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Abstract

We present the first class of perfect sampling (also known as exact simulation) algorithms
for the steady-state distribution of non-Markovian loss systems. We use a variation of
dominated coupling from the past. We first simulate a stationary infinite server system
backwards in time and analyze the running time in heavy traffic. In particular, we are able
to simulate stationary renewal marked point processes in unbounded regions. We then
use the infinite server system as an upper bound process to simulate the loss system. The
running time analysis of our perfect sampling algorithm for loss systems is performed
in the quality-driven (QD) and the quality-and-efficiency-driven regimes. In both cases,
we show that our algorithm achieves subexponential complexity as both the number of
servers and the arrival rate increase. Moreover, in the QD regime, our algorithm achieves
a nearly optimal rate of complexity.
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1. Introduction

We present the first class of exact simulation algorithms for the steady-state distribution of
non-Markovian loss systems. The running time of our algorithms is analyzed in the context of
many-server queues in heavy traffic; corresponding both to the so-called quality-driven (QD)
regime, and the quality-and-efficiency-driven (QED, also known as Halfin–Whitt) regime. In
both cases, we show that our algorithm achieves subexponential complexity as the number of
servers and the arrival rate increase. Moreover, in the QD regime, our algorithm achieves a
nearly optimal rate of convergence. Our contributions are the first to provide an exact simulation
methodology with satisfactory running time analysis in heavy traffic.

Exact simulation (or perfect sampling) consists in sampling without any bias from the steady-
state distribution of a given ergodic process. Coupling from the past (CFTP), introduced in the
groundbreaking paper [22], is the most common exact simulation protocol. In its canonical
form, it applies only to uniformly ergodic Markov chains [15]. A variation of CFTP, called
dominated CFTP (DCFTP) [17], allows one to apply CFTP-type ideas to obtain unbiased
samples from the steady-state distribution of ergodic processes without requiring uniform
ergodicity. A standard application of DCFTP involves constructing two stationary processes
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762 J. BLANCHET AND J. DONG

which serve as the upper and lower bounds for the process of interest and can be simulated
backwards in time from time 0. When the bounds coincide at some instant in the past, we say
that coalescence occurs. The process of interest is then reconstructed forward in time from
the coalescence position up to time 0, using the same input sequence that drives the upper and
lower bounds. The state of the process of interest at time 0 must then follow the corresponding
steady-state distribution. More generally, a coalescence time is understood as an instant in the
past from which reconstruction up to time 0 guarantees a stationary sample. A coalescence
time might be detected without the need to simulate upper and lower bound processes or have
them coincide. In fact, this is the type of strategy that we follow in this paper.

Generic DCFTP algorithms have been studied for suitably ergodic Harris chains (see, e.g.
[10], [11], and [18]). None of these algorithms apply directly to our setting as one requires
information that is not available in the models we consider (see, e.g. [10, p. 788]). The papers
[14], [17], and [19] are close in spirit to the main ideas of our paper as we take a point process
approach to the problem. However, their approach requires the use of spatial birth and death
processes (generally of Poisson-type) as the dominating processes and, as pointed out in [3,
Section 8], the complexity of the algorithms appear to increase significantly as the arrival rate
increases.

In connection to queueing models, [20] applied the CFTP idea to simulate several queueing
models, assuming either exponential or bounded service times. In [9], the authors developed a
class of DCFTP algorithms for Jackson networks (Poisson arrival and exponential service time).
Sigman [23], [24] constructed exact sampling algorithms for multi-server queues, assuming
Poisson arrivals.

We provide a practical simulation procedure that works only under the assumption of renewal
arrivals with a finite mean and service time distribution with a finite mean (in our running time
analysis in heavy traffic we impose mild additional conditions for service times). We test our
procedure numerically in Section 4.2.3; see also [4].

In order to implement our strategy for loss systems, we simulate a coupled stationary infinite
server system backwards in time. We detect coalescence by observing a time interval on which
all customers initially present in the infinite server system leave and no loss of customers occurs.
This is an unconventional application of DCFTP in the sense that we use only the upper bound
process to detect coalescence.

We summarize our contributions as follows.

(i) The design and analysis of the first exact sampling algorithm for the infinite server systems
whose running time is shown to be basically linear in the arrival rate. This is essentially
optimal, as the steady state of the infinite server systems, encoding the remaining service
time of each customer, requires on average a vector which grows linearly in the arrival
rate (see Theorem 1).

(ii) The design and analysis of the first exact sampling algorithm for many-server loss systems
under non-Markovian arrivals and in a heavy-traffic environment. In the QD regime,
where service utilization is strictly less than 100%, we show that our algorithm has
sublinear coalescence time. In the QED regime, when the service utilization converges
to 100% at a square root speed as a function of the arrival rate, we show that our algorithm
has subexponential coalescence time (see Theorems 2 and 3).

We point out that our algorithms allow us to simulate stationary renewal processes with
independent and identically distributed (i.i.d.) marks on unbounded but stable regions (having
finitely many points almost surely (a.s.)). This connection was noted in [4] for a fixed region
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Perfect sampling for infinite server and loss systems 763

(as opposed to a moving frame going backwards in time as we show here). Extensions of (ii)
to loss networks with non-Markovian arrivals can also be easily obtained; see [12, Chapter 3].

In Section 2 we introduce our notation, describe the general strategy to simulate the infinite
server system, and explain how to use it to detect coalescence for the loss system. In Section 3
we provide algorithmic details for the strategy explained in Section 2. In Section 4 we study
the running time of our algorithms.

2. Basic strategy and main results

In this section we introduce the basic strategy to simulate the systems. We also present some
results about the efficiency of our algorithms. We leave the details of the algorithms and proofs
of the results to subsequent sections.

To facilitate our explanation, we start with a formal description of the infinite server
(GI/GI/∞) system.

2.1. Description of the GI/GI/∞ system

We first introduce some notation and assumptions. LetN = {N(t) : t ∈ (−∞, 0]} be a one-
sided time stationary renewal point process. We write {An : n ≥ 1} for the times at which the
processN jumps, counting backwards in time from time 0 withAn+1 < An < 0. Furthermore,
we define Xn = |An+1 − An|. Now let {Vn : n ≥ 1} be a sequence of i.i.d. random variables
(RVs) which are independent of the processN . DefineZn = (An, Vn) and consider the marked
point process M = {Zn : n ≥ 1} ∈ R

2 which we call the ‘arriving customer stream’. More
specifically, we consider customers arriving to the system according to a renewal process with
i.i.d. interarrival times Xn. Independent of the arrival process, their service requirements Vn
are also i.i.d.

In Figure 1 we elaborate on the point process description of the infinite server system, which
is important for describing our simulation strategy. The point Zn = (An, Vn) denotes the nth
customer (counting backwards in time), whose arrival time isAn and service requirement is Vn,
n = 1, . . . , 4. One important feature of the infinite server system is that every customer starts a
service immediately upon arrival (there is no queue). If we project Zn to the horizontal axis by
drawing a −45° line, then the intersection of this diagonal line with the horizontal axis is the
departure time of the nth customer. We follow the technical tradition that an arrival at time t is
counted in the system (closed circle) while a departure at time t is not counted (open circle).
We can also draw a vertical line at any t ∈ R. The height of the intersection of the −45° lines

Figure 1: Point process description of an infinite server system.
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764 J. BLANCHET AND J. DONG

emanating from the points Zn with An ≤ t , and such a vertical line, if positive, represents the
corresponding remaining service time of that customer at time t .

We write G(·) = P(Xn ≤ ·) for the cumulative distribution function (CDF) of Xn, where
P(·) is the nominal probability measure, and write Ḡ(·) = 1−G(·) for its tail CDF. Similarly,
we write F(·) = P(Vn ≤ ·) as the CDF of Vn and F̄ (·) = 1− F(·) as its tail CDF.

The following assumption is imposed throughout our discussion.

Assumption 1. It holds that EXn <∞ and EVn <∞, where E is the expectation.

Next we introduce a Markovian description of the infinite server system. LetQ(t, y) denote
the number of people in the infinite server system at time t with residual service time strictly
greater than y. Note that for fixed t , Q(t, ·) is a piecewise constant step function. If we
denote (r(1)(t), . . . , r(m)(t)) as the ordered (positive) remaining service times of customers in
the system at time t , thenQ(t, 0) = m andQ(t, y) =∑m

i=1 1{r(i)(t)>y}. We also let E(t) denote
the time elapsed since the previous arrival at time t (i.e. E(t) = t − max{An : An ≤ t}) and
W(t) = (E(t),Q(t, ·)) ∈ R

+×D[0,∞). Then {W(t) : t ∈ R} forms a Markov process which
describes the infinite server system.

