
J. Austral. Math. Soc. 24 (Series A) (1977), 170-183

THE STABILITY INDEX OF A CACTUS

DOUGLAS D. GRANT and D. A. HOLTON

(Received 14 May 1976; revised 13 September 1976)
Communicated by W. D. Wallis

Abstract

We show that if G is a connected graph of order n such that no line lies in
more than one cycle (in other words, G is a cactus of order n), then the
stability index of G is one of the integers 0, 1, n—7, n—6, n—5, n—4 or n.

By finding an index-0 graph to which a given cactus optimally reduces,
we provide a structural characterization of cacti with given stability index.

1. Introduction

A cactus is a connected finite graph in which no line hes in more than one cycle.
The index-0 and stable cacti were characterized in McAvaney (1975). In this paper
we augment McAvaney's work by proving that the stability index of a cactus of
order n is 0, 1, n-1, n — 6, n—5, n - 4 or n, and by giving a characterization of
cacti with given stability index.

Throughout this paper, the word graph will mean finite undirected graph with no
loops or multiple lines. We shall adopt the basic graph-theoretical terminology of
Harary (1969). Notions relating to the stability index of a graph are described in
Grant (1974). Since this paper is a sequel to McAvaney (1975), we shall use several
ideas introduced in that paper. In particular, we note that Pn denotes a path Pn

rooted at an endpoint. For the purposes of the present paper we require also the
following definitions, in which G denotes an arbitrary graph.

The graph H is a semi-stable extension of G, if H has a partial stabilizing sequence
S such that Hs = G. (Note that this differs slightly from the definition of "semi-
stable extension" given in Grant, 1974.) We say that His reducible to G, or that H
reduces to G if H is a semi-stable extension of G, and that H is optimally reducible to
G, or H optimally reduces to G, if H is reducible to G and s.i. (H) = | V{H) \ - \ V(G) |.
If H is a semi-stable extension of G such that | V(H)\—\ V(G)\ = k, we say that H
is a rank-k extension of G. If the points uvu2,...,um form, in order, a partial
stabilizing sequence for G, we shall denote this sequence by :u1,ui,...,um:.

We shall adopt the convention that whenever we need to label specifically the
points of the path Pn, we shall use the labels »lf v2,..., vn, where vt is adjacent to
i7i+1for j = 1,2, ...,n-l.
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[2] Stability index of a cactus 171

A cactus C is said to contain an essential copy of Pn (n> 1) if it can be formed
from Pn by one or both of the following constructions:

(i) for some integer i, 1 < / < \n, join a new point b to points vt and vn_i+1 ofPn,
and root an arbitrary (possibly trivial) cactus at b;

(ii) if n is odd, root an arbitrary cactus at viin+1).
For example, the cacti which contain an essential coppy of Pb are of the forms

shown in Fig. 1.

* "Q" 1 2 3 A 5

(0
(«) (fc)

Cacti with an essential copy of Pb.
A"denotes a cactus rooted at b; Ydenotes a cactus rooted at t'3.

FIG. 1.

The copy of Pn from which C is formed by the above construction is said to be an
essential copy of Pn. (Note that in the terminology of McAvaney (1975) a transfig
in a cactus corresponds to an essential copy of either P2 or P3.)

An essential copy of Pn in a rooted cactus C is an essential copy of Pn in the
underlying unrooted cactus, which does not contain the root of C.

For n = 2, 3, 4, 5 and 6, let dn{C) denote the maximum number of (point-)
disjoint essential copies of Pn in the cactus C.

The following results will be of use to us in subsequent sections. Here and hence-
forth the symbol # will be used to denote the end of, or absence of, a proof.

LEMMA 1 (Holton and Grant, 1975). The graph G is semi-stable at point v if and
only if the set of points of G adjacent to v is fixed by the automorphism group of
Gv. #

LEMMA 2 (McAvaney, 1975). A rooted cactus C is semi-stable at a point which is
neither a cutpoint nor the root. #

In proving Lemma 2, McAvaney essentially provided the following algorithm
to find a point at which a rooted cactus C is semi-stable. The terminology we use in
our description of the algorithm is that introduced in McAvaney (1975).

