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0. Introduction. In this paper we shall derive for function fields in one variable over
finite constant fields results analogous to [1], where algebraic number fields were considered.
The ground field P will be the set of all rational functions in a given transcendent X, with
coefficients in k = GF(^), q = pr, p a prime; thus P = k{X).

The main new difficulties encountered are the possible existence of inseparable elements
in the finite extension ft/P, and also the occurrence of constant field extensions. The former
phenomenon is overcome in §1 by the device of replacing P by a suitable purely inseparable
extension K s fi for which " descent by norms " to P behaves in a reasonable manner. We
then attempt to imitate where possible the processes of [1] applied to Q.JK. The presence of
constant field extensions inevitably complicates the analysis, since the " obvious " analogue
of Cebotarev's density theorem is unexpectedly false in this case. We append to this paper a
section on the appropriate Cebotarev theorem which, we hope, will fill the gap in the literature
of this intriguing topic.

Section 2 of this paper corresponds broadly to §1 of [1], and in it we prove

THEOREM 1IA. Let G¥(qs) be the constant field ofd, a finite extension of P. Then the
number of integral ideals ofk[X] which have degree d, are prime to a given ideal n, and are norms
of fractional ideals of Cl is zero unless f divides d, in which case the number is asymptotically

B-»X-» {1 + O(J-Aco\n))} + O(qd/2. exp 2V^(n) ) (IIA)

where C(Q), A and B are positive constants depending only on £1 and P (in fact, 0 < B < 1),
the O-term is uniform for all d, n, and

\[ ..} (0.1)
P I n

while co(n) is the number of distinct prime divisors ofn.
Here, for finite divisors a in P, <5(a) = 1 if a is the Q/P-norm of some divisor of Q, and

is 0 otherwise. If H/P is the normal hull of fi/P then B can be interpreted as the relative size
in Gal H/K of a certain set of conjugacy classes (see the end of §2 for precise details).

A rather deeper problem is that of finding the number of polynomials a(X) of degree
rf=0(mod/) which are Q/P-norms of elements of Q; as in the corresponding problem
in [1] we are led to the use of class-field theory in order to obtain the solution. (A convenient
general reference for the classical treatment of class-field theory for function fields is F. K.
Schmidt [2].)

In §3 we obtain the following result.
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58 S. D. COHEN AND R. W. K. ODONI

THEOREM IIB. There exists a certain abelian extension Gl*jQ. of finite degree, involving
a constant field extension of degree F, say, with the following properties:

(a) if d is a large multiple offF, then the number of polynomials in X of degree d which
are Q/P-norms of elements ofil, and are prime to n, is asymptotically

qd d"-1

M n " ' C ( f i ) pjSTTjq {1 + O(co\n)d-A)} + Otf* exp (2y/dco(n))) (IIB)

where K is the number of non-zero elements of GF(q) which are Cl/P-norms and A' is positive;
(b) if d is not a multiple offF, the number in question is only

B- 1~A'. co4(n)) + O(qd<2 exp (2Vdco(n))).

In Theorem IIB the constants involved in the 0-symbols may be taken uniform in
d and n. The reader is invited to note the curious influence of the constant field extensions
in Theorems IIA and IIB.

In §4 we obtain results resembling those of [1, §3]; we define the Farey section SF(p) of
order D in P to be the set of all reduced fractions a{X)jb{X) with b(X) monic and
dega(X) < degb(X) ^ D. If Jf is the set of Q/P-norms of elements of fl, it is natural to call
card ^ ( D ) n ^ / c a r d F(D) the Farey density of J/~. A straightforward imitation of [1, §3]
then yields

THEOREM IB. If D -> oo through multiples off, we have

Z»2(1 ~B) card &(B)r\Jf \<&xd &(U) -> a positive limit (IB)

(with B as in Theorem IIA).
We do not include an analogue of Theorem IA of [1], leaving the formulation and proof

to the interested reader.
We are indebted to Professor D. Rees of Exeter University foi some helpful remarks in

connection with §1 of this paper.

1. Lifting the ground field. We allow the possibility that Q/P be inseparable, and we wish
to assess the damage thus inflicted. We prove two straightforward lemmas which enable us
to remove the inseparability.

