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We examine the critical viscous mode of the Taylor–Couette strato-rotational
instability, concentrating on cases where the buoyancy frequency N and the inner
cylinder rotation rate Ωin are comparable, giving a detailed account for N =Ωin. The
ratio of the outer to the inner cylinder rotation rates µ = Ωout/Ωin and the ratio of
the inner to the outer cylinder radius η = rin/rout satisfy 0 < µ < 1 and 0 < η < 1.
We find considerable variation in the structure of the mode, and the critical Reynolds
number Rec at which the flow becomes unstable. For N =Ωin, we classify different
regions of the ηµ-plane by the critical viscous mode of each region. We find that
there is a triple point in the ηµ-plane where three different viscous modes all onset
at the same Reynolds number. We also find a discontinuous change in Rec along a
curve in the ηµ-plane, on one side of which exist closed unstable domains where
the flow can restabilise when the Reynolds number is increased. A new form of
viscous instability occurring for wide gaps has been detected. We show for the first
time that there is a region of the parameter space for which the critical viscous
mode at the onset of instability corresponds to the inviscid radiative instability of
Le Dizès & Riedinger (J. Fluid Mech., vol. 660, 2010, pp. 147–161). Focusing on
small-to-moderate wavenumbers, we demonstrate that the viscous and inviscid systems
are not always correlated. We explore which viscous modes relate to inviscid modes
and which do not. For asymptotically large vertical wavenumbers, we have extended
the inviscid analysis of Park & Billant (J. Fluid Mech., vol. 725, 2013, pp. 262–280)
to cover the cases where N and Ωin are comparable.

Key words: Taylor–Couette flow, stratified flows

1. Introduction

We consider the linear instabilities of the vertically stratified Boussinesq Taylor–
Couette system, unbounded in the vertical direction, under gravity g and with angular
velocity Ω(r) at radius r. The centrifugal approximation rΩ2

� g is made. The
coaxial cylinders have inner and outer radii rin, rout and angular velocities Ωin, Ωout

respectively. We define the radius ratio η= rin/rout and the rotation ratio µ=Ωout/Ωin.

† Email addresses for correspondence: luke.robins@cantab.net, pmtcaj@leeds.ac.uk
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The stratification is measured by a rotational Froude number Fr=Ωin/N, where N is
the buoyancy frequency, taken to be constant.

Kushner, McIntyre & Shepherd (1998) found an instability mediated by phase-
locked, counterpropagating Kelvin waves, in a rotating inviscid stratified semi-
geostrophic channel flow with horizontal shear. Yavneh, McWilliams & Molemaker
(2001) extended this result to inviscid stratified Taylor–Couette flow, using a
narrow-gap approximation. The results showed that centrifugally stable flows can
be destabilised by the presence of a stable stratification, suggesting a larger domain
of instability than had been considered previously. The instabilities they found, which
would come to be known as strato-rotational instabilities (SRI), are non-axisymmetric.
Yavneh et al. (2001) suggested that a sufficient condition for instability of the
Taylor–Couette flow is that µ < 1, Ω(r) decreasing outward, provided also that the
stratification is sufficiently strong. They confirmed that the physical mechanism of
the fastest-growing mode is then the same as in Kushner et al. (1998), involving
counterpropagating Kelvin waves trapped on the inner and outer boundaries. The
Kelvin waves can phase lock because when µ < 1 their intrinsic angular phase
velocities go against the mean flow at each boundary. Furthermore, Yavneh et al.
(2001) verified numerically that SRI persists in the presence of weak viscosity, and
found slower-growing SRI modes involving inertia–gravity waves as further clarified
and developed in the work of Le Dizès & Riedinger (2010) and Park & Billant
(2013).

The centrifugal approximation, implicit in the foregoing work, was discussed
explicitly by Shalybkov & Rüdiger (2005) who also extended the search for viscous
instabilities beyond narrow gaps. They considered a range of rotation ratios for both
η = 0.78 and η = 0.3 in the viscous problem, with the Froude number fixed at
Fr = 0.5. In a follow-up paper (which also studied magnetohydrodynamic versions
of the problem), Rüdiger & Shalybkov (2009) further extended, and in some cases
corrected, their earlier results.

Again using a narrow-gap approximation, Umurhan (2006) investigated the effects
of taking N to be a varying function of z, where z is the vertical coordinate. It was
shown that the SRI persists in this case provided that rigid side boundary conditions
are used, as required to support boundary-trapped waves such as Kelvin waves. The
instability structures are largely unchanged.

Le Bars & Le Gal (2007) performed the first experimental test of the SRI, using
a salt stratification, with η = 0.8 and Fr = 0.5. They found good agreement with
the results of Shalybkov & Rüdiger (2005), validating that the SRI can violate the
Rayleigh stability criterion. They also observed that the SRI has a three-dimensional
helical form, with both left-handed and right-handed spirals, which is possible since
the vertical phase velocity can take either sign.

Dubrulle et al. (2005) introduced the idea of using Wentzel–Kramers–Brillouin–
Jeffreys (WKBJ) analysis on the SRI, for asymptotically large vertical wavenumbers
k, inducing eigenfunction shapes that oscillate rapidly in r. Le Dizés & Billant (2009)
performed such a WKBJ analysis on the stability of a columnar vortex in an inviscid
stratified fluid, drawing attention to an unstable mode taking the form of a wave-like
disturbance radiating from the vortex. It is very like the radiative instability (RI)
discovered by Broadbent & Moore (1979) and extended to rotational far fields by
Ford (1994). Le Dizès & Riedinger (2010) showed that a similar RI can arise in
the wide-gap limit of the inviscid stratified Taylor–Couette system when µ = η2,
i.e. on the Rayleigh neutral stability curve for large-k, axisymmetric centrifugal
stability. As η → 0, an SRI involving counterpropagating boundary-trapped waves
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continuously adjusts to become the RI, which in this case is mediated instead by
an inner boundary-trapped wave and an outer gravity wave with an outward group
velocity. They found that this RI at zero η is present for a much larger range of
k than the SRI at finite η. Riedinger, Le Dizès & Meunier (2011) experimentally
confirmed that RIs exist using a wide tank of stratified fluid with a spinning cylinder
in the centre. Various cylinder sizes were used, and the experimental results were
found to be in good agreement with the theory. An instability resembling an RI was
later found by Leclercq, Nguyen & Kerswell (2016) for viscous Taylor–Couette flows
with a surprisingly large η value, 0.417, further discussed in § 7 below.

Performing WKBJ analysis, Park & Billant (2013) concluded that the Taylor–
Couette system can always be made inviscidly unstable with a suitable choice of
stratification N, so long as the system is not in solid body rotation, i.e. µ 6= 1. So
the case µ> 1, where the outer cylinder rotates faster than the inner cylinder, is also
unstable even though Kelvin waves cannot then phase lock. The SRI then involves
counterpropagating inertia–gravity waves only. They also found sufficient conditions
for inviscid instability dependent upon η, µ and N.

Ibanez, Swinney & Rodenborn (2016) used salt stratification experiments, but with
sodium polytungstate salt rather than sodium chloride as in previous experiments,
allowing for a larger density differential and hence larger values of N, thus increasing
the range of parameters achievable. They used η= 0.877, and various fixed values of
N such that 0.4 < Fr < 4. The experiment was performed by starting the system in
solid body rotation and bringing it up to a specific Reynolds number defined to be
proportional to Ωin as in (2.2) below. Then µ was gradually decreased, by decreasing
Ωout. The value of µ at which the system became unstable was noted for each Re.
The experiments showed that, for some values of µ, the system is unstable only for
a finite range of Re. That is, flows can restabilise as Re increases. There are regions
of the parameter space that are viscously unstable but inviscidly stable. The present
work confirms and extends this result.

Rüdiger et al. (2017) performed numerical simulations of Taylor–Couette flows for
η = 0.52, and at finite Re 6 3000 found instabilities only for 0.3 < Fr < 5.5. They
also discussed the dependence of critical wavenumbers on Fr and Re. Laboratory
experimentation with a heat stratification was used to check their numerical results,
with which they saw a good correlation.

The present work is motivated by the fact that there have been no prior
investigations of the full (η, µ)-parameter space. Previous work has typically focused
on slices of the parameter space for specific values of η. Here, we cover the full
ranges 0 < η < 1 and 0 < µ < 1 for moderate values of Fr, using a combination of
numerical and WKBJ methods.

Numerical searches are confined to 0.05<η< 0.95 and 0.05<µ< 0.95 as well as
to finite ranges of azimuthal and vertical wavenumber. This is not a problem for the
viscous modes, as viscous instability in our chosen region of parameter space occurs
at moderate wavenumbers accessible numerically. We have explored viscous instability
up to Re=106. In presenting examples of viscous eigenfunction shapes we concentrate
mainly on Fr= 1.

By contrast, for inviscid modes the instability can be found at very large
vertical wavenumbers, see Le Dizès & Riedinger (2010) and Park & Billant (2013),
particularly when Fr< 1 and η is small, so numerical searching cannot be complete.
A more analytic approach is needed to help ascertain the extent of inviscid instability.
To that end, we extend the WKBJ inviscid analysis performed by Park & Billant
(2013) to derive the corresponding (η, µ)-stability curve for any given Fr. The
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WKBJ results are then compared, where possible, with the numerical results. Even
this combination of numerical and WKBJ approaches has limitations. In the absence
of general stability theorems, we cannot guarantee that points in the parameter space
found here to be inviscidly stable will not have a very small range of unstable
wavenumbers with low growth rates that our numerical search has missed. On the
other hand, we are confident that points found numerically to be inviscidly unstable
really are inviscidly unstable.

In § 2 we describe the linearised perturbation equations of the stratified Taylor–
Couette system for both the viscous and inviscid cases. In § 3 and appendix A we
extend the inviscid WKBJ analysis of Park & Billant (2013) to cases in which Fr
is not small. In § 4 we present the results of a numerical search for both viscous
and inviscid instability at Fr = 10/3, 1, 0.5 and 0.2. In § 5 we describe how the
critical viscous modes of instability vary through (η, µ)-parameter space for the case
Fr=1. In § 6 we discuss the eigenfunction shapes for these critical viscous modes, and
compare the viscous results with the inviscid results. Further details are given in the
supplementary information available at https://doi.org/10.1017/jfm.2020.245, hereafter
‘SI’. In § 7 we explore the presence of the viscous RI within our results. Finally in
§ 8 we present our conclusions.

2. System equations
We work in cylindrical polar coordinates. We use the gap width d= rout− rin as our

unit of length and the reciprocal of the inner rotation rate τ =Ω−1
in as our time scale.

With this scaling Taylor–Couette flow has the following angular velocity profile

Ω(r)= A+
B
r2
, A=

µ− η2

1− η2
, B=

η2(1−µ)
(1+ η)(1− η)3

, Z = 2A. (2.1a−d)

Here, we have also defined the vorticity Z = (1/r)∂r(r2Ω) which is constant.
For viscous flows, we define our Reynolds number Re to be consistent with the

work of Shalybkov & Rüdiger (2005), Le Bars & Le Gal (2007), Ibanez et al. (2016),
Leclercq et al. (2016) and Rüdiger et al. (2017)

Re=
rinΩind
ν

. (2.2)

We neglect any diffusion of the density of the stabilising agent, as the diffusivity of
the salts used in experiments is much smaller than the kinematic viscosity.