MCAVANEY'S ALGORITHM

Step 1. Let bx denote the root of C, and set / = 1.
Step 2. Let Bt be a smallest branch at bt which, if i> 1, does not contain Z>f_l5

and let D{ denote the block in Bt that contains bt. If either / = 1 and Di has no
cutpoints, or i> 1 and bt is the only cutpoint in D{, let w be any point in Bx adjacent
to bit and go to Step 7.
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Step 3. Let bf+1 be a cutpoint in Dt closest to bt such that the branch Bf+1 at Z)f

containing bf+1 is as small as possible. If Bf+1 is not P2, relabel bf+1 as bi+1, and
go to Step 6.

Step 4. Let a be the endpoint in Bf+1. If C is semi-stable at a, set w = a and
go to Step 7.

Step 5. If b{ and fef+1 are the only cutpoints in Dt, then Dt is a cycle; in this case,
Cis semi-stable at some point w in D^ adjacent to bt or bf+1. Go to Step 7. Otherwise,
let bi+1 be a cutpoint in Dit next closest after bf+1 to Z»f such that the branch at Dt

containing bi+1 is as small as possible.
Step 6. Increase /by 1, and then go to Step 2.
Step 1. C is a semi-stable at w. Terminate algorithm. #
The following theorem is an amalgamation of results of Robertson and Zimmer

(1972), Heffernan (1972), McAvaney, Grant and Holton (1974) and McAvaney
(1975).

THEOREM 1. The index-0 cacti are Pnfor alln^-A and the graphs E7, Ult C/2, U3,
Ut and U5 shown in Fig. 2. A semi-stable cactus is semi-stable at a point which is
either a penultimate point or a non-cutpoint. #

• • i • • • • i-—4 • •

FIG. 2. Some index-0 cacti.

LEMMA 3 (Grant, 1974). Let T be a tree of order n. Then s.i. (T) = 0, 1, n-1,
n — 5 or n, and

(i) s.i. (T) = n if and only if either T^^ or d2(T) + d3(T)>0,
(ii) s.i. (T) = n-5 if and only ifd2(T) + ds(T) = 0 andd5(T)>0,

(iii) s.i. (T) = n-1 if and only if a\(T)+dz(T) + d5(T) = 0 and T£Pn for any
n > 3 other than n = l.

If s.i. (T) = n-5, then T is optimally reducible to P5, and if s.i. (T) = n-1, then
T is optimally reducible to E, unless T^ P7. #

As mentioned previously, it is our chief goal in this paper to extend the result
of Lemma 3 to cover all cacti. In McAvaney (1975), the first step was completed
when the following result was proved.
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[4] Stability index of a cactus 173

THEOREM 2 (McAvaney, 1975). Let C be a cactus of order n. Then s.i. ( Q = n
if and only if either Cz Kx or d2(C)+<4(C) > 0. (Equivalently, C is stable if and only
if either C^KX or the automorphism group of C contains a transposition.) #

2. The stability index of cacti

In this section we prove

THEOREM 3. If C is a cactus of order n, then s.i. (C) = 0, 1, n—7, n—6, n—5,
n—4, or n.

It is convenient to break the proof of Theorem 3 into a number of steps which we
describe in the lemmas to follow. Of these lemmas, we detail the proof of only one.
The others can be proved by using similar techniques.

First of all, Theorem 1 implies

LEMMA 4. IfC is an unstable cactus, then C is reducible to an index-0 cactus. #

LEMMA 5. Ifn ^ 9, the only cacti which are optimally reducible to Pn are Pn and Cn+1.
The only cacti which are optimally reducible to P8 are P8, C9 and the graph U6 shown
in Fig. 3. All other unstable cacti which are reducible to Pn,for n > 8, are reducible to
either E, or Uv

FIG. 3.