Similarly, we denote WL(t) = (EL(t),QL(t, ·)) ∈ R
+ × D[0,∞) as the state of the

loss system with C servers at time t , where E
L(t) = t − max{An : An ≤ t} denotes the

time elapsed since the previous arrival, and QL(t, y) counts the number of people in the loss
system at time t with residual service time strictly greater than y. Only customers who see
less than C servers busy at arrival are admitted to the system and all admitted customers
start service immediately upon arrival. If we let (rL(1)(t), . . . , r

L
(mL)

(t)) denote the ordered
(positive) remaining service times of customers in the system at time t , then QL(t, 0) = mL
and QL(t, y) =∑mL

i=1 1{r(i)(t)>y}.
We now provide a coupling betweenW(·) andWL(·) such that E

L(t) = E(t) andQL(t, y) ≤
Q(t, y) for all y ≥ 0. In this sense, we say that WL(t) ≤ W(t). The coupling proceeds as
follows: we use same stream of customers, M (same arrival times and service requirements), to
update both systems. One can label the servers in the infinite server system, assign customers
to the empty server with the smallest label, and, by tracking only the state of the first C servers
in the infinite server system, one automatically tracks the state of the loss system. Based on
this coupling, if WL(s) = W(s) then WL(t) ≤ W(t) for t ≥ s.
Definition 1. A coalescence time is a time T < 0 at which the state of the loss system is
identified from the coupled infinite server system, i.e. WL(T ) = W(T ).
2.2. Coalescence time with a GI/GI/C/C system

As discussed earlier, the infinite server system imposes an upper bound on the coupled loss
system. A natural way to construct the coalescence time would be to define it as the first time
(going backwards in time) the infinite server system empties (assuming, say, an unbounded
interarrival time distribution, this will occur). However, this coalescence time generally grows
exponentially with the arrival rate [16]. So, instead we consider the following construction.
Let R(t) denote the maximum remaining service time among all customers in the system at
time t . And consider a random time τ < 0 satisfying

(i) R(τ) < |τ | <∞;

(ii) infτ≤t≤τ+R(τ){C −Q(t, 0)} ≥ 0, where C is the number of servers in the loss system.
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As we shall show in Section 4.2, τ can be identified, and our coalescence time is T :=
τ + R(τ). In words, everyone who was present at time τ in the infinite server system will
have left at time τ + R(τ). And since the infinite server system has less than C customers on
[τ, τ + R(τ)], the loss system is also operating below capacity C on that interval. Thus, the
infinite server system and the loss system must have the same set of customers present in the
system at τ + R(τ). From then on we can recover the state of the loss system at time 0, using
the same stream of customers as for the infinite server system on [τ + R(τ), 0].
2.3. Basic strategy and main results for the GI/GI/∞ system

Simulating the infinite server system in stationarity and backwards in time is not trivial, so
we first need to explain how to perform this task. There are two cases to be considered.

Case 1. The interarrival time has finite exponential moments in a neighborhood of the origin.
More specifically, define ψ(θ) = log E exp(θXn). There exists θ > 0 such that ψ(θ) <
∞.

Case 2. The interarrival time does not have a finite exponential moment, i.e. ψ(θ) = ∞ for
any θ > 0.

As we shall explain, we can always reduce the second case to the first one by defining yet
another coupled upper bound process via truncation. Specifically, denoteXn∧b = min{Xn, b}.
We then fix a suitably large constant b and define a coupled infinite server system with truncated
interarrival times {Xn ∧ b : n ≥ 1}. The truncation essentially speeds up the arrival process,
thus creating more congestion. By coupling, we mean that we use the same stream of customers
to update both systems, i.e. we use (Xn, Vn) to update the original system and (Xn ∧ b, Vn)
to update the truncated system. We also define the event times as the arrival times and the
departure times of the customers. Then the infinite server system with truncated interarrival
times imposes an upper bound, in terms of the number of customers in the system, on the original
infinite server system at the corresponding event times. Precisely, the event times are defined as
An =∑n

i=1Xi andAn+Vn, n ≥ 1, for the infinite server system, andAn(b) :=∑n
i=1(Xi ∧ b)

and An(b)+ Vn for the truncated infinite server system.
In what follows, we shall first concentrate our discussion on case 1, which also includes the

infinite server system with truncated interarrival times. We then explain how to carry out the
simulation for case 2.

2.3.1. Simulating the stationaryGI/GI/∞ system at time 0. We first introduce the procedure
to simulate the state of the stationary infinite server system at time 0. We note from Figure 2 that
customer Zn = {An, Vn}, with Vn ≤ |An| (outside the gray triangle region) will have left the
system by time 0. Thus, if we can find a random number κ such that Vn ≤ |An| for all n ≥ κ ,
then we can simulate the customer stream backwards in time up to κ (i.e. {Zn : 1 ≤ n ≤ κ}) to
recover the state of the system at time 0. The challenge here is that κ defined above depends on
an infinite amount of information, i.e. {Zn : n > κ}, and simulating this information takes an
infinite amount of time. We overcome this difficulty by defining a sequence of ‘record breakers’.
Then, instead of simulating the whole sequence of {Zn : n ≥ 1}, we ask only a yes/no question
defined as ‘are there any more record breakers?’. In simulation, answering this yes/no question
is equivalent to sampling a Bernoulli RV with probability of success p, which equals to the
probability that there are no more record breakers. If the Bernoulli trial is a failure, we find
the next record breaker, say at index n0, and ask again whether there will be any other record
breakers at indices larger than n0. We repeat the above process until we obtain a successful
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Figure 2: Coupling time of the infinite server system.

Bernoulli trial. Then we know that there are no more record breakers in the remaining infinite
sequence. We also locate the position (index) of all the record breakers. In what follows, we
explain how to use this ‘record breaker’ idea to simulate κ .

We start by separating the simulation of the arrival and service time processes. We write
μ = EXn and fix an ε ∈ (0, μ). Consider any random number κ finite with probability 1, but
large enough such that

An+1 ≥ n(μ− ε), Vn+1 ≤ n(μ− ε) for all n ≥ κ.
Let κ(A) be a random time satisfying An+1 ≥ n(μ− ε) for n ≥ κ(A), and κ(V ) be a random
time satisfying Vn+1 ≤ n(μ− ε) for n ≥ κ(V ). Then we can set κ = max{κ(A), κ(V )}. The
following proposition states that κ <∞ a.s. The proof is given in Appendix A.

Proposition 1. Under Assumption 1, the random number κ defined above is finite with proba-
bility 1.

As {An : n ≥ 1} and {Vn : n ≥ 1} are independent of each other, the above construction
allows us to sample {Vn : n ≥ 1} with κ(V ) and {An : n ≥ 1} with κ(A), separately. Next we
explain the basic sampling strategies for the two processes.

For {Vn}, we say a record is broken at n for n ≥ 1 if Vn+1 > n(μ − ε). We then define
J (0) := 0 and J (l) = inf{n > J(l − 1) : Vn+1 > n(μ − ε)} for l = 1, 2, . . .. We also write
γ := inf{l ≥ 1 : J (l) = ∞}. Each J (l), for 1 ≤ l ≤ γ − 1, records the positions of the
record breakers. We can set κ(V ) = J (γ −1)+ 1. We first simulate the random time J (l)s for
l = 1, 2, . . . , γ − 1, and then simulate Vn conditional on the J (l)s (see Section 3.1 for details).

For {An}, we first translate the process into a negative-drifted random walk. Specifically, we
define S̃n := n(μ − ε) − (An+1 − A1) = ∑n

i=1 Yi , where Yi = (μ − ε) − Xi+1. Note that
each Yi is i.i.d. with EYi = −ε. Denote An+1 = A1 − S̃n + n(μ − ε). If we can simulate
some random time κ∗ such that S̃n ≤ 0 for n ≥ κ∗, then |An+1 − A1| ≤ n(μ− ε) for n ≥ κ∗.
Fix any m > 0. We ask the yes/no question whenever S̃n < −m, and we say that a record is
broken at index n beyond k ≥ 0 if for n > k, Sn − Sk > m. In particular, we define �(0) := 0,
	(l) := inf{n ≥ �(l − 1) : S̃n ≤ −m}, and �(l) := inf{n ≥ 	(l) : S̃n − S̃	(l) ≥ m}. Let
α := inf{l ≥ 1 : �(l) = ∞}. We note that S̃n will never go above 0 from	(α) onwards, which
implies that we can set κ(A) = 	(α). As we assume the moment generating function (MGF) of
Xn is finite in a neighborhood of the origin, the MGF of Yn is also finite around 0. We simulate
S̃n jointly with 	(l) and �(l) until α using exponential tilting and the acceptance/rejection
method (see Section 3.2 for details).
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For the heavy-tailed case (case 2), we can choose the truncation parameter b such that
E[Xn ∧ b] =

∫ b
0 Ḡ(x) dx = μ− 1/2ε. This can be achieved because we assume that EXn =∫∞

0 Ḡ(x) dx < ∞. Set ε′ = 1/2ε. Then E[Xn ∧ b] − ε′ = μ − ε. Let κ(A(b)) be a
random time satisfying |An+1(b)| ≥ n(E[Xn ∧ b] − ε′) for n ≥ κ(A(b)). Then we have
|An+1| ≥ |An+1(b)| ≥ n(μ− ε) for n ≥ κ(A(b)). Thus, we can set κ(A) = κ(A(b)).

While our algorithm works under Assumption 1 only, we impose additional mild conditions
on the service time distribution to rigorously show good algorithmic performance, especially
in heavy traffic (i.e. as the arrival rate increases).

We consider a sequence of systems indexed by s ∈ N
+. We shall say that s is the scale of the

system. We speed up the arrival rate of the sth system by scale s. That is, the interarrival times
of the sth system are given by X(s)n = Xn/s. We keep the service time distribution fixed for all
systems, i.e. the service times do not scale with s. In the following theorem we summarize the
performance of the procedure we proposed for simulating a stationary infinite server system.

Theorem 1. Assume that E[Xn] <∞, and

(i) if EV
q
n <∞ for some q > 2 then E

s
πκ = O(sq/(q−1));

(ii) if we further assume E[exp(θVn)] <∞ for some θ > 0 then E
s
πκ = O(s log s).

We prove Theorem 1(i) and (ii) by establishing two bounds for κ(A) and κ(V ), respectively.
The details are given in Section 4.1.

2.3.2. Simulating the stationary GI/GI/∞ system backwards in time. Next we extend the
procedure to simulate states of the stationary infinite server system backwards in time for time
intervals of any specified length. The construction is very similar to the single time-point (i.e.
time 0) case explained above.