LEMMA 1.1. Let F be a perfect field of characteristic p # 0. IfX is an indeterminate and £2
is a finite extension of F{X) of degree of inseparability p', then £2 = KS, where K= F(X" ')
and S is the maximal subfield ofQ. separable over F(X); in particular Q/K is separable.

Proof. We write H = F(X), x"' = X. Then K = H{x). We assert that KQIK is separable.
Indeed, let coeCl, so that cop'eS and top' satisfies a separable equation £aJ(X)a*'p' = 0,
where we may assume aj(X)eF[X]. Since F is perfect, we have aJ{X) = (a*(x))pl, where
a*(x)eK. Then £a*(x)<jy = 0 is a separable equation for co over K.

Now KQ. is purely inseparable over S, whence also over KS, while, as KQ/K is separable,
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NORM SUBGROUPS OF GLOBAL FIELDS 59

so is KSl/KS. We deduce that KQ = KS, whence n £ KS. But [Q : S] = p' = [KS : S],
since KnS = // . We deduce that Q. = KS, and that n/^T is separable.

Let us now assume that F = k = GF(<jr) and, as before, let xp' = X. Then K = P(x).
We consider the norm map N : K* -> P*. It is obtained by taking £ to l;pl, ZeK*, and so N
is bijective. Further, the norm map from fractional ideals of k[x] to those of k[X] is bijective
and, in fact, degree-preserving.

We may deduce

LEMMA 1.2. The fractional ideal (f(X)) in P is the Q/P-norm of some fractional ideal ofCl
if and only if the fractional ideal (/(A')p~') in K is the Q/P-norm of some fractional ideal ofil.
Similarly, g(X)eNn/P(Cl*) if and only if(g(X))""eNn/K(Q*).

Since g(X) as a rational function of Xhas the same net degree as {g{X)}p'i as a rational
function of x, we now see that we need only work with Q/K rather than fi/P in the sequel,
and we shall do so.

NOTATION FOR §2 ONWARDS

p, q —finite prime divisors in K or, occasionally, the corresponding prime ideals
ofA:[x].

a, b, n—finite divisors of K.
a —any divisor in fi with Na/Ka = a.
k -GF(<7).
Nc(o)—normaliser in G of aeG.
ordcff—order of a with respect to G.
a>(n) —number of distinct prime divisors of n.

2. Norms of fractional ideals. Our aim here is to prove Theorem IIA, and thus we need
to obtain an asymptotic expansion for £ <5(a), where <5(a) = 1 or 0 according as or not the
.K-fractional ideal a is the Q/Ar-norm of some Q-fractional ideal, and the sum is taken over
all integral ideals of degree d which are prime to n. Our approach will be based on an analysis
of the " Dirichlet series "

/(n;t)= £ W'^ltlKq-1. (2.1)
a integral
( a , n ) = 1

We observe first (c.f. [1, Lemma 1.1]) that the function 8 is multiplicative, i.e. if a and b
are coprime fractional ideals in K, then <5(ab) = (5(a)<5(b). Thus, for l ^ ^ " 1 , we have
" Euler products"

(2.2)
where

II { d 2 2 d 8 P + . . .} (2.3)
p|n

and

(2-4)
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60 S. D. COHEN AND R. W. K. ODONI

The rational function AJt) has no poles or zeros in 11 \ < 1 and thus any singularities possessed
by/(n, t) for 111 < 1 must be due to f{t). We now analyse/(/) and its analytic continuations
when t is small. The product (2.4) shows that/(O has no zero or pole for 11 \ < q'1, so we
may take logarithms, obtaining

log/(0=Elog(l+<5(p)tde8P+<5(p2)f2degp +.. .) , \t\<q~\ (2.5)
p

Using a little care, especially when q is small, we see that irreducibles p for which
8(p) =0 contribute to (2.5) a term which is regular and bounded by log(l/l — q~2s) for
|f| ^ q~*~e (for any e > 0). It follows that any singularity of log/(0 or its analytic con-
tinuations which occur in \t\ <q~i~e must be due to the term

L (2-6)
i(p) = 1 J- —«

By expanding the logarithms in (2.6) in powers of t we obtain

(2.7)
p

for small t, where A(t) is regular and \A(t)\ < Clog -^(C absolute) for 11\ ̂  q~*~'.