Our centrifugal approximation rΩ2
� g implies the curvature of the surfaces of

constant density is negligible, so the basic state density is a function of z only and
the buoyancy frequency N2

=−(g/ρ0)(dρ0/dz). Under the Boussinesq approximation
ρ0 does not vary greatly throughout the apparatus. We assume furthermore that its
variation is approximately linear such that N is a constant. Note that, given our choice
of time scale, the Froude number Ωin/N is equal to the reciprocal of the dimensionless
buoyancy frequency, so low Froude number corresponds to strong stratification.

Instability modes of the basic state are assumed to be of the form of an r-dependent
complex amplitude times exp(σct+ imθ + ikz), with real parts understood. Here, σc is
the complex growth rate, so that the modal frequency ω =−I[σc], where I denotes
the imaginary part, and the modal growth rate is σ = R[σc] where R denotes the
real part. The azimuthal wavenumber m is restricted to integer values, but the vertical
wavenumber k is unrestricted apart from being real. The full viscous linearised
perturbation equations for the SRI are shown below; derivations are presented in
Yavneh et al. (2001) and Shalybkov & Rüdiger (2005).
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−iΦur − 2Ωuθ

=−
dP
dr
+

η

(1− η)
1

Re

[
d2ur

dr2
+

1
r

dur

dr
−

(
m2
+ 1

r2
+ k2

)
ur −

2imuθ
r2

]
, (2.3)

−iΦuθ + Zur

=−
imP

r
+

η

(1− η)
1

Re

[
d2uθ
dr2
+

1
r

duθ
dr
−

(
m2
+ 1

r2
+ k2

)
uθ +

2imur

r2

]
, (2.4)

−iΦuz =−ikP− ρ +
η

(1− η)
1

Re

[
d2uz

dr2
+

1
r

duz

dr
−

(
m2

r2
+ k2

)
uz

]
, (2.5)

−iΦρ − Fr−2uz = 0, (2.6)
dur

dr
+

ur

r
+

imuθ
r
+ ikuz = 0. (2.7)

Here, (ur, uθ , uz, ρ,P) are the r-dependent complex amplitudes corresponding to the
perturbation velocity, density and pressure fields, with suffixes r, θ and z denoting the
radial, azimuthal and vertical velocity components. We have also defined the complex
Lagrangian frequency Φ(r)= iσc −mΩ(r)= iσ +ω−mΩ(r).

The no-slip boundary conditions for viscous flow are

ur = uθ = uz = 0 at r= rin =
η

1− η
and r= rout =

1
1− η

. (2.8a,b)

2.1. The inviscid system
For inviscid flow, the system of perturbation equations can be attained by dropping the
terms within square brackets from (2.3) to (2.7). The boundary conditions are reduced
to the condition of no normal flow through the cylinders; i.e. ur(rin)= ur(rout)= 0.

Yavneh et al. (2001) showed that the inviscid system can be combined into a single
equation for ur. This combined inviscid equation has various equivalent forms; we
present here essentially the form used by Park & Billant (2013), in which primes
denote d/dr,

u′′r +
(

1
r
−

Q′

Q

)
u′r +

[
k2

N2 −Φ2
∆−

m2

r2
+

mrQ
Φ

(
Z

r2Q

)′
+Q

(
1

rQ

)′]
ur = 0,

Q(r)=
m2

r2
−

k2Φ2

N2 −Φ2
, ∆(r)=Φ2

− 2ZΩ.


(2.9)

(As stated before, note that N = Fr−1 with our choice of time scale.) The quantity
√

2ZΩ is known as the epicyclic frequency in the accretion disk literature.
There are a number of significant surfaces of constant r that emerge from (2.9). The

first, R[Φ(rc)] = 0, denotes where the Lagrangian frequency of the system changes
sign, such that to either side of this surface the perturbation modes are moving in
opposite directions relative to the basic state flow. As the growth rate approaches zero,
so Φ(rc)→ 0, uz(rc)→ 0 at r= rc (see (2.6)). Equation (2.9) is then singular on the
significant surface r= rc.

Further significant surfaces can occur for ∆(r±)= 0, at which R[Φ(r±)]=±
√

2ZΩ ,
the epicyclic frequency. These surfaces r = r± are significant for the WKBJ k � 1
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analysis of Park & Billant (2013), for which they denote the edges of wave-like
regions within the flow; see § 3.

Finally, a singularity of (2.9) can occur on the surface r = rN if N2
− Φ(rN)

2
= 0

anywhere in the flow. This singularity is discussed by Riedinger, Le Dizès & Meunier
(2010) in the context of a Lamb–Oseen vortex, and is seen in the present work in §§ 4
and 7.

2.2. Wavenumber symmetry
It was shown by Riedinger et al. (2011) that for any unstable mode with wavenumbers
m, k there are equally unstable counterpart modes for all combinations ±m, ±k, for
given values η, µ, Fr and Re. The symmetry between m and −m is demonstrated by
taking the complex conjugate of (2.3)–(2.7), so the frequency ω changes sign if m
changes sign. In this work we therefore investigate modes of instability with positive
m, k only.

It should be noted that any non-zero values m and k will produce a mode of
instability with a helical form in three dimensions. This spiral will be either left-
or right-handed depending on whether m and k have opposite or equal signs. The
symmetries identified by Riedinger et al. (2011) predict that there will always be
two equally unstable modes of instability corresponding to each spiral, such that
experimentally we would typically expect to see a superposition of the two modes.
This matches well with observations made by Le Bars & Le Gal (2007) and Ibanez
et al. (2016).

2.3. Solving for modes of instability
We used a computational eigenfunction solver with truncated Chebyshev series to
solve (2.3)–(2.7) for viscous and inviscid modes of instability; the solver returned
the eigenmode structure and the complex growth rate σc as an eigenvalue. The
largest Reynolds number used for the viscous domain was Re= 106, which required
a resolution of approximately 200 terms within each truncated Chebyshev series.
Significant viscous results were further checked at a resolution of 400 terms; this
includes the viscous instability domain search in § 4.

We define the critical viscous mode of instability as the first viscous mode to
become linearly unstable as Re is steadily increased from zero, for constant η, µ
and Fr. Hence at the critical viscous mode with wavenumbers mc and kc and critical
Reynolds number Rec, all combinations of wavenumbers are linearly stable for any
Re<Rec. Typically there will only be one critical viscous mode, σ = 0, with only one
pair of wavenumbers (mc, kc) for given η, µ and Fr. However, there are exceptional
cases in which two pairs of wavenumbers can become critical simultaneously, at the
same Rec. Curves in the ηµ-plane where this occurs are referred to as codimension-2
curves. Isolated points in the ηµ-plane where three pairs of wavenumbers can become
critical simultaneously are called codimension-3 points.

Critical viscous modes of instability were found by a two-step process. For given η,
µ and Fr an approximate solution was found, over a grid of wavenumber pairs (m, k),
by minimising the value of Re required for instability. The approximate solution was
then refined by using standard root-finding and minimisation algorithms. The best
solution thus found was then checked at a resolution of 400 Chebyshev terms.

The inviscid system was initially investigated with only 70 terms, but any unstable
results were then further checked at the higher resolution of 200 terms, and were
then checked at 300 terms to ensure that they were well resolved. We also checked
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inviscid modes using an independent code that distorts the contour of integration into
the complex plane, which avoids the near singularity that can occur for very small
growth rates when R[Φ] = 0, for details see Boyd (2001), Fabre, Sipp & Jacquin
(2006) and Riedinger et al. (2010). See for instance the SI figures S2 and S10, with
the independently computed eigenvalues agreeing to 4 significant figures. For the
inviscid system, we found which (m, k)-wavenumbers could be made unstable at each
η, µ and Fr. In order to rule out the possibility of computational noise, unstable
results from the inviscid system were accepted only if they had a growth rate σ

above a certain threshold. A threshold of 10−5 (in units of Ω−1
in ) was found to work

well, as computational errors were typically of considerably smaller magnitude. This
restriction was unnecessary for the viscous system, since the presence of viscous
damping means that viscously stable modes typically have strongly negative growth
rates, and computational error is not sufficient to make these growth rates spuriously
positive.

The initial inviscid scan identified the general regions where a growth rate greater
than 10−5 occurs, and then the boundary in the ηµ-plane where max(σ )= 10−5 was
explored in detail, making sure that the range of m and k investigated was sufficient
to capture the boundary correctly. Identifying the boundary is most difficult at low
η, where large values of vertical wavenumber k (up to several hundred) can occur
(particularly at larger N values), and in the narrow-gap case η ≈ 1, where large
values of azimuthal wavenumber m give the fastest-growing modes. In these regions
scans with more than 70 terms, indeed up to 300 terms, were needed. We therefore
started by identifying the max(σ ) = 10−5 boundary near η = 0.5 and then extended
the boundary to both larger and smaller η-values by continuation methods. The initial
scan revealed that the fastest-growing mode can have a different form in different
parts of the parameter space. For example, at η > 0.5 a mode in which |ur(r)|
has a single maximum in r usually dominates, whereas at small η and Fr < 1 the
fastest-growing mode can have an eigenfunction in which |ur(r)| has many maxima.

We explored numerically only within the domain 0.05 6 η6 0.95, 0.05 6µ6 0.95.
When the Rayleigh stability criterion is not satisfied, the large k inviscid modes are
the fastest-growing modes (Billant & Gallaire 2005). While the present work does
examine both inviscid and viscous modes, we are primarily interested in the region
of the parameter space where the two can be compared. We have therefore not
explored very high k inviscid modes in detail. Our solver has successfully reproduced
numerical results from Shalybkov & Rüdiger (2005) and Le Dizès & Riedinger
(2010). It has also produced numerical results which mirror the low-Re experimental
results of Ibanez et al. (2016).

3. Sufficient conditions for WKBJ-inviscid SRI

As noted in § 1, we need to supplement our numerical results with an extension
of the WKBJ analysis of Park & Billant (2013). That analysis is based on taking
k � 1 and m finite in (2.9), thus discarding all the terms within square brackets
except the first, the term in k2. The eigenfunctions governed by (2.9) then have scales
much smaller than the gap width, with either exponential or oscillatory radial structure
according to the sign of the term in k2, which in turn depends on the configuration
of the significant surfaces. Thus there can be WKBJ turning points at some of those
surfaces, as for instance between a Kelvin wave with exponential structure near the
inner boundary and an inertia–gravity wave with oscillatory structure further out, as
in some cases of the RI.
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When referring to an instability found in this way, we call it a WKBJ-inviscid SRI
mode, to distinguish it from an inviscid SRI mode found numerically, which might
have a value of k too low to justify the WKBJ approximations. Park & Billant (2013)
showed that for all µ 6= 1 with µ > η2 there is WKBJ-inviscid SRI whenever the
following conditions (3.1a,b) and (3.2) are both satisfied

2

√
µ− η2

1− η2
<

1
Fr

if µ< 1; 2

√
µ(µ− η2)

1− η2
<

1
Fr

if µ> 1, (3.1a,b)

2
|1−
√
µ|

√
µ− η2

1− η2
<m<

2
Fr|1−µ|

. (3.2)

These therefore are sufficient conditions for the occurrence of WKBJ-inviscid
instabilities, and they show that such instabilities will be found for any combination
of (η, µ) with µ 6= 1 whenever Fr is small enough, i.e. whenever the stratification is
strong enough.