PROOF. Suppose that n ̂  8 and that C is a cactus which is reducible to Pn. If
C^Pn or C^Cn+1, then there is nothing to prove. Let us therefore suppose that
C£Pn, CgkCn+1. Let S= :u1,u2,...,um: be a partial stabilizing sequence for C
such that Cs^Pn, and let K= CUl;U2j.. >Um_x. Since K is a rank-1 extension of Pn, it
follows from Lemma 1 that either (i) there is i with K z «?{£«} such that
NK[um] = {»<,»»_<+J or (ii) NK[um] = 0 .

Case (/). NK[um] = {vi,vn_4+1}. If / = 1, then K^Cn+1. By Lemma 1, since
Cn+1 is point-transitive it follows that in any connected semi-stable extension of K
there is a point which is adjacent to all the points of K. We deduce that the only
cactus which is a semi-stable extension of K is K itself, so that C = K^ Cn+1, in
contradiction to our hypothesis.

If n is odd and / = [\ri\, then AT contains an essential copy of Pz, and so is stable
by Theorem 2. In this case C, being a semi-stable extension of K, is stable.

If n is odd and i = {\n}, then K is a tree, which by Lemma 3 is optimally
reducible to E7. It follows that C is reducible to Ev
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If n = 8 and i = 2, then K1^ 176. By inspection, U6 is optimally reducible to Ps.
It follows that if m = 1, then C ^ U6 and is optimally reducible to Ps. Now suppose
that m > 1. Let Z, = <?«,,«„,...,«„_„• Since £ is a rank-1 extension of [76, it follows from
Lemma 1 that either NL[um^\ = {um} or NL[um_x] = 0. In the former case L is
reducible to E7, so that C is reducible to is7. If NL[um^\ = 0, then m > 2. Let
M = CUlyUi<yUm!t. Since M is a rank-1 extension of L, it follows from Lemma 1
that either NM[um_2] = 0 o r NM[um_2] = {"m-i> or NM[um_2] = {um_1,um} or
Njif [«m-2] = {"m}- I n t n e fifst t w o cases M has a transposition automorphism, and
so C, being a semi-stable extension of Af, also has a transposition automorphism.
By Theorem 2, C is stable. In the remaining two cases M is, by inspection, reducible
to E7, and so C is reducible to E1.

Finally, if i> 1, w ̂  8, and i=£2 if « = 8, / ^ [|«] or {£«} if n is odd, then K is a
unicyclic graph which can readily be shown to reduce to either C7X or E7. In such
cases, C is therefore reducible to either L^ or E7.

Case (if). NK[um] = 0 . In th i scasem^2. LetL = CUljOl>...)1JiH_1. Since L i s a rank-1
extension of K, it follows by Lemma 1 that either there is i with 1 ^ /^{Jn} such
that NL[um_i\ = 0 or NL[um_x] = {um} or N^u^j] = {vt, vn_i+l, um} or N^u^j] =
{vt, pm_i + 1}. In the first two cases L has a transposition automorphism, so that C
has a transposition automorphism. By Theorem 2, C is stable in such cases. If
^i[Mm-i] = ivi> vn-4+i> um}' L c a n readily be shown to reduce to either L^ or £,. If
•^ifM»t-i] = ivi> vn-i+i)> l e t M = Cui,ut,...,um-a- Since M is a rank-1 extension of L, it
follows from Lemma 1 that NM[«m_2] = 0 , {«TO}, {«m-i}, or {«,„_!, Mm}. In the first
two cases M, and hence C, has a transposition automorphism and therefore C is
stable. In the remaining two cases M is readily shown to be reducible to Ux or

LEMMA 6. The only cacti which are optimally reducible to U5 are Ub and the graph
Uf shown in Fig. 3. All other unstable cacti which are reducible to Ub are also reducible
to E7. #

The next result, of a similar nature to the preceding two, will be used in the
following section.