Define κ0 := 1. We consider a sequence of random times κj , j = 1, 2, . . ., finite with
probability 1 but large enough such that

|An − Aκj−1 | ≥ (n− κj−1)(μ− ε), Vn ≤ (n− κj−1)(μ− ε) for all n ≥ κj . (1)

Note that Vn ≤ |An − Aκj−1 | for n ≥ κj . This implies that a customer who arrives before Aκj
will not be in the system at time Aκj−1 . Thus, using {Zn : 1 ≤ n ≤ κj }, we can recover the
system descriptorW(t) for t ∈ [Aκj−1 , 0]. See Figure 3 for more details about the construction.
Every point Zn, with n > κj , will not land in the upper triangle defined by the vertical line at
Aκj−1 and the −45° line intersecting it at the time axis (x-axis).

The κj s give us some flexibility to separate the simulation of the two processes. We first
simulate the service times and then, conditional on the sample path of the service time process,
we simulate the arrival process jointly with κj .

Define J1(0) := 1, and for k = 1, 2, . . . and l = 1, 2, . . . , γk let

Jk(l) := inf{n > Jk(l − 1) : Vn > (n− Jk(0))(μ− ε)}, γk := inf{l ≥ 0 : Jk(l) = ∞},
Jk+1(0) := Jk(γk − 1) for k = 1, 2, . . . , l = 1, 2, . . . , γk.

We first simulate the random time: Jk(l)’s for k = 1, 2, . . . and l = 1, 2, . . . , γk , and then
simulate {Vn : n ≥ 1} conditional on Jk(l)’s. See Algorithm 1 in Section 3.1 for details.

Given the sample path of {Vn : n ≥ 1} and the Jk(l)s, we next simulate {An : n ≥ 1} and the
κj s. This is done by simulating the negative-drifted random walk S̃n jointly with its running
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Figure 3: Coupling times of the infinite server system.

time maximum. Define 	1(0) := 0 and �1(0) := 0. Fix m > 0 and let

	j(l) := inf{n ≥ �j (l − 1) : S̃n − S̃	j (0) ≤ −m},
�j (l) := inf{n ≥ 	j(l) : S̃n − S̃	j (l) ≥ m}, αj := inf{l ≥ 1 : �j (l) = ∞},

κj := min{Jk(0) : Jk(0) ≥ 	j(αj )+ 1}, 	j+1(0) := κj − 1,

�j+1(0) := 	j+1(0) for j = 1, 2, . . . , l = 1, 2, . . . , αj .

Note that the process S̃n will never go above S̃	j (0) from 	j(αj ) onwards. This implies that
|An − Aκj−1 | ≥ (n − κj−1)(μ − ε) for n ≥ κj . Under the light-tail assumption (case 1), we
simulate the random times	j(l) and�j (l) for j = 1, 2, . . . , l = 1, 2, . . . , αj , and {S̃n : n ≥ 0}
by the exponential tilting and acceptance/rejection method; see Algorithm 2 in Section 3.2.

For the heavy-tailed case (case 2), we again simulate the infinite server system with truncated
interarrival times first. We carefully choose the truncation parameter b such that E[Xn∧b]−ε′,
where ε′ = ε/2 coincides with μ− ε. Then the κj (b)s we constructed for the truncated system
must automatically satisfy the conditions characterizing the κj s in (1) for the original system
as well.

2.4. Basic strategy and main results for the GI/GI/C/C system

Once we simulate the customer stream backwards in time and construct the dominating
stationary infinite server system accordingly, we can check and find the coalescence time
T = τ + R(τ), where τ is defined in Section 2.2 backwards in time. We then use the state of
the infinite server system at time T < 0 as the state of the many-server loss system at the same
time, and go forwards in time using the same stream of customers to construct the state of the
loss system up to time 0.

As in the infinite server system case, we again consider a sequence of systems indexed by
s ∈ N

+, where the arrival rate of the sth system is scaled by s and the service rate is kept fixed.
Let ρ = E[Vn]/E[Xn] (the ratio of the mean service time and mean interarrival time of the
base system). We analyze the system in two heavy-traffic asymptotic regimes. One is the QD
regime where ρ < 1 and the number of servers in the sth system Cs satisfies Cs = s. The
other regime is the QED regime, where ρ = 1 and the number of servers in the sth system Cs
satisfies s + β√s for some β > 0.

In Theorem 2 we summarize the performance of the coalescence time in the QD regime.
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Theorem 2. Assume that EXn <∞, and the Xns are nonlattice and strictly positive. We also
assume that EV

q
n < ∞ for any q > 0 and the CDF of Vn is continuous. Then E

s
π τ = o(sδ)

for any δ > 0.

Remark 1. The assumption about the existence of all moments of the service time distribution
covers a range of heavy-tailed distributions, such as Weibull and log-normal, which are known
to fit well the data in applications [8].

In Theorem 3 we analyze the performance of the coalescence time in the QED regime.

Theorem 3. Assume that EX2
n < ∞. We also assume that EV

q
n < ∞ for any q > 0 and the

CDF of Vn is continuous. Then, for large enough β, we have log E
s
π τ = o(sδ) for any δ > 0.

The main difficulty in the proof of Theorems 2 and 3 is that it involves tracking the state of
the system on a time interval rather than a single time-point. In Section 4.2 we prove the results
using a geometric trial construction. To control the variation of the path on a time interval,
for Theorem 2, we use the sample path large deviation result [7] for infinite server queues; for
Theorem 3, we apply the Borel–TIS (Borel–Tsirelson–Ibragimov–Sudakov) inequality [1] to
the diffusion limit processes of infinite server queues [21].

3. Detailed simulation algorithms

In order to provide the details of our simulation algorithms outlined in Section 2.3, we shall
first work under the light-tailed case (case 1), where we assume there exists θ > 0 such that
ψ(θ) < ∞. The extension to the heavy-tailed case (case 2) was introduced in Section 2 and
we shall provide more details in Section 3.3.

We further impose the following assumptions on our ability to simulate the service times
and interarrival times.

Assumption 2. We assume that, for x ≥ 0, F(x) is easily computable, either in closed form or
via efficient numerical procedures. Moreover, we can simulate Vn conditional on Vn ∈ (a, b]
with P(Vn ∈ (a, b]) > 0. The sampling time of Vn conditional on Vn ∈ (a, b] is assumed to be
independent of a and b.

Assumption 3. Suppose that G(·) is known and that it is possible to simulate from Geq(·) :=
μ−1

∫∞
· G(t) dt . Moreover, let Gθ(·) = E exp(θXn − ψ(θ))1{Xn≤·} be the associated expo-

nentially tilted distribution with parameter θ for ψ(θ) <∞. We assume that we can simulate
from Gθ(·).
Remark 2. Assumption 2 can be applied to virtually any model used in practice, including
distributions such as gamma, phase-type, Pareto, Weibull, Log-normal, and mixtures of them.
Knowledge of the underlying distribution is required in Procedure 1 below. Note that the
required simulation procedure is not restricted to the inversion method. One can use, for
example, the acceptance/rejection method, but a good proposal distribution for the conditional
distribution given Vn ∈ (a, b] might have to be constructed based on knowledge of the density
function to increase efficiency. Assumption 3 is applicable to models for which the MGF
is finite, these include distributions such as gamma, phase-type, hyperexponential, and other
mixtures of them.

Next we introduce our algorithm to simulate {Vn : n ≥ 1}. Conditional on the sample path
of {Vn : n ≥ 1}, we then explain how to simulate {An : n ≥ 1} together with the κj s.
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3.1. Simulation of {Vn : n ≥ 1} and the Jk(l)s for k = 1, 2, . . ., l = 1, 2, . . . , γk

We shall first introduce the procedure to simulate J1(l) for l = 1, 2, . . . , γ1. Recall that the
J1(l)s keep track of all the record breakers, {n : Vn > n(μ−ε)}. Letp(n) = P(V1 > n(μ−ε)).
Then P(J1(l) = ∞ | J1(l−1) = k) =∏∞

n=k+1(1− p(n)), which is the probability that after k
there are no more record breakers (i.e. a success of the Bernoulli trial occurs), and it is the product
of infinitely many terms. We do not know how to evaluate the infinite product exactly. However,
we can find a sequence of upper bounds and lower bounds of P(J1(l) = ∞ | J1(l − 1) = k)
denoted by the g(h)s and f (h)s for h > k, respectively, such that

f (h) < f (h+ 1) < · · · < P(J1(l) = ∞ | J1(l − 1) = k) < · · · < g(h+ 1) < g(h),

and limh→∞ f (h) = limh→∞ g(h) = P(J1(l) = ∞ | J1(l− 1) = k). For U ∼ uniform[0, 1],
we can then determine whether the Bernoulli trial is a success (U ≤ P(J1(l) = ∞ | J1(l−1) =
k)) or a failure (U > P(J1(l) = ∞ | J1(l − 1) = k)) by checking if U < f (h) or U > g(h)

for some h > k. As

h∏
n=k+1

(1− p(n)) ≥ P(J1(l) = ∞ | J1(l − 1) = k)

≥
h∏

n=k+1

(1− p(n)) exp

(
−2

∫∞
h

P(V1 > ν) dν

μ− ε
)
, (2)

the upper bound is easily obtained by truncating the infinite product up to finitely many terms,
i.e. g(h) =∏h

n=k+1(1− p(n)). For the lower bound, let

u(h) := exp

(
−2

∫∞
h

P(V1 > ν)

(μ− ε) dν

)

then, we have f (h) = g(h)u(h). Moreover, it is easy to check that

g(h)− g(h− 1) = p(h)
h−1∏
i=k
(1− p(i)) = P(J1(l) = h | J1(l − 1) = k).

Thus, if g(h+ 1) < U < g(h), we can also claim that J1(l) = h+ 1. The ‘sandwiching’ idea
just described is the key in Procedure 1 introduced below.