The value of m in (3.2) must be a positive integer. If

2
|1−
√
µ|

√
µ− η2

1− η2
+ 1<

2
Fr|1−µ|

(3.3)

then there must be a positive integer m satisfying (3.2), because (3.3) says that the
right-hand side of (3.2) exceeds the left-hand side by at least 1, leaving room for at
least one integer value of m in between.

Of course these instability criteria (3.1a,b)–(3.3) cannot hold for the viscous domain
because, in the limit k� 1 with Re fixed, all modes are stabilised by viscosity.

We note that any Kelvin-wave-mediated SRI, or other mode involving
counterpropagating waves, must by virtue of that fact satisfy R[Φ] = 0 somewhere in
the flow so that the Lagrangian angular phase speeds m−1R[Φ] have opposite signs at
the inner and outer boundaries. Park & Billant (2013) showed moreover that for any
WKBJ-inviscid SRI at sufficiently small Fr there is a radial interval within the flow
within which the value of R[Φ] is enclosed by the inertia-wave epicyclic frequencies
±
√

2ZΩ; see their figures 3 and 11. This comes about because their WKBJ-inviscid
SRIs are mediated by inertia–gravity waves.

We now focus on the case 0<µ<1 for the rest of the paper, leaving the interesting
cases µ < 0 and µ > 1 for future work. In appendix A we show that if Fr 6 0.5,
then (3.1a) and (3.3) are satisfied for all µ in the range η2 6µ< 1. Since we know
that inviscid axisymmetric modes are Rayleigh unstable for µ < η2, this gives the
remarkable result that for Fr 6 0.5 there is inviscid instability throughout the range
0<η < 1 and 0<µ< 1.

The case η2 < µ < 1 and 0.5 < Fr 6 2 is more complicated, and the most useful
sufficient conditions for WKBJ-inviscid instability are found by evaluating the
µ-values that satisfy (3.1a) and (3.3) numerically, as done in the Fr = 1 case in
§ 4 below. However, in appendix A we derive inequalities showing that if

√
µ<

√
2
Fr
− 1, 0.5< Fr 6 2 (3.4)

then there is WKBJ-inviscid instability for all values η satisfying η2 <µ. In the limit
η→ 0, (3.4) is a tight inequality, meaning that it gives the same maximum value of µ
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as the numerical solution of (3.1a) and (3.3) (see appendix A for details). For larger
values of η in the range 0<η<

√
µ, (3.4) still guarantees WKBJ-inviscid instability,

but it is less useful because the maximum value of µ for the WKBJ-inviscid instability,
as defined by (3.1a) and (3.3), is above the range given by (3.4).

The case of weak stratification, Fr > 2, is simpler to understand. In appendix A
we show that if η <

√
1− 2/Fr then (3.3) cannot be satisfied, and WKBJ-inviscid

SRI can only be guaranteed when µ < η2. If η >
√

1− 2/Fr, there is a very thin
wedge of µ > η2 where WKBJ-inviscid SRI occurs (i.e. (3.1a) and (3.3) are both
satisfied) but is Rayleigh stable. However, this wedge is very thin. For example, in
the case Fr= 10/3 and η=

√
0.7825= 0.8846 the range of µ where (3.1a) and (3.3)

are satisfied is only 0.7825 < µ < 0.7848 (see equation (A 16) of appendix A). All
other values of η give an even smaller range of unstable µ. So for Fr = 10/3 and
η = 0.8846, µ < 0.7825 gives centrifugal instability, while µ > 0.7848 gives neither
centrifugal instability nor WKBJ-inviscid SRI. However, as already mentioned, the
WKBJ analysis (a) gives sufficient, not necessary, conditions for WKBJ-inviscid SRI,
and (b) says nothing about non-WKBJ inviscid instabilities at moderate k. Indeed,
such non-WKBJ instabilities will be encountered in the next section, well outside the
thin wedge.

4. Domain of instability
Figure 1 shows the extent of instabilities determined numerically, viscous (‘E’

symbols) and inviscid (‘×’ symbols), for four values of Fr, varying from a weakly
stratified case at Fr= 10/3 to a strongly stratified case at Fr= 0.2. These results were
attained by use of a brute-force computational search for unstable modes throughout
the parameter space of (η, µ, m, k). The approach described in § 2.3 was used to
perform these searches.

The grey region in each panel of figure 1 denotes the range of inviscid instability
as predicted for k� 1 by the Rayleigh criterion µ< η2. The red region denotes the
range of WKBJ-inviscid instability as predicted by (3.1a) and (3.3), with finite growth
rates on the Rayleigh neutral stability curve µ = η2. The very thin sliver of red in
figure 1(a) terminates in cusps at (η, µ)= (

√
0.4, 0.4) and at (η, µ)= (1, 1), and as

remarked at the end of § 3 intersects the vertical line η=0.8846 in only a tiny interval
0.7825<µ< 0.7848. This thin sliver of red has actually been thickened in figure 1(a)
to improve visibility (see caption).

In figure 1(c,d), and in all similar plots for Fr 6 0.5, the results summarised in § 3
show that the grey and red regions together occupy the entire plot. That is, everywhere
in these plots we have WKBJ-inviscid instabilities, either centrifugal (grey) or SRI
(red). However, our numerical search has not found any instabilities in the top left
corners of figure 1(c,d), the regions devoid of ‘E’ or ‘×’ symbols, despite much effort
to search thoroughly. In the inviscid case, our solvers failed to find instabilities in
these corners for one or both of two likely reasons, the first being that the instabilities
may have ultra-low growth rates σ , below our chosen threshold 10−5, and second
that they may exist only in tiny windows of k-space not intersected by the numerical
search. In the viscous case, our search went up to Re= 106 only, so it is possible that
there are viscous instabilities in the top left corners of figure 1(c,d) at values of Re
too high for us to reach by numerical exploration.

There is a similar lack of numerical solutions for instabilities in the top left corners
of figure 1(a,b). We did, on the other hand, find non-WKBJ inviscid instabilities, with
modest k values, not only in the red and grey regions, but also to the left of the
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FIGURE 1. Cases (a) Fr = 10/3, (b) Fr = 1, (c) Fr = 0.5, (d) Fr = 0.2; arranged in
order of increasing stratification. These plots display the inviscid and viscous unstable
modes found for 0<η< 1 and 0<µ< 1. Here, ‘×’ represents locations where we have
found inviscid instabilities with growth rate above 10−5; ‘E’ represents locations that are
viscously unstable for Reynolds numbers of Re = 106 or less. The grey shaded region
in each plot denotes where the flow is centrifugally unstable, µ < η2. The red shaded
region on all four plots shows where WKBJ-inviscid SRI occurs according to (3.1a) and
(3.3) with µ > η2. In (a) the red region is a very thin sliver (so thin we have had to
thicken it here to improve visibility) that terminates in cusps at (η, µ)= (

√
0.4, 0.4) and

(η,µ)= (1, 1) (see the end of appendix A for details). Note that in (c,d) the entire domain
of µ< 1 is predicted to be inviscidly unstable.

red regions at η and µ values shown by the ‘×’ symbols. We suspect that some
instabilities may again have been missed, but we are confident of each unstable result
that we have found.

In figure 1(a,b) there are regions that are inviscidly stable but viscously unstable,
marked by the ‘E’ symbols with no accompanying ‘×’. The largest such region,
in figure 1(a), includes an overhang region between 0.4 < µ < 0.6. Its boundary
moves to lower η as µ increases. As this overhang boundary is approached from
the right, for instance by reducing η at constant µ, the growth rates and k-windows
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of the non-WKBJ inviscid instabilities marked by ‘×’ symbols shrink to zero, and
Φ(rin) becomes real and equal to −N, a significant surface of (2.9) that is also a
singular surface. A similar phenomenon in which inviscid instabilities disappear as
this singular condition is approached was noted by Riedinger et al. (2010). When
viscosity is added, the singular behaviour is removed and smooth regular viscous
solutions are found as indicated by the ‘E’ symbols with no accompanying ‘×’
symbols.

There are precedents for viscosity being required for shear flow instabilities. For
example, plane Poiseuille flow is stable in the inviscid domain, but unstable when
the viscosity is non-zero (Drazin & Reid 1981). Another classic example is that of
Tollmien–Schlicting and similar boundary-layer instabilities, e.g. Baines, Majumdar &
Mitsudera (1996). Recently, Ibanez et al. (2016) performed SRI experiments which
showed that higher Reynolds numbers can stabilise the flow compared to unstable
results at lower Reynolds numbers.

5. Critical viscous mode analysis
5.1. Critical viscous mode regions

In this section, we focus on Fr= 1 and explore the eigenfunction shapes of the critical
viscous modes throughout the (η, µ)-parameter space. We also explore the parameter
space near to each critical viscous mode, seeking the neutral curves where modes
transition from stable to unstable. These viscous (m, k, Re) results are then compared
to unstable modes found in the corresponding inviscid (m, k)-parameter space, in order
to examine the connections and differences between the viscous and inviscid systems.

Figure 2 shows the distinct critical viscous mode regions throughout the (η, µ)-
parameter space for Fr = 1.0. We have labelled the different critical viscous mode
regions as α–ζ . They correspond to eigenfunctions with different shapes to be
illustrated in figures 3–9 and 13.

The boundary between where the axisymmetric and non-axisymmetric modes have
the lowest Rec values, i.e. the boundary between regions α and β, is somewhat to the
right of the Rayleigh neutral stability curve µ= η2. Stratification delays the onset of
centrifugal instability to higher Rec closer to that curve.

The thin solid curve in figure 2 will be called the ‘discontinuity curve’ because it
marks a jump in the properties of the viscous critical mode, both in its shape and
in its values of Rec and k. This jump in Rec is associated with the restabilisation
phenomenon, whereby the flow restabilises as the Reynolds number is increased
beyond the first instability point. This phenomenon was noticed theoretically by
Leclercq et al. (2016) and Rüdiger et al. (2017), and experimentally by Ibanez et al.
(2016). The jump in properties is described in §§ 6.2–6.3 below. The jump disappears
at the point X at the end of the discontinuity curve, beyond which the properties
change continuously. This occurs because the critical viscous modes of the two
regimes begin to overlap within the (m, k, Re)-parameter space, taking the form of
an ‘inviscid-type’ SRI mode, by which is meant a viscous mode at high Re whose
eigenfunction shape strongly resembles that of an inviscid mode, apart from thin
boundary layers, and whose wavenumber values are similar. We refer to X as the
point of continuity; it is discussed further in § 6.3.