Let U/K be the Galois hull of CI/K; then the condition 5(p) = 1 (for unramified p) is

equivalent to the Frobenius class I 1 consisting only of elements (regarded as transitive
V P /

permutations on the conjugates of a primitive element of £l/K) whose cycle patterns have
cycle lengths with highest common factor unity (c.f. [1, §1]). Let A be the set of cycle patterns
with the latter property. Then, by (A3) of the appendix (with L = H), we obtain

for small t, where GF (qh) is the constant field of Q and G$ = [j G], all notations of the
appendix being preserved. x e A

Let G F ^ ) = kf be the constant field of Q, and suppose h =fg. If <5(p) = 1, then p
must be a norm from Kkt, and this clearly implies degp = 0(mod/). Hence, writing
Bd = card G^/card Gdf for each divisor d of g, we find from (2.7) and (2.8) that

log/(0 = C(0+ t B{mtg)t""q»"lmf (2.9)
m = 1

where C(t) is regular and Oq I — J for 111 ^ q~i~e.

By elementary manipulations involving the Mobius function fi(n), we can write

I B(m,g)r'q""lmf= ^Y1-! B'4%S r W w (2-10)
m = l J w\gwi\w \ « / J H l
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for small t. Using (2.9) and (2.10) we thus have

f{t) = £(() [ I (tfw-q-fw)-lfwrll*<"B^w"') (2.11)
w Iff

where E(t) is regular, non-zero and OqI exp — I for 111 ^ q~^~e.

Now if r | # and £ is a primitive rth root of unity, then the net exponent to which the factor
(tf — Cq~*) occurs in (2.11) is

C, = - r 1 Z w"1 £ BdKw/d) = - T 1 £ £, £ w-V(w/d); (2.12)
w d | w d | g w | 9

r | w | 9 r, d | w

in particular, if r = 1, we have

^ (2.13)

where </> is Euler's totient function. We now show that Ca is the dominant exponent in (2.11).

LEMMA 2.1. Cr> Cx provided r>\.

Proof. The numbers Bd are all non-negative. Thus (2.12) implies

-fCr^%Bd\ X w"V(w/d)| (2.14)
d\g w I o

r, d | w

with strict inequality should any of the inner sums for which Bd > 0 be negative. However,

r,d\w

where rx = rj{r, d) and M is the largest divisor of g\dr± prime to rt. Since

ss 4>(gld)/d,

we have Cr ^ Cx by (2.13) and for equality we need that ^ ( r j = 1 for all d\g with Bd > 0.
Further, for such d we also need n{r^4>{^)lridM = ${g\d)\d which implies rx = 1. Hence
r|rffor each c?|# with 2?,, > 0. However, B^ ^ 0, since Gy contains elements involving
1-cycles (c.f. [5, (5.3)]).

We now imagine the /-plane cut along the radii arg* = argco, coh = 1, 11\ ̂  q~l. Let ^
be the anticlockwise circle | / | = q~e~*, indented by lacets around each branch cut. It is
clear that £ 5(a) = 0 unless f\ d, and that in general

deg a = d

E «5(a) = - ^ f / ( 0 r 1 - " & (2.15)
dega = d ^lj<g

We now assume t h a t / | d. The contribution to the right-hand side of (2.15) due to parts
of # other than the lacets is readily seen to be OJexp-Jd. qd/2), by taking qe = 1 +d~* so that
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62 S. D. COHEN AND R. W. K. ODONl

E = (loggrf*)"1. Each lacet corresponding to an/th root of unity contributes

d-1)} (2.16)

where B = — C\ > 0 and C(Q) > 0; this is obtained from a straightforward argument involv-
ing beta- and gamma-functions. The remaining lacets contribute Oq(q

dd~l+B*) + Oq(q
d. d~1),

where B* = max { — Cr}.

We now identify the exponent B which, by (2.13), is B = (fg)~l £ Bd<j)(gld). We have
_ d | 9

card Gif = <j>(g I d) card G/fg by simple Galois theory, G being Gal £l/K (c.f. [5, Lemma 1]).

Consequently, from (2.8), B — —-— Y cardG^-, i.e. B is the proportion of elements of G
card G d\g

of cycle pattern belonging to A, since <5(p) = 1 implies that p splits in Kkf. This is precisely
what one would expect from [1].