Procedure 1. (Simulate J1(l) given J1(l − 1) = k.) 1. Initialize h = k + 1, g = 1 − p(h),
and f = gu(h). Simulate U ∼ unif[0, 1].
2. While f < U < g, set h = h+ 1, g = g(1− p(h)) and f = gu(h).
3. If U ≤ f then J1(l) = ∞. Otherwise, J1(l) = h.

The following lemma guarantees the finite termination of Procedure 1.

Lemma 1. If EV1 <∞ then

P(J1(1) = ∞) =
∞∏
n=1

(1− p(n)) ≥ exp

(
− cEV1

μ− ε
)
> 0 (3)

for some c > 0, depending on the value of p(1), thus, Eγ1 ≤ exp(cEV1/(μ− ε)) <∞.

https://doi.org/10.1239/aap/1444308881 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1444308881


Perfect sampling for infinite server and loss systems 771

Proof. We have

P(J1(1) = ∞) =
∞∏
n=1

(1− p(n))

≥
∞∏
n=1

exp(−cp(n))

≥ exp

(
− c

μ− ε
∫ ∞

0
P(V1 > ν) dν

)

= exp

(
− cEV1

μ− ε
)
.

For l = 2, 3, . . ., conditional on J1(l − 1) = k,

P(J1(l) = ∞ | J1(l − 1) = k) =
∞∏

n=k+1

(1− p(n))

≥ exp

(
−c

∫∞
k

P(V1 > ν) dν

μ− ε
)

≥ exp

(
− cEV1

μ− ε
)
.

Thus, γ1 is stochastically dominated by a geometric RV with parameter

p = exp(−cEV1/(μ− ε)).
The result then follows.

The simulation of Jk(l) for k = 1, 2, . . . , l = 1, 2, . . . , γk is very similar to Procedure 1.
Let pk(n) = P(V1 > n(μ − ε) | V1 ≤ (n + Jk(0) − Jk−1(0))(μ − ε)). Then, following the
same argument leading to (3) and (2), we have P(Jk(1) = ∞) > 0, and, for h > n,

h∏
i=n+1

(1− pk(i))

≥ P(Jk(l)− Jk(0) = ∞ | Jk(l − 1)− Jk(0) = n)

≥
h∏

i=n+1

(1− pk(i)) exp

(
−2

∫∞
h

P(V1 > ν | V1 ≤ ν + (Jk(0)− Jk−1(0))(μ− ε)) dν

μ− ε
)
.

Let uk(h) := exp(−2
∫∞
h

P(V1 > ν | V1 ≤ ν + (Jk(0) − Jk−1(0))(μ − ε)) dν/(μ − ε)). We
now propose a modification of Procedure 1 that allows us to simulate Jk(l) conditional on
Jk(l − 1)− Jk(0) = n.

Procedure 2. (Simulate Jk(l) given Jk(l − 1) − Jk(0) = n.) 1. Initialize h = n + 1, g =
1− pk(h) and f = guk(h). Simulate U ∼ unif[0, 1].
2. While f < U < g, set h = h+ 1, g = g(1− pk(h)), and f = guk(h).
3. If U ≤ f then Jk(l) = ∞. Otherwise, Jk(l) = Jk(0)+ h.
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Based on Procedure 2 and our previous analysis we have the following algorithm.

Algorithm 1. (Sample the Vns jointly with the Jk(l)s.) Step 0. Set J0(0) = −∞, J1(0) = 1,
k = 1, and l = 1. Simulate V1 according to its nominal distribution.

Step 1. Simulate Jk(l) conditional on the value of Jk(l − 1) using Procedure 2.

Step 2. If Jk(l) = ∞, set γk = l, Jk+1(0) = Jk(γk − 1), k = k + 1, l = 1 and go back to
step 1. Otherwise, go to step 3.

Step 3. Simulate Vn for Jk(l−1) < n < Jk(l) by conditioning on Vn ≤ (n−Jk(0))(μ−ε) and
simulate VJk(l) by conditioning on (Jk(l)−Jk(0))(μ−ε) < VJk(l) ≤ (Jk(l)−Jk−1(0))(μ−ε).
Set l = l + 1 and go back to step 1.

When running the above algorithm, we specifyK as the number of intervals ([Jk(0), Jk(γk−
1)]) we want to simulate. We then run Algorithm 1 from k = 1 until k = K . The program will
give us {Vn : 1 ≤ n ≤ JK(γK − 1)} and Jk(l) for k = 1, 2, . . . , K , and l = 1, 2, . . . , γk .

3.2. Simulation of {An : n ≥ 1} and the �j(l)s, �j (l)s for j = 1, 2, . . ., l = 1, 2, . . . , αj

Given the sample path of {Vn : n ≥ 1}, we shall first explain how to simulate the 	j(l)s
and �j (l)s sequentially and jointly with the underlying random walk {S̃n : n ≥ 1}. We then
simulate A1 according to Geq(·) and set An+1 = A1 + n(ε − μ) − S̃n. The methodology
in this section follows closely those in [6] and [13]. The same procedure can be used to
simulate a negative-drifted random walk S̃n, together with its running time maximum defined
as maxk≥n {S̃k}.

Let Fn = σ {Y1, Y2, . . . , Yn} denote the σ -field generated by the Yj s up to time n. Define
Tξ := inf{n ≥ 0 : S̃n > ξ} for ξ ≥ 0. Then, by the strong Markov property, we have for
1 ≤ l ≤ αj , P(�j (l) = ∞ | F	j (l)) = P(�j (l) = ∞ | S̃	j (l)) = P(Tm = ∞) > 0. It is
important then to note that P(αj = k) = P(Tm < ∞)k−1

P(Tm = ∞) for k ≥ 1. In other
words, αj is geometrically distributed. The procedure that we have in mind is to simulate each
stage 	j(αj ) in time intervals, and the number of time intervals is precisely αj .

Let ψY (θ) = log E exp(θYi) be the log of the MGF of Yi . As we assume ψX(θ) is finite in
a neighborhood of the origin, ψY (·) is also finite in a neighborhood of the origin. Moreover,
EYi = ψ ′Y (0) = −ε and var(Yi) = ψ ′′Y (0) > 0. Then, by the convexity of ψY (·), one
can always select ε > 0 sufficiently small so that there exists η > 0 with ψY (η) = 0 and
ψ ′Y (η) ∈ (0,∞). The root η allows us to define a new measure Pη based on exponential tilting
so that

dPη

dP
(Yi) = exp(ηYi).

Moreover, under Pη, S̃n is a random walk with positive drift equal to ψ ′Y (η) [2]. Therefore,
Pη(Tξ <∞) = 1 and q(ξ) := P(Tξ <∞) = Eηexp(−ηS̃Tξ ) for each ξ ≥ 0.

Based on the above analysis, we now introduce a convenient representation to simulate a
Bernoulli RV J (ξ) with probability of success q(ξ), namely,

J (ξ) = 1{U≤exp(−ηS̃Tξ )}, (4)

where U is a uniform RV independent of everything else under Pη. Sampling {S̃1, . . . , S̃Tξ }
conditional on Tξ <∞, as we shall explain now, corresponds to basically the same procedure.
First, let us write P

∗(·) := P(· | Tξ <∞). The following result provides an expression for the
likelihood ratio between P

∗ and Pη.
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Lemma 2. We have

dP
∗

dPη
(S̃1, . . . , S̃Tξ ) =

exp(−ηS̃Tξ )
P(Tξ <∞) ≤

1

P(Tξ <∞) .

Proof. We have

P(S̃1 ∈ H1, . . . , S̃Tξ ∈ HTξ | Tξ <∞) =
P(S̃1 ∈ H1, . . . , S̃Tξ ∈ HTξ , Tξ <∞)

P(Tξ <∞)

=
Eη[exp(−ηS̃Tξ ) 1{S̃1∈H0,...,S̃Tξ ∈HTξ }]

P(Tξ <∞) .

The previous lemma provides the basis for a simple acceptance/rejection procedure to
simulate {S̃1, . . . , S̃Tξ } conditional on Tξ < ∞. More precisely, we simulate {S̃1, . . . , S̃Tξ }
from Pη(·). Then one generates a uniform RV U independent of everything else and accept the
proposal if

U ≤ P(Tξ <∞)dP
∗

dPη
(S̃1, . . . , S̃Tξ ) = exp(−ηS̃Tξ ).

This criterion coincides with J (ξ) according to (4). So the procedure above simultaneously
obtains both a Bernoulli RVJ (ξ)with parameter q(ξ), and the corresponding path {S̃1, . . . , S̃Tξ }
conditional on Tξ <∞ under P(·) if J (ξ) = 1.

As E[Yi] = −ε < 0, by the strong law of large numbers, we have 	j(l) < ∞ a.s. for
j = 1, 2, . . . and l = 1, 2, . . . , αj . Next we define q̄(ξ) := 1 − q(ξ) = P(Tξ = ∞) and
P
′(·) := P(· | Tξ = ∞). The following result provides an expression for the likelihood ratio

between P
′ and P.

Lemma 3. We have

dP
′

dP
(S̃1, . . . , S̃n) =

1{Tξ>l} q̄(ξ − S̃n)
P(Tξ = ∞) ≤ 1

P(Tξ = ∞) .

Proof. We have

P(S̃1 ∈ H1, . . . , S̃n ∈ Hn | Tξ = ∞)

= P(S̃1 ∈ H1, . . . S̃n ∈ Hn, Tξ = ∞)
P(Tξ = ∞)

= E[1{S̃1∈H1,...,S̃n∈Hn} 1{Tξ>n} P(Tξ = ∞ | S̃1, . . . , S̃n)]
P(Tξ = ∞) .

The result then follows from the strong Markov property and homogeneity of the random walk.