As already mentioned, region α has critical viscous modes that are classical
centrifugal modes with m= 0. Figure 3(a,b) shows a typical example, corresponding
in figure 2 to the ‘+’ symbol marked ‘figure 3’. Following Leclercq et al. (2016),
we call region α the centrifugal instability (CI) region. See § 5.2 below for more

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

24
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.245


894 A13-12 L. J. M. Robins, E. Kersalé and C. A. Jones

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

µ

0 0.1 0.2 0.3

(Ω)

(∂)

(å)

(©) (ı)

(Ó)
0.4 0.5 0.6

˙
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Stable to Re ≤ 1.0 ÷ 106

1.0

Fig. 4

Fig. 3

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9 Fig. 13

FIGURE 2. The different regions of the parameter space dependent upon the form of the
critical viscous mode at each point for Fr = 1 are shown. The thick solid curve denotes
the stability limit for modes with a Reynolds number below Re = 106. The thin solid
curve denotes a discontinuous change in the critical Reynolds number Rec of the instability
mode. Dotted curves denote where the structure and wavenumbers of the critical viscous
mode of instability discontinuously change, but Rec is continuous. These dotted curves are
the boundaries between the different types of mode, and are curves where two different
modes onset at the same critical Reynolds number. We do not denote changes of m for
m > 1, which do not appear to significantly alter the eigenfunction structure, and were
mostly seen only close to the narrow-gap limit of η→ 1. Regions α–ζ are labelled and
are discussed in the main text, as is the ‘point of continuity’ X which terminates the thin
solid discontinuity curve. The point T at η = 0.081617, µ= 0.057637 is the triple point
where the three modes of instability corresponding to regions δ, ε and ζ all onset at the
same critical Reynolds number, Rec = 17 493. Each + sign denotes the location of an
example mode from the later figures within this paper.

information on the figure captions. Region β has preferred critical viscous modes that
are SRIs with m 6= 0. Their eigenfunction shapes suggest mediation by inertia–gravity
waves having broad radial structures, as in figures 4(a,b)–6(a,b). Again see the +
symbols in figure 2.

The three regions δ, ε and ζ in figure 2 all meet at the triple point marked T in
figure 2, marking a codimension-3 bifurcation, where three different viscous modes
onset at the same critical Reynolds number, Rec = 17 493, but with different ω and
different critical k. For the δ-region mode, ω = 0.12436 and k = 18.65, for the
ε-region mode, ω = 0.58340 and k = 8.644 and for the ζ -region mode, ω = 0.57124
and k = 77.93. The corresponding eigenfunctions are illustrated in figures S13–S15
of the SI. For all three modes m = 1. The dotted boundaries between regions δ–ε,
ε–ζ and ζ–δ all mark codimension-2 boundaries, where two different modes onset
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simultaneously at the same Re. The modes in region ζ near the triple point have a
strong resemblance to the RI modes identified by Le Dizès & Riedinger (2010) in
the wide-gap limit of inviscid Taylor–Couette flow. An example of an RI-type critical
viscous mode is shown in figure 13(a,b). Further from the triple point the radiating
waves gradually disappear (see § 7.2) and the region ζ modes then morph into inner
boundary-trapped modes labelled γ in figure 2 and exemplified by figure 7(a,b) and
SI figure S7. There is no definite boundary between the modes labelled γ and ζ as
the transition is gradual.

Region δ corresponds to inviscid-type modes, as shown in figure 8(a,b). These
modes have evolved from the region β modes exemplified by figures 5(a,b) and 6(a,b).
Again there is no definite boundary between the modes labelled β and δ. These modes
also change their form gradually, so that in region β the maximum amplitude is near
the middle of the gap whereas in region δ the amplitude is largest near the inner
cylinder wall (compare figures 4–6 and 8 below).

Finally in region ε, at the bottom left of figure 2, the wide gap suggests we should
find modes that are even more RI-like. Instead, and perhaps surprisingly, we see
critical viscous modes like that illustrated in figure 9, with broad radial structures and
hints of outer boundary trapping. However, the configuration of significant surfaces,
with R[Φ] = ±N outside the flow while R[Φ] = 0 and R[Φ] = ±

√
2ZΩ are all

within the flow and close to the inner boundary, suggests instead that most of the
domain, away from the inner boundary, is occupied by an inertia–gravity wave
with a standing-wave radial structure, i.e. boundary reflected rather than boundary
trapped. However, the shapes of the neutral curves show that this is another case
of restabilisation as Re increases. It seems that in order to phase lock together, the
counterpropagating wave structures need to be modified by viscosity in a crucial way.
We call these ‘wide-gap’ SRIs. They are preferred (having the lowest Rec) only when
η < 0.081617.

The critical viscous modes in regions γ and ε (figures 7 and 9) have no inviscid
counterparts, i.e. they are not inviscid-type. They also exhibit restabilisation. By
contrast, at least some of the critical viscous modes in region δ are inviscid-type as
can be seen from the example in figure 8, which has m = 1 and k = 9.07 and is
close to an inviscid mode with m= 1 and maximum growth rate at k= 8.61. Critical
viscous RI modes in region ζ can also have inviscid counterparts, see § 7.2 below.

5.2. Example figures
Figures 3 to 9 show examples of the eigenfunction shapes of critical viscous modes
from each region alongside wavenumber analyses. Figure 13 shows examples of RI,
discussed in § 7.2 below.

Each figure examines specific values of η, µ and Fr. The critical (m, k)-
wavenumbers and critical Reynolds numbers Rec are quoted in each figure. For
each figure we also declare whether any of the following significant surfaces occur
within the flow: R[Φ(rc)] = 0, or R[Φ(r±)] = ±

√
2ZΩ . These surfaces are relevant

to the inviscid instability criteria of Park & Billant (2013); see § 3. The significant
surfaces R[Φ] =±N are absent in all our examples except for figure 13(c,d).

Each of figures 3–9 features four panels labelled (a–d): vertical (a) and horizontal
(b) cross-sectional contour plots of the critical viscous mode of instability are shown.
For the vertical cross-section (a) at θ = 0, radial ur and vertical uz velocities are
shown as vectors, whereas the azimuthal velocity uθ perturbation is shown in colour
contours. For the horizontal cross-section (b) at z = 0, radial ur and azimuthal uθ
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894 A13-14 L. J. M. Robins, E. Kersalé and C. A. Jones

velocities are shown as vectors and the vertical velocity uz is shown in colour contours.
The contours of both (a) and (b) use the same colour scale, ui/||ur||. The term ui
represents uθ or uz depending on which figure is being considered, while ||ur|| denotes
the maximum radial velocity ur within the eigenmode, which we have chosen as our
normalisation for these plots. Basic state flow is always in the positive θ direction.
Each cross-section is taken over a sufficient range to demonstrate the full wavelength
of each mode.

Except for figure 13, where (c) and (d) have the same form as (a) and (b), neutral
curves of critical viscous stability at given a given k are shown in plot (c), for various
values of m. The region below each curve is always stable. In some cases, the stable
region also extends above a neutral curve, as with some of the curves in figure 6
onward, showing the restabilisation phenomenon as Re increases. The critical viscous
mode is marked on these plots with a cross ×. The azimuthal wavenumber m of each
curve is labelled. Panel (d) shows growth rates σ for inviscid instabilities, as functions
of k for various values of m. Each line colour corresponds to the same values of m as
in the viscous panel (c). We sometimes see a strong correlation between the bands of
unstable inviscid wavenumbers compared to the sets of viscous wavenumbers that are
unstable, but this is not always the case. In most cases, only the range m= [0, 1, 2, 3]
is displayed. However, for figure 4 the relevant critical viscous mode has m= 7, hence
for that case we plot the inviscid modes for the range m= [0, 1, . . . , 9].

6. Results and discussion
6.1. Eigenfunction shapes

Figure 3 is an example from region α, the CI regime, where centrifugal instability
is preferred. The vertical cross-section (a) exhibits strong azimuthal flow across the
gap width, just as in the classical Taylor-vortex cell structure. CI are stabilised by
the presence of stratification, increasing the critical Reynolds number compared to
unstratified flow. The competition between the growth rate of CI compared with SRI
is discussed by Leclercq et al. (2016). The m = 1 neutral curve in figure 3(c) lies
close to the m= 0 curve, which is a feature of the classical (unstratified) Taylor-vortex
problem, and we see from figure 2 that if η is reduced slightly, past the dotted curve,
the m=1 mode becomes preferred. Figure 3(d) shows that the inviscid modes stabilise
at vertical wavenumber k ≈ 1, consistent with the rapid increase in critical Reynolds
number as k approaches 1 seen in figure 3(c).

Figures 4–6 present examples from region β. Here, the critical viscous modes are
SRIs with eigenfunctions similar to those seen in Shalybkov & Rüdiger (2005). They
have simple eigenfunction shapes, filling the gap, with length scales of the same order
as the gap width, in this respect like CI modes. We label them ‘simple SRI’. As
already mentioned, the cross-sections in figures 4(a,b)–6(a,b) hint at inertia–gravity
wave structures. These are counterpropagating because R[Φ] changes sign near the
centre of the gap. The waves propagate against the mean flow on each side of the gap.
For Fr= 1, as in figures 4–6, the SRIs seen in region β typically have Rec values in
the range 100< Rec < 400, although this increases as one approaches the narrow gap
limit. For instance, Rec = 3060.3 in figure 4, which has η= 0.95.

In the case of figure 4, the vertical structure of the critical SRI m = 7 mode
is similar looking to that of the CI m = 0 mode; compare figures 4(a) and 3(a).
Notably this similarity is not seen for the inviscid eigenfunctions, suggesting that
the viscous SRI has enabled Rayleigh-like behaviour to persist beyond the Rayleigh
neutral curve, albeit for m 6= 0. The neutral curves in figure 4(c), corresponding to the
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FIGURE 3. See § 5.2 for a description of the multiplot layout. An example of CI
(centrifugal instability), found as the critical viscous mode within region α of figure 2.
Here, η = 0.90, µ = 0.40, and Fr = 1.0. The critical viscous mode of instability has
Rec = 164.80 with m = 0, k = 3.454, and ω = 0.4217. Panel (b) is left blank since the
mode is axisymmetric, and hence there is no variation in the θ direction. The viscous
and inviscid plots are labelled as (c,d) to match the layout of figures 4–9.

various values of m, are all very close together – this is a phenomenon that occurs
as the narrow-gap limit is approached, with the critical azimuthal wavenumber mc

climbing to higher and higher values. A slight surprise is that the band of inviscidly
unstable vertical wavenumbers is significantly narrower than the range of the viscously
unstable wavenumbers, comparing figures 4(c) and 4(d).

Figure 5(a,b) shows an example of critical viscous SRI in the heart of the SRI
region β of figure 2. The form of the instability is fairly similar to the narrow-gap
case of figure 4, supporting the view that the instability mechanism is the same. Again
we see Rayleigh-like behaviour in the vertical cross-section; compare figure 5(a) to
figure 3(a). The radius at which R[Φ]=0 has moved slightly inward from the midway
position between the cylinders. We see from figure 5(c,d) that m = 0 can still be
unstable, because µ < η2, although m = 0 is no longer the first mode to become
unstable. For much of region β of figure 2, CI and SRI are both active, it is just
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FIGURE 4. See § 5.2 for a description of the multiplot layout. An example of critical
viscous SRI close to the narrow-gap limit, found as the critical viscous mode within region
β of figure 2. Here, η = 0.95, µ = 0.95, and Fr = 1.0. The critical viscous mode of
instability has Rec = 3060.3 with m = 7, k = 2.809, and ω = 6.8190. For this frequency,
R[Φ(rc)] = 0 occurs at rc = 19.5, although R[Φ(r±)] = ±

√
2ZΩ does not occur within

the radial range. Note that the most unstable inviscid mode with the largest growth rate
occurs here for m= 27, much higher than the m of the critical viscous mode.

that the SRI mode tends to dominate at Fr = 1 or less. Unlike the narrow-gap case,
the lower bound of the range of inviscid unstable vertical wavenumbers is a good
indicator of the form of the viscous neutral curve, compare figures 5(c) and 5(d).