Finally, Theorem IIA now follows on replacing /(<) by /(n, /) in the above analysis.
We need the following bounds on the size of | ijt) |:

if \t\ = q~1 then |An(01** < feco(n)2 (2.17)

where k depends at most on q; and

if | f | g g ~ * then |Xa(t)\± 1 < k'exp2Vai(n) (2.18)

where k' depends at most on q. Both (2.17) and (2.18) arise from extravagant estimation
applied to (2.3), using the trivial fact that there are qr integral ideals of degree r in k[x).
These estimates are applied in assessing the contribution to the contour integral analogous
to (2.15) of the minor singularities and the portion with | /1 = q~i~e.

3. Integral ideals which are norms of principal fractional ideals. Let oo denote the valua-
tion of K obtained by assigning to f(x)lg(x) the value deg g(x) - deg/(x). By abuse of language
and notation, we use oo also to denote the divisor £ V taken over all valuations V (of a given
extension field) which extend oo. We now consider in Q. the group Si of all divisors, and in
it the subgroup ©" consisting of those divisors prime to oo. There is a natural surjection
<j): 3) -»®°° obtained by " forgetting components at oo ". We define a subgroup ^ of ^°°
as follows: the divisor de®00 is in <§ if and only if Nn!KA = Na/K<j>(diva) for some aefi*,
where diva is the " divisor of poles and zeros " of a. It is clear that # contains all div/J
where ft = l(modoo), i.e. F(jS-l) > 0 for all F/oo. We assert that (©" : ^) is finite; it is
enough to show that ^ contains a divisor of non-zero degree. Choose yeQ* such that
V(y) = 1 for all F/oo. (This is possible by the approximation theorem, since only finitely
many V\oo.) Then 0(div}>) = £ V(y). V and so deg<£(divy) =deg(divy)- £ degJ / <0 .

KJoo K/oo

Since 4>(d\\y)e^, the result follows.
Corresponding to the quotient ^ " / ^ (whose conductor divides oo) there is a classfield

extension Q#/Q ramified at most at oo. In terms of fractional ideals in Q, we can say interpret ^
as " the set of all fractional ideals 91 in Q such that NSi/K'H = Nn/K((a)) for some

https://doi.org/10.1017/S0017089500003037 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003037


NORM SUBGROUPS OF GLOBAL FIELDS 63

This is allowable by the canonical correspondence between fractional ideals and divisors
in 3™. Thus we have to some extent preserved the analogy with [1]. If Q/K were normal,
then Gl*/K would be normal, since <& is invariant under all ^T-automorphisms of Cl; further
we would have Gal Q#/Q contained in the centre of Gal £l*IK, by an easy argument. When
Cl/K is not normal, we consider instead the extension D^/H, obtained as classfield to the par-
tition in H given by BK modulo those d e ^ " such that NnIK& = JVn/K$(diva) for some
<xeU*. The transitivity of the norm shows that HQ# £ U*. Then Gal U*/TKl# is a normal
subgroup of Gal H^/H which is itself in the centre of Gal U*/K. It follows that U£l#/K is
normal (c.f. [1, p. 164]).

We wish to obtain an asymptotic expansion for £ ' 1 taken over all integral ideals of
degree d which are norms of principal fractional ideals of Q. Clearly (5(a) = 1 for all such
integral ideals a. Let % run through all characters of ©"/^; then the indicator <50(

a) for norms
of principal fractional ideals is clearly

where a is any fractional ideal in fi with N& = a, and we have identified
of fractional ideals. It follows that

with

The

the group

(3.2)

(3.3)

function

(3.4)

(3.5)

/o(0= I 5o(a)tdcg" = — i
a integral \J& • v) x

where
f(t,X)= £ S(*)t*°"X(&) for \ t \ K q ~ 1 .

a integral

We now proceed to analyse the singularities of the various f(t,
5(a)x(&) is multiplicative, so that, for 111 < q'1,

fit, X) = El {1 +<5(P)x(l»'degP+ • • •}
p

and so
log/(r, X) = I <5(P)X(P)'deg p + G(t, X)

p

where G(t, x) is regular and | G(t, x) \ < Clog- -^ for 11 \ < q'**' (c.f. (2.7)).

