2. The d-
metric discussed in the paper corresponds to the dλ-metric when λ = 1. It is easy to verify

10It is sufficient for our purpose to define Generalized Hukuhara difference for intervals only. It turns out that the
Generalized Hukuhara difference for intervals is the −h operation defined in Markov (1996) for generalized intervals
when applied to intervals.
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that the dλ-metric satisfies nonnegativity, identity of indiscernibles, symmetry and triangle
inequality. By choosing different values of λ, one can assign different relative importance
for the squared distance between the ranges with respect to the square distance between
the midpoints. When A and B are both intervals, the dλ-metric generalizes the well-known
Bertoluzza metric denoted as dW in Bertoluzza, Corral Blanco, and Salas (1995) if the
metric is required to be invariant to rigid motion (Trutschnig et al. (2009)). One common
choice for λ is 1/3, as it corresponds to dW when W is chosen as the Lebesgue measure. For
more discussions on different metrics on I (R), see Bertoluzza et al. (1995) and Trutschnig
et al. (2009).

B.3. Random Generalized Intervals. Let ($,�,P) be an abstract probability space.

Definition B.1. (i) A random generalized interval X : $ → K (R) is a map from the
sample space $ to the space of generalized intervals such that midX : $ → R and sprX :
$ → R are random variables; (ii) The expected value of a random generalized interval X,
denoted as EA (X) ∈ K (R), is defined as

EA (X) = EA
([

midX ± sprX
])≡ [E(midX)±E(sprX)

]
, (B.2)

whenever E(midX) and E(sprX) exist.

When sprX ≥ 0 with probability one, the random generalized interval X becomes a
random interval, which is a measurable map from $ to I (R). When X is a random interval,
the expectation defined in (B.2) agrees with the well-known Aumann expectation (Aumann,
1965). Let A be a sub-σ -algebra of �, the conditional expectation of a generalized random
interval X given A is defined accordingly as

EA (X | A) = EA
([

midX ± sprX
] | A)≡ [E(midX | A)±E(sprX | A)

]
.

We follow the approach of Fréchet (1948) to define the variance of a random generalized
interval as:

VarF (X) ≡ inf
A∈K(R)

E

(
d2
λ (X,A)

)
whenever E

(
‖X‖2

)
< ∞.

Since the expectation defined in (B.2) agrees with Fré chet expectation with respect to
the metric dλ (Körner (1997); Körner and Näther (2002)), Fréchet variance of a random
generated interval X in the metric space K (R) endowed with the dλ-metric is simplified as

VarF (X) = E

(
d2
λ (X,EA (X))

)
.
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