Figure 5(d) has been cut off at k = 30. At these values of η and µ, inviscid
instability is found at all large wavenumbers. For the m = 1 mode, the growth rate
increases monotonically with k, and at large k the inviscid instability is concentrated
near the inner cylinder (Billant & Gallaire 2005). However, these high wavenumber
unstable modes play no role in the viscous theory of onset, because they are strongly
damped by viscosity.

Figures 6 and 7 are examples of SRI lying on either side of the boundary between
regions β and γ . Although these two points are nearby in parameter space there is
a big difference in their Rec. Figure 6 in region β is another example of the simple
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FIGURE 5. See § 5.2 for a description of the multiplot layout. Another example of critical
viscous SRI, here for η= 0.65,µ= 0.25 and Fr= 1.0, occupying region β of figure 2. The
critical viscous mode of instability has Rec= 119.6 with m= 1, k= 4.208, and ω= 0.5246.
For this frequency, R[Φ(rc)] = 0 occurs at rc = 2.332. R[Φ(r±)] =±

√
2ZΩ cannot occur

for this (η, µ) because 2ZΩ < 0 throughout the radial range.

viscous SRI mode, similar to figure 5 though with the instability enhanced near the
inner cylinder compared to the outer. Figure 6(c) shows a strange behaviour, with a
closed domain of instability at Re≈ 300 (see also figure 10c). Even a slight increase
in Re stabilises the system, though it becomes unstable again at larger Re. This
behaviour is discussed in §§ 6.2 and 6.3 below. Figure 6(d) is very different from
figure 5(d). The large wavenumber inviscid instability concentrated near the inner
boundary disappears as we travel in parameter space across the Rayleigh neutral
curve between (η, µ) = (0.65, 0.25) and (0.45, 0.45) leaving only thin bands of
inviscidly unstable wavenumbers. If η is further reduced these thin bands of unstable
wavenumbers disappear, consistent with figure 1(b).

Figure 7 is in region γ . There are two types of minimal-Re mode in figure 7(c),
which is similar to figure 6(c) apart from the disappearance of the closed unstable
domain. The first of these modes is the critical viscous mode, marked with a cross
in figure 7(c), with wavenumbers m= 1 and k= 10.407. This is the inner boundary-
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FIGURE 6. See § 5.2 for a description of the multiplot layout. Another example of critical
viscous SRI, here for η = 0.45, µ = 0.45 and Fr = 1.0, occupying region β of figure 2,
close to the thin solid discontinuity curve dividing region β from region γ . The critical
viscous mode of instability has Rec = 304.1 with m = 1, k = 4.436 and ω = 0.5951. For
this frequency, R[Φ(rc)] = 0 occurs at rc = 1.273, although R[Φ(r±)] = ±

√
2ZΩ does

not occur within the radial range. There is a closed unstable domain in the bottom left
corner of (c), which is shown in more detail in figure 10(c). This closed domain contains
the critical viscous mode of instability, but there is also a separate domain of instability
visible for higher Reynolds numbers, which appears to be unbounded in Re.

trapped mode shown in figure 7(a,b); see SI figure S7 for a more detailed view of the
same mode. It has very little activity away from the inner boundary, hence the name
inner boundary-trapped mode. If η and µ are reduced, moving from the γ -region to
the ζ -region in figure 2, at around η ≈ µ ≈ 0.2 the inner boundary-trapped mode
morphs into an RI (see figures S1–S6 of the SI), like that in figures 13(a,b) below,
where wave-like behaviour becomes apparent in the outer regions of the gap. The RI
is further described in § 7.2 below.

As already remarked, the figure 7(a,b) mode is not inviscid-type. There is no
inviscid mode resembling it, and it has no counterpart in figure 7(d). The figure 7(a,b)
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FIGURE 7. See § 5.2 for a description of the multiplot layout. An example of the inner
boundary-trapped SRI, found as the critical viscous mode within region γ of figure 2.
Here, η= 0.40, µ= 0.45 and Fr= 1.0. The critical viscous mode of instability has Rec =

6526.7 with m= 1, k = 10.407 and ω = 0.7823. For this frequency, R[Φ(rc)] = 0 occurs
at rc = 0.816, although R[Φ(r±)] = ±

√
2ZΩ does not occur within the radial range. An

alternative view of the eigenfunction shape is given in SI figure S7.

mode depends not only on viscosity but also, evidently, on the no-slip condition at the
inner boundary, and in this respect it resembles the inherently viscous boundary-layer
shear instability studied by Baines et al. (1996).

The second minimal-Re mode in figure 7(c), which has vertical wavenumber near
k ≈ 5 and onsets at Re = 71 840 (shown as figure S17 in the SI), does, by contrast,
have an m = 1 inviscid counterpart in figure 7(d). It has an eigenfunction (shown
as figure S18 in the SI) resembling the viscous eigenfunction except close to the
boundaries. So it qualifies as an inviscid-type mode as previously defined in § 5.1.
There are counterpropagating waves trapped near each boundary, with velocity fields
closely similar to the Kelvin waves noted by Kushner et al. (1998) and Yavneh
et al. (2001). If we reduce η and µ, moving down and to the left in figure 2,
keeping to the left of the thin solid discontinuity curve – but now moving not toward
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FIGURE 8. See § 5.2 for a description of the multiplot layout. An example of an inviscid-
type SRI, found as the critical viscous mode within region δ of figure 2. Note that near
the outer boundary there is a maximum velocity perturbation amplitude equal to uθ =
0.76, (measured in units of the maximum radial velocity) and hence it is still significant
compared to perturbations elsewhere in the flow. Here η=0.20,µ=0.10 and Fr=1.0. The
critical viscous mode of instability has Rec= 670.1 with m= 1, k= 9.067 and ω= 0.2384.
For this frequency, R[Φ(rc)] = 0 occurs at rc= 0.577 and R[Φ(r−)] =−

√
2ZΩ occurs at

r− = 0.319. R[Φ(r+)] =+
√

2ZΩ does not occur within the radial range.

region ζ but toward region δ, on the far side of the dotted curve – then the critical
Reynolds number of the inviscid-type mode reduces faster than that of the inner
boundary-trapped mode. Eventually the inviscid-type mode has a lower Rec than the
inner boundary-trapped mode, so that the counterpart of figure 7(c) would have the
inviscid-type mode on the left of figure 7(c) having a lower minimum than the inner
boundary-trapped mode on the right. Thus when the dotted curve marking the γ –δ
border is crossed downward in figure 2, the inviscid-type mode, with its lower k
value, takes over from the inner boundary-trapped mode as the critical viscous mode.
Note that in figure 7(d) the fastest-growing inviscid mode is the m= 2 mode, but in
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FIGURE 9. See § 5.2 for a description of the multiplot layout. An example of the wide-gap
SRI, found as the critical viscous mode within region ε of figure 2. Here, η= 0.05, µ=
0.05 and Fr= 1.0. The critical viscous mode of instability has Rec = 20 008 with m= 1,
k = 9.477, and ω = 0.5378. For this frequency, R[Φ(rc)] = 0 occurs at rc = 0.0734,
R[Φ(r−)]=−

√
2ZΩ occurs at r−=0.0536, and R[Φ(r+)]=+

√
2ZΩ occurs at r+=0.102.

Note that the range of inviscidly unstable wavenumbers appears to be entirely distinct from
the range of viscously unstable wavenumbers.

the viscous mode picture, figure 7(c), it is the m= 1 mode that has the lower critical
Re, the m= 2 viscous mode (not shown) having higher Re.

Figure 8 is typical of the inviscid-type mode found in region δ. Comparing
figures 8(c) and 8(d) we see the first viscous mode to become unstable as Re is
raised, marked with a cross in figure 8(c), has a k value, k = 9.067, similar to
that of the fastest-growing inviscid mode, as well as the same m value, m = 1.
The inviscid mode eigenfunctions (shown in figure S21 of the SI) resemble the
corresponding viscous eigenfunctions. So once again we have an inviscid-type mode
as defined in § 5.1. Like the inner boundary-trapped modes in region γ in figure 2,
the inviscid-type mode has a large amplitude near the inner boundary, but it still has
significant amplitude near the outer boundary, particularly noticeable in the azimuthal
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velocity contours in figure 8(a). This distinguishes it from the inner boundary-trapped
mode where there is essentially no activity near the outer boundary.

Figure 8(c) has a number of interesting features. In addition to the dominant inviscid
and viscous modes with m= 1 and k≈ 9, the ‘overtone’ inviscid modes at k≈ 17 and
k≈ 23 also show up on the viscous figure 8(c), though curiously the k≈ 23 viscous
mode has ‘necked off’, generating a closed unstable domain similar to that seen in
figure 6(c). These ‘overtone’ inviscid modes again have similar eigenfunctions to their
corresponding viscous modes (not shown). There is an additional low-k mode visible
in figure 8(c) with k≈3. This mode has no inviscid counterpart, and its eigenfunctions
look quite different from the mode shown in figure 8(a,b). This low-k mode has strong
activity right up to the outer boundary. At Fr = 1 this low-k mode is never the first
to become unstable as Re increases, so we have not plotted an example here. It is
possible, however, that this mode (and indeed others not shown here) might become
more significant at other values of Fr.

When approaching region ε from region δ, moving toward the bottom-left corner of
figure 2, there is another discontinuous change in the shape and vertical wavenumber
of the critical viscous mode, although Rec remains continuous. This is represented
by the short dotted curve separating the two regions in figure 2. Another short
dotted curve in this figure separates region ε from region ζ where again there is
a change in eigenfunction form but no discontinuity in Re. Region ε exhibits a
high-Re SRI as the critical viscous mode, which we call the wide-gap mode, or
wide-gap SRI. An example is shown in figure 9. Particularly striking are the strong
vertical flows occupying most of the gap. This wide-gap mode and the radiative
instability shown in figure 13 below could be related to the wall modes found in the
non-rotating study of Chen, Bai & Le Dizés (2016). For Fr= 1.0 the wide-gap-mode
SRI typically has a critical Reynolds number of Rec > 104. There are no inviscid
unstable modes for the range of k and m for which we find wide-gap-mode SRI, so
there is a lack of correlation here between the unstable wavenumbers of the viscous
and inviscid systems. For this mode we see distinct bands of viscous instability
within the (m, k, Re)-parameter space, as seen in figure 9(c). Inviscid-type modes, in
the form of viscous modes corresponding to the high-k inviscid modes in figure 9(d)
were found, but are not shown as they onset at higher Re than the wide-gap modes.

