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THE RELATIONSHIP BETWEEN DISTANCE FORMULAE 
AND COMPACT PERTURBATIONS 

FOR REFLEXIVE ALGEBRAS 

BY 

KENNETH R. DAVIDSON 

ABSTRACT. For completely distributive CSL algebras, hyper-reflexivity 
is equivalent to a description of the compact perturbation of the algebra 
analogous to the Fall-Arveson-Muhly Theorem for nest algebras. 

The Arveson distance formula for nest algebras [2] is fundamental to the penetrating 
analysis that has been possible for these algebras. Power and I [8] showed that such a 
formula does not exist in general for the larger class of commutative subspace lattice 
(CSL) algebras. One consequence of the distance formula for nests is a pretty charac­
terization [10] of the algebra of compact perturbations of a nest algebra. Conversely, 
Andersen's analysis [1] of the compact perturbations of nest algebras lead to Larson's 
solution [14] of the 'Ringrose problem', and ultimately to our complete similarity in­
variants for arbitrary nests [5]. 

The purpose of this note is to show that for the class of completely distributive CSL 
algebras, the existence of a distance formula is equivalent to the appropriate analogue of 
the Fall-Arveson-Muhly characterization of the compact perturbation of a nest algebra. 
A lattice is completely distributive if the most general possible distributive law for lat­
tices holds (c.f. [6, § 23]). This class has proven to be the tractable subclass of all CSL's 
from a number of perspectives. For example, it is precisely this class for which the finite 
rank operators in the algebra are weak* dense [15]. The properties that we will use will 
be elaborated upon later. 

I would to thank Vern Paulsen for some discussions regarding this work. Also, I wish 
to thank Alan Hopenwasser for some useful editorial comments on an earlier version of 
this note. 

All Hilbert spaces, usually denoted fH, will be separable. The algebras of all bounded 
and compact operators are denoted by *B(?{) and 9C = ^C(^), respectively. Let L 
be a commutative subspace lattice endowed with its strong operator topology. (This is 
an intrinsic topology to the lattice, as it is equivalent to the metric topology obtained 
from any faithful, normal valuation on L.) Let C*S*(L, *B(!H)) denote the C*-algebra of 
continuous functions from L into *B(9{) endowed with the strong* topology. The ideal 
of norm continuous, compact valued functions is denoted by C*(L, 9Q. For T in <B(9{), 
let O r be the element of C%(L, ^{Oi)) given by 

Or(L) = P(L)LTP{L). 
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Here, P(L) denotes the orthogonal projection onto L. The desired distance estimate asks 
about the relationship between disuT, Alg(X)) and 

| |O r | | = sup \\P(L)LTP(L)\\. 
LeL 

Clearly, \\®T\\ < dist(7\ Alg(X)). The algebra is called hyper reflexive if there is a con­
stant C such that disuT, Alg(X)) < C|| O r | | . When L is a nest, one may take C = 1 [2]; 
for complemented CSL's, one may take C = 2 [4, 16]; but in general, there is no such 
constant [8]. From the Open Mapping Theorem, L is hyperreflexive if and only if the 
map O(T) := O7 has closed range. 

When K is compact, it is elementary that O^ is norm continuous and compact valued. 
Since the kernel of O is precisely Alg(X), <D maps Alg(£)+ 3C into C*n(L, 2Q. The Fall-
Arveson-Muhly Theorem is the converse for nests: IfO^Cisa nest, and T is an operator 
such that Q>T belongs to C*(2\£ 9Q, then T belongs to QT(fAt) = Alg(fAÔ + %, We will 
say that L has the FAM property provided that when O7 belongs to C*(L, 9Q, then T 
belongs to Alg(X) + %. 

In particular, FAM implies that Alg(X) + Ĉ is norm closed. Froelich [11] has shown 
that there are CSL's for which Alg(X) + %^ is not closed. It is always closed for com­
pletely distributive lattices [13]. The Laurie-Longstaff Theorem shows that Alg(X)n Ĉ 
is weak* dense in Alg(X). The M-ideal arguments of [9] also show that A\g(L) + Ĉ is 
norm closed, and that the natural injection 

A\g(L)/ Alg(X) H 3C ^ Alg(£) + XI <K 

is isometric. Moreover, it shows that the unit ball of Alg(X) Pi Ĉ is weak* dense in the 
unit ball of Alg(X). Thus, there is a norm one approximate identity for Ĉ in Alg(X)D ^0 
For related results, see [12]. 