We shall apply acceptance/rejection to a sample from P
′. According to Lemma 3, to sample

{S̃1, . . . , S̃n} given Tξ = ∞, we propose from the original (nominal) distribution and accept
with probability q̄(ξ − S̃n) as long as S̃j ≤ ξ for all 0 ≤ j ≤ n. In order to perform the
acceptance/rejection step we need to sample a Bernoulli with parameter q̄(ξ − S̃n), but this can
be easily done using (4).

Consider 0 ≤ ξ1 < ξ2. We define P
o(·) := P(· | Tξ1 <∞, Tξ2 = ∞). The following result

provides an expression for the likelihood ratio between P
o and Pη.
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Lemma 4. We have

dP
o

dPη
(S̃1, . . . , S̃Tξ1 ) =

exp(−ηS̃Tξ1 )q̄(ξ2 − S̃Tξ1 )
P(Tξ1 <∞, Tξ2 = ∞)

≤ 1

P(Tξ1 <∞, Tξ2 = ∞)
.

Proof. We have

P(S̃1 ∈ H1, . . . , S̃Tξ1 ∈ HTξ1 | Tξ1 <∞, Tξ2 = ∞)

=
Eη[1{S̃1∈H1,...,S̃Tξ1

∈HTξ1 }
exp(−ηS̃Tξ1 )P(Tξ2 = ∞ | S̃1, . . . , S̃Tξ1 )]

P(Tξ1 <∞, Tξ2 = ∞)
.

We again use acceptance/rejection to sample {S̃1, . . . , S̃Tξ1 } given Tξ1 < ∞ and Tξ2 = ∞.
We propose {S̃1, . . . , S̃Tξ1 } from Pη(·). Then we simulate a uniform RV U independent of all
else and accept the proposal if

U ≤ P(Tξ1 <∞, Tξ2 = ∞)
exp(−ηξ1)

dP
o

dPη
(S̃1, . . . , S̃Tξ1 ) = exp(−ηS̃Tξ1 )q(ξ2 − S̃Tξ1 ).

Based on the above analysis, we propose the following algorithm.

Algorithm 2. (Given the Vns and the Jk(l)s, sample the S̃ns together with the 	j(l)s, �j (l)s,
and κj s.) Step 0. Set 	1(0) = �1(0) = 0, S̃0 = 0, j = 1, l = 1 , ξ = ∞, and γ = −m.
Sample A1 according to Geq(·).
Step 1. Simulate S1, . . . , STγ from the original (nominal) distribution.

Step 2. If Si ≤ ξ for all 1 ≤ i ≤ Tγ , then sample a Bernoulli J (ξ − STγ ) with parameter
q(ξ − STγ ) using (4) and continue to step 3. Otherwise (i.e. Si > ξ for some 1 ≤ i ≤ Tγ ) go
back to step 1.

Step 3. If J (ξ − STγ ) = 1, go back to step 1. Otherwise J (ξ − STγ ) = 0, let 	j(l) =
�j (l − 1) + Tγ and S̃�j (l−1)+i = S̃�j (l−1) + Si for i = 1, . . . , Tγ . If j ≥ 2, set ξ =
S̃	j−1(αj−1) +m− S̃	j (l).
Step 4. Simulate S1, . . . , STm from Pη(·). Sample a Bernoulli J (ξ − STm) with parameter
q(ξ − STm) using (4) and U ∼ unif[0, 1]. Let J ∗ = 1{(U≤exp(−ηSTm)}(1− J (ξ − STm)).
Step 5. If J ∗ = 1, let �j (l) = 	j(l) + Tm and S̃	j (l)+i = S̃	j (l) + Si for 1 ≤ i ≤ Tm. Set
γ = min{0, S̃	j (0) −m− S̃�j (l)}. If j ≥ 2, set ξ = S̃	j−1(αj−1) + m − S�j (l). Set l = l + 1
and go back to step 1. Otherwise J ∗ = 0, set αj = l, κj = inf{Jk(0) : Jk(0) ≥ 	j(αj )+ 1},
	j+1(0) = κj − 1, ξ = m and continue to step 6.

Step 6. Let h = 	j+1(0)−	j(αj ). Sample S1, . . . , Sh from the original distribution.

Step 7. If Si ≤ ξ for all 1 ≤ i ≤ h, then sample a Bernoulli J (ξ−Sh)with parameter q(ξ−Sh)
using (4) and continue to step 8. Otherwise (i.e. Si > ξ for some 1 ≤ i ≤ h), go back to step 6.

Step 8. If J (ξ−Sh) = 1, go back to step 6. Otherwise J (ξ−Sh) = 0 , let S̃	j (αj )+i = S̃	j (αj )+
Si for i = 1, . . . , h. Set An+1 = A1 + n(ε − μ)− S̃n for n = 	j(0)+ 1, . . . , 	j+1(0). Set
j = j + 1, l = 1, ξ = S̃	j−1(αj−1) +m− S̃	j (0), γ = −m, and go back to step 1.

When applying Algorithm 2, we must specify K as the number of intervals ([κj−1, κj ]) we
want to simulate. We then run Algorithm 2 from j = 1 until j = K , and obtain {An : 1 ≤ n ≤
κK} and {κj : 1 ≤ j ≤ K}.
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3.3. Coupled infinite server system with truncated interarrival times

In this section we provide some additional details for simulating the coupled truncated
infinite server system with the original infinite server system.

We first explain how to simulate A1 jointly with A1(b). The equilibrium distribution of
Xn is Geq(x) =

∫ x
0 Ḡ(u) du/EXn and the equilibrium distribution of Xn ∧ b is Gbeq(x) =∫ x

0 Ḡ(u) du 1{x≤b}/E[Xn ∧ b]. Thus, we simulate A1 with CDF Geq(x). If A1 ≤ b, we set
A1(b) = A1. Otherwise if A1 > b, we keep simulatingXe with CDFGeq(x) untilXe ≤ b and
set A1(b) = Xe. In particular, we have A1(b) ≤ A1.

When simulating theXn ∧ bs from the nominal distribution, we first simulateXn with CDF
G(·) and setXn ∧ b = min{Xn, b}. Denote Yn(b) = (E[Xn ∧ b]− ε′)−Xn ∧ b and let ηb > 0
be chosen such that log E exp(ηbYn(b)) = 0. When simulating the Xn ∧ bs under exponential
tilting Pηb (·), we first simulate Yn(b) under Pηb (·) and setXn ∧ b = (E[Xn ∧ b] − ε′)− Yn(b).
If Xn ∧ b < b, set Xn = Xn ∧ b. Otherwise (Xn ∧ b = b) and sample Xn conditional on
Xn ≥ b under the nominal distribution P(·).

4. Performance analysis

In this section we analyze the running time of our algorithms. We start with the infinite
server system and then analyze the coalescence time of the many-server loss system.

4.1. Termination time for the infinite server system (proof of Theorem 1)

Theorem 1 provides the relationship between the moment of the service times and E
s
πκ .

Next, we provide a proof of Theorem 1. We shall omit the subscripts π and s when there is no
confusion for notational convenience. We first provide a proof of the light-tailed case. Recall
that κ = max{κ(V ), κ(A)}, where κ(V ) = inf{k > 1 : Vn+1 ≤ n(μ− ε)/s for all n ≥ k} and
κ(A) = inf{k > 1 : An+1 ≥ n(μ− ε)/s for all n ≥ k}. We prove the theorem by establishing
the bounds for κ(V ) (see Lemma 5) and κ(A) (see Lemma 6) separately.

Lemma 5. If EV
q
n <∞ for some q > 2, then Eκ(V ) = O(sq/(q−1)).

Proof. Let p(n) = P(V1 > n(μ− ε)/s). For sufficiently large k, we have

P(κ(V ) > k) = 1−
∞∏

n=k+1

(1− p(n)) ≤ 1− exp

(
− 2s

μ− ε
∫ ∞
k(μ−ε)/s

P(V > ν) dν

)
.

By Chebyshev’s inequality P(Vn > ν) ≤ EV
q
n /ν

q. Let δ = 1/(q − 1), then for sufficiently
large s, we have

∞∑
k=s1+δ

P(κ(V ) > k) ≤
∞∑

k=s1+δ

2s

μ− ε
∫ ∞
k(μ−ε)/s

P(V > ν) dν

≤ 2EV
q
n s

q

(q − 1)(q − 2)(μ− ε)q
∞∑

k=s1+δ

1

kq−1

= O(sq−(1+δ)(δ−2)).
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As q − (1+ δ)(q − 2) = 1+ δ,

Eκ(V ) =
∞∑
k=0

P(κ(V ) > k)

=
s1+δ−1∑
k=0

P(κ(V ) > k)+
∞∑

k=s1+δ
P(κ(V ) > k)

≤ s1+δ +O(s1+δ).

Note that when E exp(θVn) < ∞ for some θ > 0, P(Vn > ν) ≤ E exp(θ(Vn − ν)) =
E exp(θVn) exp(−θν). Similarly, as above, for sufficiently large s, we have

∞∑
k=�(2/θ(μ−ε))s log s


P(κ(V ) > k) ≤ 2E exp(θVn)

(μ− ε)2θ2

and

Eκ(V ) =
s log s−1∑
k=0

P(κ(V ) > k)+
∞∑

k=s log s

P(κ(V ) > k) ≤ s log s +O(1).

Thus, if E exp(θV ) <∞ for some θ > 0 then Eκ(V ) = O(s log s).

Lemma 6. Assume there exist θ > 0, such that ψ(θ) <∞, then Eκ(A) = O(s).
Proof. Based on Algorithm 2, we divide the proof into two parts. We first prove that the

expected number of iterations isO(1). We then prove that the expected number of steps to pass
−m or m from 0 is O(s).