6.2. Closed unstable domains
Figure 10 shows examples of several closed unstable domains, like that already seen
in figure 6(c). Figure 10(c) zooms in on the lower-left part of figure 6(c). These are
closed regions of the (m, k,Re)-parameter space for fixed values of (η,µ,Fr); here the
flow can be made linearly unstable for a finite range of Re only. Restabilisation always
occurs when Re is increased. A similar closed unstable domain phenomenon can be
seen in the Taylor–Couette problem with vertical flow, see Cotrell & Pearlstein (2004),
Altmeyer, Hoffmann & Lücke (2011). Viscosity is clearly important in the closed
unstable domain phenomenon, and in a way that can be sensitive to parameter values.
For instance, if η is slightly reduced from 0.45 to 0.40, keeping µ=0.45 – i.e. moving
leftward across the thin discontinuity curve in figure 2 from the cross marked figure 6
to that marked figure 7 – we see a dramatic change in Rec from 304.1 to 6526.7 as
the critical viscous mode changes shape and k-value. It has been verified that these
changes are indeed discontinuous and take place precisely as the thin discontinuity
curve is crossed, whether leftward or upward. It will be seen shortly that the changes
are associated with the closed unstable domain disappearing – altogether ceasing to
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FIGURE 10. Examples of closed unstable domains. For flow parameters within these
domains, the flow is linearly unstable, whereas it is stable outside. These therefore provide
examples where increasing Re can restabilise the flow. (a) η = 0.56, µ = 0.50 and Fr =
10/3. (b) η = 0.57, µ= 0.50 and Fr = 10/3. (c) η = 0.45, µ= 0.45 and Fr = 1. (d) η =
0.70, µ= 0.70 and Fr= 1. All four panels have m= 1.

exist. By contrast, the co-existing inviscid modes have properties and fastest growth
rates that vary smoothly across the discontinuity curve.

Closed unstable domains are numerically challenging to find, as they are easily
missed without a rigorous and time-consuming scan of the entire (m, k,Re)-parameter
space. In general we have found closed unstable domains only by utilising guesses
from nearby regions of the (η, µ, Fr)-parameter space.

In each case where we have observed closed unstable domains, some form of
instability does appear to switch on again as Re is further increased, as happens
in the case of figure 6(c). In that case, separate domains of instability can be seen
at higher Re in figure 6(c), with inviscid-type modes that morph continuously into
inviscid modes as Re→∞. Such modes are seen for m= 2 near k≈ 4, in figure 6(c),
and for m= 1 near k≈ 4.4. The latter may well be continuous with the m= 1 mode
near k≈ 5 in figure 7(c).

Regarding the closed unstable domains, in some cases we have evidence that
they can quickly shrink, and then disappear, as parameters are changed within the
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(Re, Fr, η, µ)-parameter space. Consider figure 10(a,b), which shows closed unstable
domains for slightly different η values, 0.56 and 0.57, with µ= 0.5 and Fr= 10/3. As
can be seen, the closed domain at η= 0.56 is significantly smaller, with a Reynolds
number range of 700< Re< 875 rather than the range 600< Re< 1175 of η= 0.57.
Upon further reducing η, the closed unstable domain shrinks and ultimately disappears
entirely.

Since the critical viscous mode in figure 6 is on the edge of a closed unstable
domain, which disappears as η is decreased or µ is increased, the critical viscous
mode must, as already remarked, jump discontinuously when the closed unstable
domain ceases to exist. It changes its eigenfunction shape discontinuously, with an
upward jump in Rec. The discontinuous behaviour accounts for the way figures 6
and 7 differ so drastically, even though they are closely adjacent in parameter space,
with η values only 0.05 apart and µ values the same. At around η = 0.65 and
µ= 0.72, the upward jump in Rec takes Rec to values beyond the threshold stability
limit Re6 106 set in the numerical search. That is where the thin discontinuity curve
meets the thick solid stability limit curve in figure 2.

A similar closed unstable domain phenomenon is seen in figure 6 of Rüdiger
et al. (2017). This figure, derived numerically, shows a closed unstable domain in the
(Re, Rn)-parameter space for η= 0.52 and m= 1. Here Rn=Nrind/ν is a stratification
Reynolds number. This closed unstable domain disappears at around µ' 0.571, which
is similar to our result (not shown here) of seeing the corresponding closed unstable
domain disappear at µ≈ 0.58 for η= 0.52, Fr= 1.

6.3. The point of continuity
As already mentioned in §§ 5.1 and 6.1, the thin solid curve in figure 2 marks a
discontinuous jump in Rec and other viscous SRI properties; and in § 6.2 we explained
how this jump is related to the vanishing of closed unstable domains. As we reduce η
and µ along the thin solid discontinuity curve in figure 2, the jump becomes steadily
smaller until the change in Rec, and the other properties, becomes continuous at the
point X. We called X the point of continuity; and for Fr = 1 it is approximately at
η = 0.2172 and µ = 0.1212. Figure 11 shows how the discontinuity disappears (see
caption).

The point of continuity is a result of an overlap of the relevant domains in the
viscous parameter space between the simple viscous SRI and the inviscid-type SRI.
In figure 6(c) we see the m = 1 closed unstable domain at k ≈ 4.4 with a critical
Rec = 304.1, and an m = 1 inviscid-type mode with a similar k but a minimum
Re ≈ 12 000, much larger. The closed unstable domain in figure 6(c) resembles a
teardrop below the upper m = 1 inviscid-type mode branch. If we look at the cross
corresponding to figure 6 in figure 2, it lies just to the right of the thin discontinuity
curve. As we move in (η, µ)-parameter space downward and to the left, just keeping
on the right-hand-side of the thin discontinuity curve, the minimum Re value of
the inviscid-type mode drops rapidly, while the Rec of the closed unstable domain
mode varies only slowly. At a value of µ just above the point X value, and with η
just to the right of the discontinuity curve, the closed unstable domain teardrop has
become smaller and hangs just below the curve corresponding to the inviscid-type
neutral modes. If we keep µ fixed and reduce η, crossing the discontinuity curve,
the teardrop closed unstable domain disappears, and Rec jumps up, but only by a
small amount because the Rec corresponding to the inviscid-type mode was only just
above the Rec of the closed unstable domain. If instead of crossing the discontinuity
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FIGURE 11. Tracking the discontinuity in Rec near to the point X in figure 2. Each plot
shows the critical Reynolds number Rec for instability for a range of η and µ values. In
both plots we have Fr = 1.0. We can see that the system transitions from continuous to
discontinuous as η and µ are increased. In (a), we have 0.2 < η < 0.25. Blue crosses
give the results for µ= 0.11, red pluses give the results for µ= 0.12 and green dots give
the results for µ = 0.14. In (b), we have 0.1 < µ < 0.15. Blue crosses give the results
for η= 0.21, red pluses give the results for η= 0.22 and green dots give the results for
η= 0.23.
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FIGURE 12. (a) A plot of the (m, k, Re)-parameter space for η= 0.22, µ= 0.1245,m= 1
and Fr = 1.0, just above the point of continuity X in figure 2. It can be seen that the
closed unstable domain of region β has merged with the unbounded high-Re domain of
region δ. (b) Neutral curves in (k, Re)-parameter space for η = 0.0786, µ = 0.05, m = 1
and Fr= 1.0, at the transition between region δ and region ε.

curve, we continue down and left in (η, µ)-parameter space, passing to the right of X,
the teardrop closed unstable domain is engulfed by the inviscid-type mode. A plot
in the (k, Re)-parameter space of the neutral curve for a case near X, at η = 0.22,
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µ = 0.1245, is shown in figure 12(a). So with a value of µ below that of point
X in figure 2, no discontinuity in Rec occurs as η is varied. Some more detailed
information about closed unstable domains and the point of continuity is given in § 7
of the SI.

6.4. Wide-gap transition
The transition between regions δ and ε does not involve closed unstable domains.
Instead, as the transition is approached, the inviscid-type SRI of region δ requires
increasingly high Rec. At the same time, the wide-gap SRI becomes more unstable,
with smaller Rec. The two instabilities operate at different bands of vertical
wavenumber k, and as the transition between the two regions is crossed, the wide-gap
SRI becomes more unstable than the inviscid-type SRI. The transition between regions
δ and ε can therefore be considered to be another codimension-2 bifurcation.

This transition can be seen in figure 12(b), which shows an example where the
two instabilities have approximately the same Rec. In this figure, the wide-gap-mode
SRI corresponds to the unstable region around k ≈ 9, whereas the inviscid-type SRI
corresponds to the unstable region around k ≈ 20. Figure 12(b) corresponds to the
point (η,µ)= (0.0786, 0.05) in figure 2, on the dotted curve just below and to the left
of the triple point T, which is at (η, µ)= (0.081617, 0.057637). If we move slightly
to the right of the dotted curve, by making η slightly greater than 0.0786 keeping
µ= 0.05, then the inviscid-type mode with higher k onsets first. If instead we move
slightly to the left, then the wide-gap mode onsets first.

Separate wavenumber bands of instability are predicted to exist for the viscous
domain. In the present work they are seen only in figures 7(c), 8(c), 9(c) and 12(b);
this is because we have generally provided a zoomed-in view of the local (m, k, Re)-
parameter space.

7. Radiative instability
7.1. Background

The radiative instability is a form of stratified non-axisymmetric instability characteri-
sed by the presence of a perturbation wave, strongest near the significant surface
R[Φ(rc)] = 0, close to the inner cylinder. It travels around the inner cylinder, with an
outward propagating wave in the outer regions r> rc of the gap. Le Dizès & Riedinger
(2010) found WKBJ-inviscid RI when the outer cylinder had been moved to infinity,
replacing the usual outer boundary condition with a condition allowing only outward
radiation, which for a growing mode implies exponential decay with r because the
group velocity is finite (McIntyre & Weissman 1978). At weaker stratification, when
a significant surface R[Φ(r)] = ±N can occur, Le Dizès & Riedinger (2010) found
a form of RI in which the waves do not propagate all the way to the outer cylinder,
but are truncated beyond this significant surface.

Experimental confirmation that RIs exist was provided by Riedinger et al. (2011).
From the edge of the inner cylinder to the edge of their large rectangular tank, the
smallest gap width was 17.5 times the radius of the largest cylinder used, roughly
corresponding to η6 0.057.

RI-like modes were detected in numerical viscous simulations by Leclercq et al.
(2016) for non-wide-gap flows with η = 0.417. It was found for linear perturbations
in the supercritical domain, i.e. beyond the onset of instability. They found a
growing mode that had a significant surface with R[Φ(rc)] = 0 and wave-like

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

24
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.245


Viscous and inviscid strato-rotational instabilities 894 A13-27

behaviour at larger r. As in the Le Dizès & Riedinger (2010) theory, the wave-like
behaviour terminated beyond the significant surface where R[Φ(r)] = N, see
Leclerq et al. figure 7(a) and figure S16 of the SI. In the presence of viscosity this
significant surface can act like a wave absorber. They found this behaviour at Re=106,
m= 1 and µ just below the Rayleigh critical value of η2. The fastest-growing mode
there has k large, typically over 100. This detection confirmed that the RI could exist
away from the wide-gap limit, although it remained unclear whether the RI could
exist as a critical viscous mode of instability. Examples where it does exist have been
found in our work, as will be illustrated next.