Wagner [18] has shown that completely distributive CSL's are compact (cf.[7]). Arve-
son [3] generalized Voiculescu's Theorem [17] and Andersen's Theorem [1] to a com­
mon version valid for many non-separable C*-algebras. One consequence is that for 
compact CSL's, there is a norm one approximate identity for JÇ consisting of positive 
finite rank operators Rn such that 

lim \\RnP(L)-P(L)Rn\\ = 0 
n—xx> 

uniformly on L. Of course, these operators do not lie in Alg(X). We will refer to such 
a sequence as a quasi-central approximate unit for L. The commutator XY — YX will 
be denoted by [X, Y]. Most of the results just described are systematically developed in 
[6]. 

THEOREM 1. Let L be a completely distributive commutative subspace lattice. Then 
L is hyperreflexive if and only if L satisfies FAM. 

PROOF. Assume that L is hyperreflexive with distance constant C. Let T be an operator 
such that O7 belongs to C*(X, %). Let Rn be a quasi-central approximate unit for L\ and 
set Kn = RnTRn. First, it will be shown that Q>K„ converge uniformly to O7. Indeed, 

<D7 - <&Kn = PLTP- PLRnP
LTRnP - P^RnPTRnP 

= P± [PLTP - RnP
±TPRn) + 

PLRnP^T[P,Rn}+ PL[P,Rn]TPRn. 
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Clearly, the last two terms of this sum converge uniformly to 0. Since O^ is continuous 
on the compact set L, the range of O r is a compact set. Thus, the first term of the sum 
also converges to 0 uniformly. For use in proving the converse, note that if T is arbitrary, 
then the sequence O^ converges to O7 in the strong* topology. 

Now since Alg(iL) has distance constant C, we obtain 

disttT, Alg(X) + X) < inf dist(7 - Kn, A\g(L)) 

<Cinf\\&T-Kn\\ 
= 0. 

Since Alg(X) + Ĉ is closed, property FAM holds. 
Next, note that the distance constant can be defined merely by examining finite rank 

operators. Indeed, by weak* compactness, every coset of Alg(X) contains an operator 
T such that 

||r|| =dist(r,Aig(i:)). 

Without loss of generality, suppose that || 7|| = 1. Then Kn := RnTRn are finite rank, 
and 

lim \\Kn\\ = lim dist(AT„, Alg(L)) = 1. 
n—>oo n—>oo 

From the computation in the previous paragraph, it follows that the sequence O ^ con­
verges to O7 in the strong* topology, and 

lim ||Ojt || = ||Or||. 

Hence, 

1. dist(^n,Aig(i:)) dist(r, Aig(£)) 
h m rr^r~ïi = Û^TÛ • 

Assume that L is not hyperreflexive. We will construct orthogonal families of projec­
tions {En} and {Fn} in L" so that the distance constant for the distance of elements 
of En(B(?{)Fn to Alg(X) tends to infinity. Once this is accomplished, choose finite rank 
operators Kn = EnKnFn such that | | ^ | | = 1, l i n v ^ ||O^J| = 0, and 

lim d i s t ^ , Alg(£))= 1. 
n—>oo 

Set T = En>i Kn. Clearly, O7 = J2n>\ ^Kn is a norm convergent sum, and hence belongs 
to C*(X, 9Q. But if K is any compact operator, then || EnKFn\\ < 1 / 2 for n sufficiently 
large. Thus, for n sufficiently large, 

dist(7 - K, Alg(X)) > dist(£n(7 - K)Fn, Alg(iL)) 

>&st{Kn,A\g(L))-\\EnKFn\\ > l-. 

Consequently, T is not in Alg(X) + ^C, and FAM fails. 
It remains to construct the families of projections. One can build a binary tree of 

projections in L" which, at each step, splits the subspaces into two, neither of which is 
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a finite sum of atoms, so that the intersection along each infinite decreasing chain is 0 
or a minimal projection. (If L" is isomorphic to £°°(0,1) or to £°°(Q D (0,1)), this is 
easily achieved by disecting the interval into diadic subintervals. The general case just 
combines these two plans.) 

For projections in L\ let the distance constant for E(B(?{)F relative to Alg(X) be 

*<m dist(7\Alg(£)) 
(3{E,F):= sup TeEV&w supLeL\\P(L^TP(L)\\ ' 

Note that one of the four subspaces Efi^F, EfyfyF1, EL(B{0{)F, and ELrB(0<)FL 

has infinite distance constant. For if they were all bounded by a constant C, the dis­
tance constant for L would be at most 2C. Using the binary tree, construct decreasing 
sequences {En} and {Fn} so that f3(En,Fn) is infinite, and so that l\En = EQ and 
A Fn — FQ are 0 or atoms of L. Either way, (3 (Eo, FQ) = 1. 

Next, notice that (3(E^,F^) increases to /3(EQ,FQ), namely infinity. Thus it is easy 
to pick a sequence ri\ < ri2 < n^ < • • • so that 

l i m /? (E„k - Enk+X, Fnk - Fnk+] ) = o o . 
k—yoo 

This is the desired sequence. 
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