Let Tξ = inf{n ≥ 0 : S̃n > ξ}. Recall that for the base system there exist η > 0 with
ψY (η) = 0 and ψ ′Y (η) > 0. The number of iterations is distributed as a geometric RV with
probability of success P(Tm = ∞) = 1− Eηexp(−ηS̃Tm).

Then for the sth system with Y si = Yi/s, we have S̃n/s > m is equivalent to S̃n > sm.
Thus, the number of iterations is a geometric RV with probability of success P(Tsm = ∞) =
1− Eη exp (−ηS̃Tsm) ≥ 1− exp(−ηsm).

Similarly, let T ′ξ = inf{n ≥ 0 : S̃n < ξ}. DefineMn = S̃n+nε, thenMn is a martingale with
respect to the filtration generated by {Y1, Y2, . . . , Yn}. As EYi = −ε < 0, P(T ′−m <∞) = 1.
By the optional sampling theorem, EMT ′−m = ES̃T ′−m + εET ′−m = 0. Thus, ET ′−m = m/ε −
E[m − ST ′−m ]/ε. Then for the sth system, we have ET ′−sm = sm/ε − E[sm − ST ′−sm ]/ε. As
(sm − ST ′−sm) converges to the ladder height distribution as s → ∞ [2] and supm E[(sm −
ST ′−sm)

p] <∞ for p > 1, ET ′−sm = O(s).
For the heavy-tailed case, we select the truncation parameter b such that E[Xn ∧ b] =

μ− 1/2ε. Then we set ε′ = 1/2ε and define κ(A(b)) as a random time satisfying

|An+1| ≥ n(E[Xn ∧ b] − ε′) = n(μ− ε) for n ≥ κ(A(b)).
As |An+1| ≥ |An+1(b)| under our coupling scheme, we can set κ(A) = κ(A(b)). By Lemma 6,
we have Eκ(A) = Eκ(A(b)) = O(s).

As κ = max{κ(V ), κ(A(b)}, we have Eκ = O(s log s). This concludes the proof of
Theorem 1.
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4.2. Coalescence time for the many-server loss system (proof of Theorems 2 and 3)

As we are simulating the process backwards in time, it is natural to define the filtration←−
H t = σ {W(−u) : 0 ≤ u ≤ t}, for which

←−
H u ⊂←−H t for 0 ≤ u ≤ t . We have τ as a stopping

time with respect to
←−
H t . Next we try to draw connections between the backward process and

some forward process. Define τ ∗ := inf{t + R(t) : supt≤u≤t+R(t){Q(u, 0)} < s, t ≥ 0}. We
have that τ ∗ is a stopping time with respect to Ht , where Ht = σ {M(u) : 0 ≤ u ≤ t}. The
stochastic process {Q(t, 0) : t ∈ R} has a piecewise constant sample path with finitely many
points of discontinuity on any finite length intervals a.s. Thus, for any fixed T > 0, we have

Pπ (τ > T ) = Pπ

( ⋂
−T≤t≤0

(
{R(t) > −t} ∪

( ⋃
t≤u≤(t+R(t))∧0

({Q(u, 0) > s})
)))

= Pπ

( ⋂
−T≤t≤0

(
{R(T + t) > −t} ∪

( ⋃
T+t≤u≤(T+t+R(T+t))∧T

{Q(u, 0) > s}
)))

= Pπ

( ⋂
0≤w≤T

(
{R(w) > T − w} ∪

( ⋃
w≤u≤(w+R(w))∧T

{Q(u, 0) > s}
)))

= Pπ (τ
∗ > T ).

The second equality holds by stationarity. We have Eπτ = Eπτ
∗.

Next we use a special construction similar to that in [5, Section 4] to prove the results for
E
s
π τ
∗. The idea is to use a geometric trial argument. We divide the time frame into blocks that

are roughly independent. If the process is well behaved (staying around its measure-valued
fluid limit) on one block, then τ ∗ is reached before the end of that block.

Let Q̄(t, y) denote the number of customers in the infinite server system that starts empty
at time 0 with remaining service time greater than y at time t ≥ 0. For convenience, we also
define Q̄u(t, y) = Q̄(u+ t, y)− Q̄(u, t + y) as the number of customers who arrive after u
with remaining service time larger than y at time u+ t .
4.2.1. Proof of Theorem 2. We first prove the theorem for the light-tailed case. The heavy-tailed
case proceeds by selecting the truncation parameter for sufficiently large b.

For the QD regime, by ‘well behaved’, we mean that the process does not deviate by δs, for
some δ > 0, from its fluid limit. In the following lemma we state that the probability of not
being ‘well behaved’ decays exponentially fast with the system scale.

Lemma 7. Assume ψ(θ) < ∞ for some θ > 0 and that the Xns are nonlattice and strictly
positive. We also assume the CDF of Vn is continuous. Then, for any δ > 0, there exist 1∗{δ} > 0
such that

P

(
Q̄(t, y) > (1+δ)λs

∫ t+y

y

F̄ (u) du for some t ∈ [0, 1], y ∈ [0,∞)
)
= exp(−s 1∗{δ} +o(s)).

The proof of Lemma 7 follows from the two-parameter sample path large deviation result
for infinite server queues in [7]. We omit it here.

Next we introduce our construction of ‘blocks’. Let l(s) = inf{y : (1+δ)s∫∞
y
F̄ (u) du ≤ 1

2 }.
We define the following sequence of random times�is: �0 := 0. Given�i−1 for i = 1, 2, . . .,
define

ri := inf{k : k ≥ R(�i−1), k = 1, 2, . . .),

z := inf{k : k ≥ l(s), k = 1, 2, . . .}, �i := �i−1 + ri + z.
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We define a Bernoulli RV ξi , with ξi = 1 if and only if

Q̄�i−1+(k−1)t0(t, y) ≤ (1+ δ)λs
∫ t+y

y

F̄ (u) du for all t ∈ [0, 1], y ∈ [0,∞)
and every k = 1, 2, . . . , ri + z.

Choose δ < 1/ρ − 1. We first check that ξi = 1 implies that τ ∗ is reached before�i . Since
ri ≥ R(�i−1), all the customers in the system at time �i−1 + ri will be those who arrive after
�i . Then ξi = 1 implies that

Q(�i−1 + ri, y) ≤
ri/t0∑
k=1

∫ kt0+y

(k−1)t0+y
F̄ (u) du

= (1+ δ)λs
∫ ri+y

y

F̄ (u) du

≤ (1+ δ)λs
∫ ∞
y

F̄ (u) du,

thus, R(�i−1 + ri) ≤ l(s).
For every t ∈ (k − 1, k], k = 1, 2, . . . , z,

Q(�i−1 + ri + t, y) ≤ (1+ δ)λs
∫ ri+t+y

y

F̄ (u) du ≤ (1+ δ)λs
∫ ∞
y

F̄ (u) du.

Thus,
Q(�i−1 + ri + t, 0) ≤ (1+ δ)ρs ≤ s for t ∈ [0, R(�i−1 + ri)].

Now let N = inf{i ≥ 1 : ξi = 1}, then Eτ ∗ ≤ E
∑N
i=1(ri + z).

We now provide a bound for E[∑N
i=1(ri + z)]. The proof is given in Appendix B.

Lemma 8. Assume ψ(θ) < ∞ for some θ > 0 and that ψN(θ) is continuously differentiable
throughout R. We also assume that the CDF of Vn is continuous and EV

q
n <∞ for any q > 0.

Then E[∑N
i=1(ri + z)] = o(sδ) for any δ > 0.

This concludes the proof of the light-tailed case. Next we extend the theorem to the heavy-
tailed case. We prove it by drawing a connection to the truncated system. Here, we carefully
choose the truncation parameter b so that the truncated systems is still operating in the QD
regime. More specifically, we choose b such that

∫∞
b
Ḡ(x) dx < 1/ρ−1.This can be achieved

since EXn =
∫∞

0 Ḡ(x) dx <∞. Then, for fixed b,, we have

ρb = E[Vn]
E[Xn ∧ b] =

EVn

EXn −
∫∞
b
Ḡ(x) dx

< 1

and E
s
π τ (b) = o(sδ), for any δ > 0, where τ(b) denote the coalescence time of the truncated

system.
Next we prove by contradiction that the coalescence in the truncated system implies the

coalescence in the original system with the same amount of information simulated. Recall
that τ(b) is a random time satisfying that the system has less than s customers at τ(b). The
maximum remaining service time among all customers in the system at time τ is denoted by
R(τ(b)). We have R(τ(b)) ≤ |τ(b)| and during R(τ(b)) units of time from τ(b) on the system
always has less than s customers. We can look for τ(b) at the departure times of customers.
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We assume that the process Q(t, y) is right-continuous with left limit, so customers departure
at time t will not be counted inQ(t, 0). Suppose that τ(b) equals the departure time of the nth
customer. Then every customer arriving between τ(b) and τ(b) + R(τ(b)) sees strictly less
than s customers (excluding him/herself) when he/she enters the system. We set τ equal to
the departure time of the nth customer in the original system, and R(τ), by definition, equals
the maximum remaining service time among all customers in the system at time τ . We have
R(τ) ≤ R(τ(b)). We claim that every customer arriving between τ and τ + R(τ) must see
less than s customers (excluding him/herself) when he/she enters the system. Suppose this
is not the case. Then there exists a customer m, 1 ≤ m ≤ n who arrives between τ and
τ + R(τ) and finds at least s customers in the system already. The customer with the same
index m must have arrived between τ(b) and τ(b) + R(τ(b)) in the truncated system and
Q(Am(b)−) ≥ Q(Am−) ≥ s. We have a contradiction. Therefore, we must have seen the
coalescence in the original system as well with the same amount of information simulated.

4.2.2. Proof of Theorem 3. For the QED regime, by ‘well behaved’, we mean that the process
does not deviate C

√
s, for some C > 0, from its fluid limit. In the following lemma we state

that the probability of both being ‘well behaved’and not ‘well behaved’are bounded away from
0.