7.2. The RI in the present work
Figure 13(a,b) gives an example of viscous RI that is also the critical viscous mode.
It is the first mode to become unstable as Re increases, at m = 1 and k = 54.72,
with Re = Rec = 12565.1. Here, η = µ = 0.1, close to the triple point T in figure 2,
lying in the ζ region. At onset the significant surface with R[Φ(rc)] = 0 is close to
the inner boundary, and the amplitude of the disturbance is greatest there. WKBJ-
inviscid theory predicts there should be wave-like behaviour beyond the significant
surface r = r+ = 0.2480, where the Lagrangian frequency R[Φ] equals the epicyclic
frequency

√
2ZΩ . Figure 13(a,b) shows that waves are indeed visible in the outer

parts of the annulus beyond this significant surface for this critical viscous mode. The
colour scheme has been altered in figure 13 from the previous scheme to make the
relatively low amplitude waves more visible. As N is greater than |R[Φ]| for all r, the
significant surfaces R[Φ(r±)] = ±N cannot occur in this Fr= 1 case, and the waves
reach the outer boundary. They are reflected back only weakly, thanks to the viscous
attenuation and the finiteness of the group velocity, as can be seen from the very weak
standing-wave pattern near the boundary. The m= 2 mode has a local minimum over
Re at k= 96.49 with Re= 39 032, larger than the m= 1 critical value.

There is also an inviscid m = 1 mode with a local maximum growth rate with
σ − iω = 0.003591 − 0.60302i at k = 53.77, not far from the critical viscous mode
value k=54.72. This inviscid mode is shown in the SI as figure S2. The eigenfunction
in figure S2 resembles that shown in figure 13(a,b) apart from having a stronger
back-reflected component, hence more standing-wave structure, thanks to the smallness
of the growth rate. However, the inviscid local maximum growth rate at k= 53.77 is
not the global inviscid maximum. The viscous minimum Re mode has approximately
3.5 wavelengths in the radial direction, see figure 13(a,b), as does the corresponding
k = 53.77 inviscid mode. However, there are also inviscid local growth-rate maxima
with one half-wavelength more in the radial direction at k = 57.59 and with one
half-wavelength less at k= 49.81 (see figures S10–S12 in the SI) and indeed a whole
family of such modes. The inviscid local growth-rate maxima corresponding to lower k
are higher than those for the k= 53.77 mode which resembles most closely the critical
viscous mode in figure 13(a,b). We also found viscous RI modes corresponding to
differing numbers of radial waves that can be fitted into the gap, but the mode shown
in figure 13(a,b) is strongly preferred among these viscous modes. For example, the
viscous mode at k = 50.13, (shown as figure S8 in the SI) which corresponds most
closely to the inviscid local maximum mode with k = 49.81, has minimum Re =
114199, much larger than the figure 13(a,b) value of Rec = 12 565.1, despite the fact
that the inviscid mode with k = 49.81 has a higher growth rate than the inviscid
mode with k = 53.77. The WKBJ-inviscid theory predicts the shape of the viscous
eigenfunctions reasonably well, but it does not predict which viscous mode will be the
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FIGURE 13. Two examples of the radiative instability as the critical viscous mode of
instability for stratified Taylor–Couette flow, in region ζ . (a,b) η=µ= 0.1, m= 1, Fr= 1.
The critical viscous mode of instability has Rec = 12565.1 with k= 54.72. The details of
the contour plots are given in § 5.2. ω= 0.5888, R[Φ(rc)] = 0 at r= 0.1501, R[Φ(r−)] =
−
√

2ZΩ does not occur, but R[Φ(r+)] =
√

2ZΩ occurs at r = 0.2480, and max(|Φ|)=
0.4888<N = 1. (c,d) η=µ= 0.1, m= 1, Fr= 2. The critical viscous mode of instability
has Rec = 18016 with k = 33.50. ω = 0.6460. R[Φ(rc)] = 0 at r = 0.1422, R[Φ(r−)] =
−
√

2ZΩ does not occur, but R[Φ(r+)] =
√

2ZΩ occurs at r= 0.2262. R[Φ] =N at r=
0.4514, but R[Φ]=−N does not occur. Note the colour scheme is different from that used
in the previous figures, to emphasise the low amplitude wave-like features, and we have
added positive (solid) contours at levels 0.005 and 0.015 and negative (dashed) contours
at levels −0.005 and −0.015 in all four panels.

first to onset. This may be because the region near the significant surface R[Φ(rc)] =
0, where the amplitude is largest, is near the inner boundary and hence is strongly
affected by viscosity.

The region ζ in figure 2 extends up to µ around 0.2. As µ increases above 0.1, the
figure 13 value, the epicyclic frequency increases, and the significant surface r+, where
the Lagrangian frequency equals the epicyclic frequency, moves outward. Therefore
the wave-like region where ∆=R[Φ2

]− 2ZΩ is positive (see (2.9)) shrinks. Also, the
magnitude of ∆ where it is positive decreases as µ increases, so the radial wavelength
of the waves in the radiative region increases with µ. In consequence, the number
of radial wavelengths that fit into the region between r+ and rout decreases as µ
increases, and when less than one wavelength fits in, the wave-like region is no longer
evident in contour plots. The shape of the eigenfunction has then changed from an RI
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with outgoing waves (region ζ ) to an inner boundary-trapped mode (region γ ). For
example, at η=µ= 0.20 (see figure S5 of the SI), which is just between the ζ and
γ regions, Rec = 5169 with k= 20.62, and R[Φ2

] − 2ZΩ = 0 occurs at r+ = 0.9259.
However, the wavelength given by the WKBJ-inviscid theory is then larger than 1
everywhere in the annulus, and no waves are visible in the viscous eigenfunction
in the region r+ < r < rout. As µ increases above 0.2, the significant surface r = r+
moves beyond rout, so ∆ < 0 everywhere and the wave-like region disappears, as is
the case in figure 7. The eigenfunction shape there is an inner boundary-trapped SRI,
whose amplitude is significant only in the vicinity of the inner cylinder. There is no
definite boundary between the ζ and γ regions, the critical values of Re and k vary
continuously with no discontinuities, but the eigenfunction shape morphs from the RI
found in the ζ -region into the γ -region inner boundary-trapped SRI. Figures S1–S7 in
the SI illustrate this evolution, for both the viscous and corresponding inviscid modes,
from the RI type SRI to the inner boundary-trapped SRI.

In figure 13(c,d) we show the viscous RI for N = Fr−1
= 0.5, which is small

enough to allow R[Φ(r)] = N, which happens at r = 0.4514. Just as observed by
Le Dizès & Riedinger (2010) and Leclercq et al. (2016), there is virtually no wave
amplitude beyond this value of r. The similarity between figures 13(c), 13(d) and
the RI found by Leclercq et al. (2016) is at first surprising, because their η = 0.417
is considerably larger than our figure 13 value and their value of µ− η2 is negative
whereas ours is positive. This means that the Leclercq et al. (2016) RI occurs at
parameters where the WKBJ-inviscid theory predicts waves everywhere inside the
significant surface R[Φ(r)] = N, whereas in our case the waves occur only between
the significant surface R[Φ(r+)]=

√
2ZΩ at r+= 0.2262 and the significant surface at

r= 0.4514 where R[Φ(r)] =N. Nevertheless, the Leclercq et al. (2016) RI does have
a significant surface near the inner boundary where R[Φ(r)] = 0 and a significant
surface where R[Φ(r)] = N in the annulus, and this seems to be sufficient to make
their eigenfunctions have a broadly similar shape to ours.

8. Conclusions
We have investigated the SRI for the vertically stratified Taylor–Couette system. In

particular we have investigated the parameter range 0.05 < η < 0.95 and 0.05 < µ

< 0.95 for both the viscous and inviscid domains, drawing a distinction between large
vertical wavenumbers k and small-to-moderate k.

For the case of large vertical wavenumbers, for which the viscous system can be
assumed to generally be stable, we have extended the inviscid instability criteria of
Park & Billant (2013). We were able to show that all flows with Fr<0.5 are inviscidly
unstable, though in certain parameter regimes the growth rate of these instabilities can
be extremely small. We give criteria which are sufficient for large-k (WKBJ) instability
in the range 0.5 < Fr < 2. For Fr > 2 the sufficient criterion for inviscid instability
is very close to (but not exactly at) the Rayleigh criterion µ = η2 for axisymmetric
centrifugal instability.

For small to moderate k, we have conducted a numerical analysis of the critical
viscous modes of instability for the stratified Taylor–Couette system. We have paid
particular attention to the case of Froude number Fr = 1, and we have shown that
the critical viscous mode of the SRI can take multiple distinct forms. These have
been labelled as the CI (region α in figure 2, typical eigenfunction shape in figure 3);
simple SRI (region β, figures 4–6); the inner boundary-trapped SRI (region γ ,
figure 7); the inviscid-type SRI (region δ, figure 8); the new wide-gap SRI (region
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ε, figure 9); and finally the radiative instability found at Fr = 1 and Fr = 2 (region
ζ and figure 13). We find that the RI, as described by Le Dizès & Riedinger (2010)
and Leclercq et al. (2016), can be the first critical viscous mode to onset in a
significant region of the (η, µ)-parameter space. We also showed that there is a triple
point, marked T in figure 2, at η = 0.081617, µ = 0.057637 when Fr = 1, where
the three regions δ, ε and ζ meet at a point. All three types of mode onset at the
same critical Reynolds number at this point. There may be some interesting nonlinear
dynamics in the neighbourhood of this point, since it corresponds to a codimension-3
bifurcation. However, this has yet to be explored. Note that the location, and possibly
the existence, of the triple point will depend on Fr. In an experiment, it could also be
affected by finite Schmidt number Sc (ratio of viscous diffusivity to solute diffusivity)
effects. We took the limit Sc→∞, and although Sc is generally large in experiments
we do not yet know how large Sc must be for solute diffusivity to be truly negligible.

Some of these viscous modes are inviscid-type – that is they have inviscid
counterparts – but some are not. This is why at first sight there seems to be very
little correlation between the viscous problem and the inviscid problem. However, it
is possible that all the inviscid modes have viscous counterparts, it is just that the
inviscid modes often have very low growth rates, so that enormously high values
of Re (beyond current numerical feasibility) would be needed to capture them using
viscous numerical codes. In many cases, but not always, we found modes that depend
crucially on viscosity which onset at lower Re than the inviscid-type modes. So in
those cases the inviscid-type modes are not critical viscous modes, and therefore
have no significance in the weakly nonlinear bifurcation problem. When we did see
inviscid-type modes onsetting first, we generally saw a strong correlation between
the unstable wavenumbers of the viscous and inviscid cases, and a similarity in their
eigenfunctions.

Another difference between inviscid and viscous theory is the existence of closed
unstable domains, and other cases of restabilisation as Re increases. The closed
unstable domains are present only for the viscous system. Some of the closed unstable
domains are continuous with the inviscid-type modes in region δ, as described in
§§ 6.2 and 6.3 and, in particular, illustrated in figure 12(a) where an unbounded
domain of inviscid-type modes, extending to Re = ∞, has merged with a closed
unstable domain of simple viscous SRIs.