We assert that 8(f)x($) is a class function ofT = Gal U£l#/K; that is, if p and q are
unramified prime divisors of K with the same Frobenius conjugacy classes in T, then
<5(p)x(fO = ^(q)x(q)- First, it is obvious that <5(p) = <5(q) in these circumstances, since Gal U/K
is a quotient of I\ Now assume that (5(p) = 1 = <5(q). It is possible to choose p to contain
only primes lying over p (and to do the same for q). If the Frobenius classes of p, q are the

PI#IK~\ YTXl#IK~]
—— = —-— , where the 3Pt, .2; are the divisors
™i J L ®t J

of p, q in Hii*. Thus — = ——— for each i, so that the Artin symbols ( —— 1

https://doi.org/10.1017/S0017089500003037 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003037


64 S. D. COHEN AND R. W. K. ODONI

and ( — I coincide. Hence so do x(p) and x(q), since the decomposition types of p, q in Q

are the same (indeed, _ = _ for each /)•

We now see that the behaviour of Y <5(p)x(p)'deg p can be examined by means of (A2) of
the appendix. For a character x of ©°°/^ we let <£(p) = <5(p)z(f>), and also write <j)(a) =

whenever aei — j . Let GF(q') be the constant field of L = f2Q#. Then, by A2, the

function £<Kp)rd<!BP has at f = q~'A (A' = 1) a logarithmic singularity

! ) des Sl(o) . log - J - r j (3-6)

where GF (<7A(<T)) is the constant field of L", the fixed field of a, and 2T(<x) is any divisor in L"
(LIIf\

whose Artin symbol I I = u. In order that for some A' = 1 the strength of the singularity

of £ <Kp)rde8 p at t = Xq ~1 be greater than or equal to that of £ <Kp)/dee p at tf = q ~f we need
deg9I(<r)| ^ £ <5(CT) (3.7)

where we regard 5 as a class function on T (by lifting from Gal JH/K). But

| </.(ff)AA(<T)des9I(<r)| = | (5(<x) | = 5(ff)

for all creF, so the left of (3.7) at most equals the right, and equality implies

(3.8)

By considering the restriction of (3.8) to the subgroup GalL/Q, we conclude that
X(&) = /tdesa for some nF = 1, GF(<7F/) being the constant field of SI. Conversely any such
character x giv e s a c l a s s function 0 yielding equality in (3.7) for certain A. For, if <5(p) = 1,
then d e g p = / d e g p and thus £<5(p)x(p)rdegp equals X<5(p)(^1//)dC8P> i.e. f(tnuf) in the
notation of §2.

To summarise, we can now say that the functions/(f, y) are of the following types:

(a) if x(a) = AdC8a, where A/ F = 1, then

f(t,x)=KtX); (3.9)

(b) for all other x corresponding to Q*/fi, (3.5) implies that

Z s(A)log—i-rr (3-10)
A1 = I t — Aq

where|i(A)|<5of§2.

Consequently, returning to (3.2),
d (3.11)
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where //(/) has at worst singularities of the type {t — Xq~ifw as in (3.10). The proof of
Theorem HA now adapts readily to the case in hand, working from (3.11). If we wish to
handle ideals prime to n we can adjust the Euler products for the f{t, /) in the appropriate
way. Finally, to obtain Theorem IIB, we consider the relation a = Nn/K((<x)), where a is
generated by the monic a(x). The number of constant multiples of a(x) which are norms of
elements of il* is equal to the number of elements of k* (where k = GF(^r)) which are
CljK-novms, and the latter is obviously independent of a(x).

4. Norms in the Farey section. Let ^(D) be as in the introduction; its cardinality
satisfies

1 q 2 i 7 ( l + 4-1) as Z)->oo. (4.1)

We are interested in &{D)n Jr, where Jf is the set of all Nn/K(oi), aefi*. This is examined
(c.f. [1]) by decomposing #"(£>) as (J ^(b), where ^"(b), for a finite divisor b, is

d e g b g D

{a(x)jb(x); degfl(x) ^ degb, (a(x), b(x)) = I},

where b(x) is the monic generator of b. Then card#"(D) = Y card^(b), and it remains
deg b g D

to determine the latter; we deal with each card &(b) separately. Now card ̂ (b) = K card #(b),
where K is given by (IIB) and 2?(b) is the set of all divisors ab"1 where a is finite, integral,
prime to b, of degree less than deg b, and such that ab~y is the norm of a principal ideal. For
fixed b with <>(b) = 1, this set is in one-one correspondence with the set of integral a prime
to b and of degree less than deg b, for which <5(a) = 1 and x(a) = x(f>) for all characters %
of fi*/f), where a = N& and b = Nh. We deduce that

h (4-2)

where Y,' >s taken over all integral (finite) divisors a prime to b and of degree less than deg b.
a

An argument analogous to that of §3 shows that

card 9(b) = — ^ — . I " <5(a). {i + 0(<»4(b)(degb)-c)} (4.3)
yj> . J)

where £ " is taken over all integral finite a prime to b, with dega<degb and degas
degb(mod/F), the constant c being positive.