Lemma 9. Fix any η > 0. Let ν(y) = (
∫∞
y
F̄ (u) du)1/(2+η). Assume that EX2

n < ∞ and
EV

q
n <∞ for any q > 0. Then, for any large enoughC, there exists ζ1(C) > 0 and ζ2(C) > 0

such that

P(Q̄(t, y) ≤ λs
∫ t+y

y

F̄ (u) du+ C√sν(y) for all t ∈ [0, 1], y ∈ [0,∞)) ≥ ζ1(C) (5)

and

P(Q̄(t, y) > λs

∫ t+y

y

F̄ (u) du+ C√sν(y) for some t ∈ [0, 1], y ∈ [0,∞)) ≥ ζ2(C). (6)

The proof of Lemma 9 follows from the proof of [5, Lemma 9]. Our case is actually simpler,
as we are dealing with a one-sided bound (upper bound) as opposed to the two-sided bound in
[5]. This simplification allows us to remove the light-tail assumption on the interarrival time
distribution required in [5]. We shall provide only an outline of the procedure here.

For (5), the idea is to consider the diffusion limit of Q(t, y) as a two-dimensional Gaussian
random field [21], and then invoke the Borel–TIS inequality [1].

Assume EX2
n <∞, EVn <∞, and the CDF of Vn is continuous. Pang and Whitt [21] hav

proved that for GI/GI/∞ queues with any given initial age E(0),

Q̄(t, y)− λs ∫ t+y
t

F̄ (u) du√
s

�⇒ R(t, y) in DD[0,∞)[0,∞),

where R(t, y) = R1(t, y)+ R2(t, y) is a Gaussian random field with

R1(t, y) = λ
∫ t

0

∫ ∞
0

1{u+x>t+y} dK(u, x), R2(t, y) = λc2
a

∫ t

0
F̄ (t + y − u) dB(u),

where K(u, x) = W(λu, F (x)) − F(x)W(λu, 1) in which W(·, ·) is a standard Brownian
sheet on [0,∞) × [0, 1] and B(·) is a standard Brownian motion independent of W(·, ·).
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The constant ca is the coefficient of variation of the interarrival times, i.e. ca = √var(Xn)/EXn.
We denote R̃i(t, y) := Ri(t, y)/v(y) and define the d-metric (a pseudo-metric) for i = 1, 2,

di((t, y), (t
′, y′)) := E[(R̃1(t, y)− R̃2(t

′, y′))2].

We then invoke the Borel–TIS inequality. We shall skip the verification of the conditions for
such an invocation here as it is tedious; see [5] for a detailed proof. Let S = [0, 1] × [0,∞). It
is shown in [5] that there exist constants Mi,1 > 0 and Mi,2 > 0 such that E[supS R̃i(t, y)] ≤
Mi,1 < ∞ and supS E[R̃i(t, y)2] ≤ Mi,2 < ∞. For Ci ≥ E[supS R̃i(t, y)] for i = 1, 2, it
follows that

P

(
sup
S

R̃i(t, y) ≥ Ci
)
≤ exp

{
− 1

2 supS E[R̃i(t, y)2]
(
Ci − E

[
sup
S

R̃i(t, y)
])2

}
.

Let C ≥ 2 max{E[supS R̃1(t, y)],E[supS R̃2(t, y)]}. Then

P(R(t, y) ≤ Cν(y) for all t ∈ [0, 1], y ∈ [0,∞))
≥ P

(
sup
S

R̃1(t, y)+ sup
S

R̃2(t, y) ≤ C
)

≥ P

(
sup
S

R̃1(t, y) ≤ C
2

)
P

(
sup
S

R̃2(t, y) ≤ C
2

)

> 0.

LetX0 denote the interarrival time of the first customer and V0 denote its service time. We also
denote Q̄0(t, y) as an independent infinite server process starting empty and with E(0) = 0.
Then, for large enough s, we have

P

(
Q̄(t, y) ≤ λs

∫ t+y

y

F̄ (u) du+ C√sν(y) for all t ∈ [0, 1], y ∈ [0,∞)
)

= P

(
Q̄0(t −X0, y)+ 1{V0>t+y}

≤ λs
∫ t+y

y

F̄ (u) du+ C√sν(y) for all t ∈ [X0, 1], y ∈ [0,∞)
)

≥ P

(
Q̄0(t, y)+ 1{V0>t+X0+y}

≤ λs
∫ t+X0+y

y

F̄ (u) du+ C√sν(y) for all t ∈ [0, 1−X0], y ∈ [0,∞)
)

≥ P

(
Q̄0(t, y) ≤ λs

∫ t+y

y

F̄ (u) du+ C√sν(y) for all t ∈ [0, 1], y ∈ [0,∞)
)

= P

(
Q̄0(t, y)− λs ∫ t+y

y
F̄ (u) du√

s
≤ Cν(y) for all t ∈ [0, 1], y ∈ [0,∞)

)
.
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It is easy to check that the set {f : |f (t, y)| ≤ Cν(y) for all t ∈ [0, 1], y ∈ [0,∞)} is a
continuity set. Thus, by the functional central limit theorem result in [21], we have

P

(
Q̄0(t, y)− λs ∫ t+y

y
F̄ (u) du√

s
≤ Cν(y) for all t ∈ [0, 1], y ∈ [0,∞)

)

�⇒ P(R(t, y) ≤ Cν(y) for all t ∈ [0, 1], y ∈ [0,∞))
> 0.

Inequality (6) is easy to prove as we can always isolate a point (t∗, y∗) inside S. The
projection of the process on that point possesses a Gaussian distribution. More specifically,

P

(
Q̄(t, y) > λs

∫ t+y

y

F̄ (u) du+ C√sν(y) for some t ∈ [0, 1], y ∈ [0,∞)
)

≥ P

(
Q̄(t∗, y∗) > λs

∫ t∗+y∗

y∗
F̄ (u) du+ C√sν(y∗)

)

= P

(
Q̄(t∗, y∗)− λs ∫ t∗+y∗

y∗ F̄ (u) du√
s

> Cν(y∗)
)
,

and by Fatou’s lemma

lim inf
s→∞ P

(
Q̄(t∗, y∗)− λs ∫ t∗+y∗

y∗ F̄ (u) du√
s

> Cν(y∗)
)
≥ P(R(t∗, y∗) > Cν(y∗)) > 0.

Let m(s) = inf{y : C√s(v(y)+ ∫∞
y
v(s) ds) ≤ 1

2 }. Following the same construction as
for the QD regime, we define the sequence of random times �i as �0 := 0. Given �i−1, for
i = 1, 2, . . .,

ri := inf{k : k ≥ R(�i−1), k = 1, 2, . . .),

z := inf{k : k ≥ m(s), k = 1, 2, . . .}, �i := �i−1 + ri + z.
We introduce a Bernoulli RV ξi with ξi = 1 if and only if

Q̄�i−1+(k−1)t0(t, y)≤λs
∫ t+y

y

F̄ (u) du+ C√sν(y) for all t ∈ [0, 1], y ∈ [0,∞),

and every k = 1, 2, . . . , ri + z.
Next we show that ξi = 1 implies that τ ∗ is reached before �i . Since ri ≥ R(�i−1), all the

customers at time �i−1 + ri will be those who arrive after �i . Thus, we have ξi = 1 implies
that

Q(�i−1 + ri, y) ≤
ri∑
k=1

{
λs

∫ kt0+y

(k−1)t0+y
F̄ (u) du+ C√sν((k − 1)+ y))

}

≤ λs
∫ ∞
y

F̄ (u) du+ C√s
(
ν(y)+

∫ ∞
y

ν(u) du

)
.

As
∫∞
y
F̄ (u) du decays faster than ν(y) as y grows large, for large enough s, we have

R(�i−1 + ri) < m(s).
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Table 1: Simulation results for τ (QD: λ = s, Cs = 1.2s).

s Mean 95% confidence interval

100 22.6297 [21.3381, 23.9213]
500 15.6162 [15.1791, 16.0533]

1000 15.8816 [15.4559, 16.3073]

Likewise for every t ∈ (k − 1, k] and k = 1, 2, . . . , z,

Q(�i−1 + ri + t, y) ≤ λs
∫ ∞
y

F̄ (u) du+ C√s
(
ν(y)+

∫ ∞
y

ν(u) du

)
.

Thus, when β > C(ν(0)+ ∫∞
0 ν(u) du) for t ∈ [0, R(�i−1 + ri)], we have

Q(�i−1 + ri + t, 0) ≤ s + C
(
ν(0)+

∫ ∞
0

ν(u) du

)√
s ≤ s + β√s.

Now let N = inf{i ≥ 1 : ξi = 1}. Then Eτ ∗ ≤ E[∑N
i=1(ri + z)].

Next we show a bound for E[∑N
i=1(ri + z)]. The proof is given in Appendix B.

Lemma 10. Assume EX2
n < ∞ and EV

q
n < ∞ for any q > 0. Then log E[∑N

i=1(ri + z)] =
o(sδ) for any δ > 0.

Note that our proof of Theorem 3 requires only the existence of the second moment of the
interarrival time distribution. We thus conclude the proof of Theorem 3.

4.2.3. Numerical experiment. In this section we perform some simulation experiments aimed
at verifying the running time of our algorithm measured by E

s
π [τ ] for different values of s. The

algorithms appear to have a substantially better performance in practice. In the QD regime, our
numerical experiments suggest that E

s
π [τ ] is almost bounded as apposed to growing sublinearly

with s as indicated by Theorem 2. This is because in the QD regime the stationary probability
that the queue length process is above Cs decays exponentially with the system scale s. In the
QED regime, our numerical experiments suggest a growth rate of O(

√
s) as apposed to the

subexponentially growth rate in Theorem 3. This empirical bound is intuitive, as in the QED
regime the situation when coalescence occurs is similar to the case when a mean 0 random walk
spends s units of time below 0. If the increments of the random walk have finite variance then
this situation occurs with probability O(1/

√
s).