To the best of our knowledge, the main new viscous results here are

(a) the clarification of where RI-like modes occur in parameter space as critical
viscous modes, region ζ in figure 2;

(b) the discovery of a new ‘wide-gap’ SRI at low η and µ in region ε in figure 2;
(c) a close examination of the way in which modal properties, including Rec, jump

discontinuously across the thin solid discontinuity curve in figure 2; and
(d) the existence at Fr= 1 of a triple point, T in figure 2, where three different types

of SRI onset at the same Rec.

The eigenfunction shape of the new wide-gap SRI at very low values of η and µ,
region ε in figure 2, was a surprise. We had expected RI to dominate in region ε, but
in fact the neutral stability curve at very small η and µ is dominated by a mode that
occupies the whole region between the cylinders (figure 9 and SI figure S13). The
fact that this mode has apparently no correlation to inviscid results, despite its outer
inertia–gravity wave structure, may account for why it has not been seen before. It
may be that at different values of Fr, RI or other modes do dominate the onset of
viscous instability at very low η, but this requires further investigation.
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Appendix A. Sufficient conditions for WKBJ-inviscid SRI
In § 3 we showed that the Park & Billant (2013) sufficient conditions for WKBJ-

inviscid SRI were satisfied provided that (3.1a) and (3.3) were both satisfied. They
are reproduced here as (A 1) and (A 2)

2

√
µ− η2

1− η2
<

1
Fr
, (A 1)

2
|1−
√
µ|

√
µ− η2

1− η2
+ 1<

2
Fr|1−µ|

. (A 2)

We restrict attention to the case 0<µ<1, both cylinders rotating in the same direction
and the inner one rotating faster.

A.1. Strong stratification: Fr 6 0.5
We now show that (3.1a) and (3.3), that is, (A 1) and (A 2), are satisfied for all Fr 6
0.5, for all µ in the range η2 6 µ < 1 and for all η within its full range 0< η < 1.
Because we have inviscid axisymmetric centrifugal instability for η2>µ, in the WKBJ
limit k� 1, the result for η2 6 µ < 1 just noted implies that for Fr 6 0.5 there are
inviscid WKBJ instabilities – either centrifugal or SRI – for all η and for all µ< 1.

Equation (A 1) is clearly satisfied for Fr 6 0.5, since
√
(µ− η2)/(1− η2) < 1 for

η2 6µ< 1. To show that (A 2) is also satisfied, we start from the following inequality:

4− 2(1+
√
µ)− (1−µ)

(1+
√
µ)

=
(1−
√
µ)2

(1+
√
µ)

> 0. (A 3)

This inequality is always satisfied for µ> 0 since the square of a real number must be
positive. Multiplying through by 1/(1−

√
µ) allows us to conclude that since µ< 1,

4
(1−µ)

>
2

(1−
√
µ)
+ 1.

However, if Fr 6 0.5, then 2/(1−µ)Fr > 4/(1−µ). Since µ< 1,
√
(µ− η2)/(1− η2)

< 1. Therefore, for Fr 6 0.5, we can conclude that

2
Fr(1−µ)

>
4

(1−µ)
>

2
(1−
√
µ)
+ 1>

2
(1−
√
µ)

√
µ− η2

1− η2
+ 1, (A 4)

implying that (A 2) is satisfied as well as (A 1).
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FIGURE 14. Special curves in the Fr
√
µ-plane. Plus signs denote where each quantity

turns positive; for example, g > 0 occurs above the line g = 0. Note that the region
marked ‘Stable’ implies that the two inequalities (A 1) and (A 2) required to prove inviscid
instability of Park & Billant (2013), cannot be mutually satisfied. The flow may still be
unstable to other instability mechanisms.

A.2. Moderate stratification: 0.5 6 Fr 6 2.0
Equation (A 2) can be written

2Fr

√
µ− η2

1− η2
<

2− Fr(1−µ)
(1+
√
µ)

= g(Fr, µ). (A 5)

The curve g=0 is shown in figure 14. Clearly if g60 then it is not possible to satisfy
(A 5). Henceforth, we restrict our attention to cases where g> 0, so the squared (A 5)
inequality, which can be written

4Fr2µ(1+
√
µ)2 − (2− Fr(1−µ))2 <η2

{4Fr2(1+
√
µ)2 − (2− Fr(1−µ))2}, (A 6)

is equivalent to (A 5). For the case Fr 6 2 then g> 0 throughout the parameter space.
However, g can change sign in the context of weak stratification with Fr > 2; see
§ A.3.

Equation (A 6) can be written as

η2f1 > f2, (A 7)

where
f1 = 4Fr2(1+

√
µ)2 − 4+ 4Fr(1−µ)− Fr2(1−µ)2,

f2 = 4Fr2µ(1+
√
µ)2 − 4+ 4Fr(1−µ)− Fr2(1−µ)2.

}
(A 8)
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These expressions factorise,

f1 = {
√

2(2Fr− 1)−
√

Fr(1−
√
µ)}{

√
2(2Fr− 1)+

√
Fr(1−

√
µ)}

× {Fr(1+
√
µ)2 + 2},

f2 =
1
3
{(1+

√
µ)
√

Fr−
√

2}{(1+
√
µ)
√

Fr+
√

2}

× {Fr(1+ 3
√
µ)2 − 4Fr+ 6}.

 (A 9)

These factorisations are helpful, because for Fr > 0.5 the sign of both f1 and f2 is
determined by the sign of the first bracket. This is obvious for the case of f1, where
the other brackets are clearly positive. In the case of f2, the sign of the factor

q(Fr, µ)= Fr(1+ 3
√
µ)2 − 4Fr+ 6

is not so obvious. In figure 14 q= 0 is plotted, and it can be seen that q> 0 whenever
g> 0. Since the condition (A 5) cannot be satisfied when g< 0, only regions where
g> 0 are of interest, so then q> 0. Using this information, we plot the two curves
where the first brackets are zero, f1 = 0 and f2 = 0, in figure 14.

The squared inequality (A 6) can also be written as

4Fr2(1−µ)(1+
√
µ)2 > (1− η2)f1. (A 10)

We have now shown that (A 7) and (A 6) are both equivalent to (A 2) in this moderate
Fr regime.

We can further simplify the problem by showing that in this regime (A 2) implies
(A 1), so that instead of having to establish two separate inequalities, it is sufficient
to establish (A 2), which can be done by establishing either (A 7) or (A 10). We
now must prove that in this moderate stratification regime, that if condition (A 7) (or
equivalently (A 10)) is satisfied, then (A 1) is automatically satisfied. We will then
have shown that (A 7) alone is sufficient to demonstrate inviscid SRI.

The proof proceeds by showing that the equality cases of (A 1) and (A 7) can never
intersect in the region 0<µ< 1, 0<η< 1. It then suffices to show that (A 7) implies
(A 1) at one point. Consider a point with η small and Fr = 1. Then (A 7) becomes
f2 < 0, which using the second of (A 9) becomes µ< 3− 2

√
2, while condition (A 1)

is µ< 0.25 in this case. Since 3− 2
√

2< 0.25, condition (A 6) implies (A 1) at this
point.

A.2.1. No intersections of the (A 1) and (A 7) equality cases
The two equality cases of (A 1) and (A 7) are

µ− η2
=

1− η2

4Fr2
, η2f1 = f2. (A 11a,b)

Eliminating η from these two, and after some algebra,

(2− Fr(1−µ))2 = (1+
√
µ)2, (A 12)

and since 2− Fr(1−µ)> 0 because we need g> 0 to satisfy (A 5), this becomes

Fr=
1

1+
√
µ
. (A 13)
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The corresponding value of η is given by

η2
= 1−

4
1+ 2Fr

. (A 14)

Now (A 13) requires Fr < 1, but then (A 14) requires η2 < 0, so clearly there are no
solutions, and therefore the equality cases can never intersect in the domain 0<µ< 1
if Fr> 0.5 and g> 0. So in this domain (A 7) is sufficient to indicate instability.

A.2.2. Sufficient conditions for WKBJ-inviscid SRI
If f1 < 0 then (A 10) must be satisfied, which is sufficient to predict the presence

of the SRI. If f1 > 0, then (A 7) must be satisfied for f2 < 0. So whatever the sign of
f1, f2 < 0 is sufficient to indicate the SRI. This criterion is

√
µ<

√
2
Fr
− 1, (A 15)

which applies for all η. This is the simplest general criterion we have been able to
find, and as η→ 0 it is gives the minimum µ that predicts instability. As η increases
above 0, the minimum value of µ below which inviscid SRI is guaranteed is found by
solving the equality case of (A 7) numerically at each value of η and Fr. An example
for Fr = 1 is shown in figure 1(b). Note that in this figure, the top boundary of the
red region approaches µ= 3− 2

√
2 as η→ 0 consistent with (A 15).

A.3. Weak stratification: Fr> 2.0
In this region the condition that g>0 for instability, see (A 5), immediately rules out a
range of µ which increases as Fr increases, see figure 14. Inviscid instability setting in
as WKBJ-SRI while being stable to axisymmetric disturbances becomes comparatively
rare in the weak stratification domain. Since µ− η2 < 0 allows unstable axisymmetric
modes, it is helpful to write criterion (A 6) in the equivalent form

µ− η2 <
(1− η2)(2− Fr(1−µ))2

4Fr2(1+
√
µ)2

. (A 16)

For fixed Fr, the maximum value of

(2− Fr(1−µ))2

4Fr2(1+
√
µ)2

is at µ= 1. Therefore

µ− η2 <
(1− η2)(2− Fr(1−µ))2

4Fr2(1+
√
µ)2

<
1− η2

4Fr2
, (A 17)

so the gap between axisymmetric instability at µ = η2 and SRI instability becomes
very small when Fr gets large. This is why the marginal stability given by criteria
(A 1) and (A 2) becomes virtually indistinguishable from the Rayleigh stability curve
µ= η2 in figure 1(a) for µ> 0.4, where Fr= 10/3.
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The point where the curve µ= η2 intersects the curve g= 0 also has significance.
This intersection occurs at η2

= 1− 2/Fr which gives a physical value of η if Fr> 2.
If η is below this threshold value, we cannot establish instability. To show this, let

η2
= 1−

2
Fr
− ε, ε > 0.

For instability g> 0, so let

µ= 1−
2
Fr
+ δ, δ > 0,

where δ < 2/Fr since µ cannot exceed 1. Then (A 16) becomes

δ < δ + ε <
(1− η2)δ2

4(1+
√
µ)2

.

But it is not possible to satisfy

δ <
(1− η2)δ2

4(1+
√
µ)2

without having δ > 4(1+
√
µ)2/(1− η2), which is incompatible with δ < 2/Fr since

Fr> 2 in this domain. So if η2 is below 1− 2/Fr, it is not possible to satisfy (A 16),
so we cannot establish instability in this case. This is why the WKBJ-inviscid mode
restabilises below µ= 0.4 in figure 1(a).

Note that if η2 is even slightly above this threshold value, then ε < 0. We can then
choose a positive δ such that δ + ε is positive but extremely small, and then it is
possible to satisfy (A 16), but the window of unstable SRI becomes extremely small.
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