It is also clear that

£"5(a) = V £ 5 ( a ) . { l +O(o,4(b).(degb)-C)} (4.4)

where Ab is given in (IIA) and the sum £<5(a) has the restriction (a, b) = 1 lifted. We now
obtain

^ ^ } . (4.5)
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An analysis similar to that given in [1, p. 167] now yields

,,. mcard &(p)r\Jf , ,D , , ^— tends to a non-zero limit (4.6)
card^(D) v '

if D -* oo through multiples of/, that is, Theorem IB. In fact, an easy argument shows that
if D -* oo through a fixed residue class (mod/) then (4.6) still holds, although different limits
may occur for different residue classes.

Appendix. Cebotarev's density theorem for function fields. We give here some convenient
formulations of Cebotarev's density theorem. We begin with a reduction to the cyclic case:

PROPOSITION A.I. Let LjK be a finite Galois extension of function fields in one variable,
K having constant field G¥{q) and L having GF(qh). If a belongs to Gal L/K we let <<r> be
the conjugacy class which it spans, and we suppose that the fixed field L" of a has constant field

(LjL"\
GF(<?e(lT)). Then the degree deg9l(ff) of any divisor in L" with Artin symbol I I = a

determines a unique residue class prime to ///e(<r) and, for small t,

£ fdC8P= T l T ^ i £ t°W** + E(t)} (Al)
pfrK cardiVc(ff) \inL"

Frobp=<o> (L/$) = a
where NG(o) is the normaliser of a in G and | E(t) | ^ log | ZK(\ 112)|, ZK being the zeta function
ofK.

Proof. That deg2l(<r) determines a unique residue class prime to hle(a) follows by apply-
ing Artin's reciprocity theorem to L\U. The remainder of the proof of (Al) is a direct
imitation of the elegant proof of the analogous result for algebraic number fields given by
Deuring [4].

To obtain more explicit analytic information we now need to deal with the right-hand
side of (Al). This yields

PROPOSITION A.2. Let $ be a class function ofG = G&XLjK; for primes p in Kunramified
in L we write 0(p)/or 0(Frobp). Then, in the notation of Proposition Al, we have

( A 2 )

where the constant in the 0-term depends only on the genus and degree of L\K.

Proof. £ <£(p)fdeg p = £ ' 4>(p) Y. /de8"where Z ' i s t aken over a ful1 set of representa-
<<T> F r o b p = <<r>

tives of the conjugacy classes of G. Using (Al) we deduce that
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where | R | g £ | <j>(a) | log | ZK(\ t12) |. Now
ireG

where x runs through all characters of the cyclic extension L/L". The only % giving significant
singularities are those of the type x(2l) = / e g 9 1 where /i*/e(o) = 1 (see [3, pp. 64-67]), for which
L(te(a\ x) is ZLo(nt'w). We deduce that

plus terms which amount to O(log | ZK(| /12) |) + O(log | ZL°{\ t \2e(a)) |), in view of the Riemann
hypothesis for L- and Z-functions, the constants in O{...) depending at most on the genus
and degree of L\K. After some elementary rearrangement we arrive at (A2).

From (A2) we can read (if so desired) the analytical properties of Artin /.-series over K\
however, a direct application of (A2) often avoids the need to introduce these L-functions in
applications. A handy " local version " suitable for applications in which Gal L\K is regarded
directly as a transitive permutation group on the conjugates of a primitive element of LjK
is the following:

PROPOSITION A.3. Let X be a cycle pattern; we write Gd for the subset of G = GalL/A"
consisting of those a for which U has constant field GV{qd), and G^for the subset ofGd having
cycle pattern X. Then

UJ = 1cardCU+^n / 2 )

degp = n n cardG(n,fc)
Frobphps c.p.A

where the constants in 0 ( . . . ) depend at most on the degree and genus of LjK.
(A3) may be obtained either from (A2) or by generalising the arguments of Cohen [5]

and Fried [6].
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