The performance was tested using a wide range of distributions and the overall conclusions
are similar. Our results (see Tables 1 and 2) are obtained assuming that a generic base interarrival
time Xn follows a gamma distribution with shape parameter 2 and rate parameter 2 (�(2, 2)).
For the sth system, the interarrival is distributed asXn/s, and a generic service time, Vn, follows
a log-normal distribution, where logVn ∼ N(− 1

2 ,
1
2 ). We use 103 replications for each value

of s.
We tested our code in the case of Poisson arrivals and exponential service time distributions.

In this case, E[QL(∞, 0)] can be computed analytically. We tried (a) λ = 100, μ = 1, and
C = 105, in this case, E[QL(∞, 0)] = 95.1739; (b)λ = 100,μ = 1, andC = 105, in this case,
E[QL(∞, 0)] = 97.2537; (c) λ = 500, μ = 1, and C = 511, in this case, E[QL(∞, 0)] =
488.7970; (d) λ = 500, μ = 1, and C = 550, in this case, E[QL(∞, 0)] = 499.2344. In
all these cases, we simulated 103 replications. The corresponding 95% confidence interval
contains the true value in each case.
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Table 2: Simulation results for τ (QED: λ = s, Cs = s + 2
√
s ).

s Mean 95% confidence interval

100 22.6297 [21.3381, 23.9213]
500 37.0449 [32.7770, 41.3128]

1000 42.0704 [37.9622, 46.1786]

Appendix A. Proof of Proposition 1

By Chebyshev’s inequality,

P(An+1 < n(μ− ε)) ≤ E[exp(θ(n(μ− ε)− An+1))] ≤ exp(−n(−θ(μ− ε)− ψ(−θ)))
for any θ ≥ 0.

Let 1{−ε} := maxθ≥0{−θ(μ − ε) − ψ(−θ)}. As ψ(0) = 0, ψ ′(0) = μ, and ψ ′′(0) =
var(X) > 0, 1{−ε} > 0. Then P(An+1 < n(μ− ε)) ≤ exp(−n1{−ε}), and

∞∑
n=1

P(An+1 < n(μ− ε)) ≤ exp(− 1{−ε})
1− exp(− 1{−ε})

<∞.

By the Borel–Cantelli lemma, {An+1 ≥ n(μ− ε)} eventually, a.s.
Similarly and independently, we have

∞∑
n=1

P(|Vn+1| > (n(μ− ε))α) =
∞∑
n=1

P(|V1|1/α > n(μ− ε))

≤ 1

μ− ε
∫ ∞

0
P(|V1|1/α > ν) dν

<∞.
Thus, again by the Borel–Cantelli lemma, {|Vn+1| ≤ (n(μ− ε))α} eventually, a.s. Therefore,
P(κ <∞) = 1.

Appendix B. Proof of Lemma 8 and Lemma 10

We first prove the following two lemmas as a preparation.

Lemma 11. If EV
q
n < ∞ for any q > 0, then for any fixed p > 0, E[(maxk=1,2,...,n Vk)

p] =
o(nδ) for any δ > 0.

Proof. For any fixed δ > 0, we can find δ′ ∈ (0, δ). Let q = 1/δ′ + p. By Chebyshev’s
inequality, we have F̄ (u) ≤ E[V q ]/uq. Let F̄n(u) = P(maxk=1,2,...,n Vk > u), then

E[( max
k=1,2,...n

Vk)
p] = p

∫ ∞
0

up−1F̄n(u) du

≤ n1/(q−p) + np
∫ ∞
n1/(q−p)

up−1F̄ (u) du

≤ n1/(q−p) + np
∫ ∞
n1/(q−p)

EV q

uq−p+1 du

= nδ′ + p

q − pEV q.
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Now we turn to Lemma 12 below. First note that by Holder’s inequality, we have

E

[ N∑
i=1

(ri + z)
]
= E

[ ∞∑
i=1

(ri + z) 1{N≥i}
]
≤
∞∑
i=1

E[(ri + z)2]1/2P(N ≥ i)1/2.

Lemma 12. If EXn < ∞ and EV
q
n < ∞ for any q > 0, then for any p ≥ 1, we have

E[(ri + z)p]1/p = o(sδ) for any δ > 0.

Proof. By Minkowski inequality, E[(ri + z)p]1/p ≤ E[rpi ]1/p + z. Using similar argument
as in the proof of Lemma 11, we can show that l(s) = o(sδ) for any δ > 0, thus z = o(sδ) for
any δ > 0.

For fixed δ > 0, we can find δ′ ∈ (0, pδ/(1+ pδ)) such that

E[rpi ] ≤ E

[
E

[(
max

k=1,...,Ns(�i−1)−Ns(�i−2)
Vk

)p ∣∣∣ Ns(�i−1)−Ns(�i−2)
]]

≤ CE[(Ns(�i−1)−Ns(�i−2))
δ′ ] (Lemma 11)

≤ C(E[Ns(�i−1)−Ns(�i−2)])δ′ (Jensen’s inequality for concave function)

≤ Cλ̃δ′sδ′E[ri−1 + z]δ′ (key renewal theorem).

Let wi = ri + z for i = 1, 2, . . .. As z it is a constant that only depends on s and z = o(sδ′),
then Ewi ≥ z ≥ 1 and Ewi = Eri + z ≤ Cλ̃δ′sδ′(Ewi−1)

δ′ + z ≤ C̃sδ′(Ewi−1)
δ′ , where C̃ =

Cλ̃δ
′ + 1. As E[rp1 ] = Eπ [R(0)p] = o(sδ′). By iteration, we have Ewi ≤ C̃1/(1−δ′)sδ′/(1−δ′)

for i = 1, 2, . . .. Thus, Er
p
i = o(spδ) and E[(ri + z)p]1/p = o(sδ).

Proof of Lemma 8. We first note that P(ξi = 0) ≤ E[w1]exp(−s 1∗{δ} +o(s)) by Lemma 7.
We have P(N ≥ 1) = 1 and P(N ≥ 2) = P(ξ1 = 0) ≤ E[w1]exp(−s 1∗{δ} +o(s)). Recall that
wi = ri + z for i = 1, 2, . . .. It holds that

P(N ≥ 3) = P(N ≥ 1)P(N ≥ 3 | N ≥ 2)

= P(ξ1 = 0)P(ξ2 = 0 | ξ1 = 0)

≤ P(ξ1 = 0)E[w2 | ξ1 = 0] exp(−s 1∗{δ} +o(s))
≤ E[w1]E[w2 | ξ1 = 0] exp(−2s 1∗{δ} +o(s)).

Next we prove that E[w2 | ξ1 = 0] = exp(o(s)). Note that P(ξi = 0) ≥ exp(−s 1∗{δ} +o(s))
by Lemma 7. Then for any p > 0, q > 0, and 1/p + 1/q = 1,

E[w2 | ξ1 = 0] = E[w2 1{ξ1=0}]
P(ξ1 = 0)

≤ E[wp2 ]1/pP(ξ1 = 0)1/q

P(ξ1 = 0)
(Holder’s inequality)

≤ E[wp2 ]1/pE[w1]1/q exp

(
1

p
s 1∗{δ} +o(s)

)
.

Thus, 1/s log E[w2 | ξ1 = 0] ≤ 1/s(1/p log E[wp2 ] + 1/q log E[w1] + o(s)) + 1/p1∗{δ}. By
sending p to∞, we have E[w2 | ξ1 = 0] = exp(o(s)).

Similarly by iteration, P(N ≥ k) = exp(−ks1∗{δ} + o(s)) for k = 4, 5, . . .. Then

∞∑
i=1

P(N≥ i)1/2 = O(1).
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As E[∑N
i=1(ri + z)] ≤

∑∞
i=1E[(ri + z)2]1/2P(N ≥ i)1/2 and E[(ri + z)2]1/2= o(sδ) for any

δ > 0, we have E[∑N
i=1(ri + z)] = o(sδ).

Proof of Lemma 10. We have P(N ≥ 1) = 1. It holds that

P(N ≥ 2) = P(ξ1 = 0)

≤ 1− E[ζ1(C)
w1 ] (Lemma 9)

≤ 1− ζ1(C)
E[w1] (Jensen’s inequality)

= 1− b exp(−o(sδ)).
Moreover,

P(N ≥ 3) = P(N > 2 | N > 1)P(N > 1)

= P(ξ2 = 0 | ξ1 = 0)P(ξ1 = 0)

≤ E[1− ζ1(C)
w2 | ξ1 = 0]P(ξ1 = 0)

≤ (1− ζ1(C)
E[w2 | ξ1=0])P(ξ1 = 0).

Next we show that E[w2 | ξ1 = 0] = o(sδ) for any δ > 0. Note that P(ξi = 0) ≥ ζ2(C) by
Lemma 9. Then E[w2 | ξ1 = 0] = E[w21{ξ1=0}]/P(ξ1 = 0) ≤ E[w2]/ζ2(C).

Similarly by iteration, we have P(N ≥ k) ≤ (1 − b exp(−o(sδ)))k for any δ > 0 and
k = 4, 5, . . .. Then, for any δ > 0, log

∑∞
i=1P(N ≥ i)1/2 = o(sδ).As

E[
N∑
i=1

(ri + z)] ≤
∞∑
i=1

E[(ri + z)2]1/2P(N ≥ i)1/2

and E[(ri + z)2]1/2 = o(sδ) for any δ > 0, we have

log E[
N∑
i=1

(ri + z)] = o(sδ).
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