LEMMA 7. All cacti other than P7 and Cs which are optimally reducible to P7 are
also optimally reducible to E7. All cacti other than t/4 which are optimally reducible to
C/4 are also optimally reducible to E7. #

We now return to Theorem 3.

PROOF OF THEOREM 3. That there are cacti of order n with stability index equal
to 0, 1 and n is clear from Theorems 1 and 2 and Lemma 5. Suppose that C is a
cactus of order n such that s.i. (C) $ {0,1,«}. It follows that C£Cn,C£U6,C£ t/7.
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[6] Stability index of a cactus 175

By Lemma 4, C is reducible to an index-0 cactus C*. By Theorem 1, C* is Pk for
some k>4, E7, Ut, U2, Ua, C/4 or C/5. By Lemmas 5 and 6 and the fact that
s.i. (C) £{1,«}, it follows that if C* is Pk for some k ^ 8, or Uj, then C is reducible
to E7 or to l^. We deduce that C is reducible to P4, P5, P6, P7, £7, L^, C/2, l/3 or l/4,
so that s.i. (C)^n—7. Since C is not stable, and because all graphs of order less
than 4 are stable, it follows that s.i. (C)<«—4. We deduce that s.i.(C) = n—1,
n—6, n—5 or w—4. #

REMARK. The results of the next section show that none of the possibilities
0, 1, n—7, n—6, n—5, n—4 or n can be disposed of in the statement of Theorem 3.

3. Characterization of cacti with given stability index

For the purpose of this section it is convenient to introduce some new
terminology and notation. For k = 4, 5, 6, or 7 let Ak denote the set of all cacti
optimally reducible to an index-0 graph on k points. Let Ao denote the set of all
stable cacti, A the set of all index-0 cacti, and U = {Cn: n > 9} u {Ue, l/7}.

It follows from Lemmas 4, 5 and 6 that U is the set of all index-1 cacti on more
than 8 points. Hence Theorem 3 implies that Ao u At u A5 u A6 u A7 u A u U contains
all cacti. In this section it is our goal to describe how the structure of a particular
cactus determines to which of the sets Ao, At, A5, A6, A7, A, U the cactus belongs.
By doing so, we will characterize cacti with a given stability index. We have already
characterized the elements of A (Theorem 1) and Ao (Theorem 2). Since the elements
of U have been explicitly listed, our task is to characterize the elements of Ait A5,
A6 and Av We note that AnAi = {Pii, AnA5 = {P5}, A n A6 = {Ult U2, P6},
Ar\A7 = {Vz,Vi,P1,E7}, A{nU = 0, for j = 4, 5, 6 and 7, AnU = 0 and that
AtnAj = 0 for 4</<y^7.

First of all we shall characterize the elements of At.

LEMMA 8. IfCeA^, then di(C)>0.

PROOF. If CeA^ then C optimally reduces to an index-0 graph of order 4.
Since the only index-0 graph of order 4 is P4, C reduces to P4, and so C is a
semi-stable extension of P4. This implies that C contains an essential copy of P4,
that is, di(C)>0. #

LEMMA 9.I/C is a cactus such that d^(C) = 1, then C is reducible to P4.

PROOF. If C^Pt there is nothing to prove. Let us suppose that C^P^. It follows
that C is one of the forms (a), (b) shown in Fig. 4. The two cases must be dealt
with separately. As similar techniques are used in the different cases, we shall only
prove here that a cactus of form (a) is reducible to P4, this being the more involved
of the two cases.
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FIG. 4. Cacti with an essential copy of Pt- X denotes a cactus rooted at b.

Thus suppose that C is of form (a) and let | V(C) | = n. We shall prove that C is
reducible to P4 by induction on n. Note that n ̂  5. If n = 5, then Xb is null and
C is semi-stable at b. Since in this case C62 A> it follows that C is reducible to P4.
If « = 6, then C is semi-stable at the unique point u of Xb and Cu is semi-stable at 6.
Since Cu6^P4, again C is reducible to P4. If n = 7, then C is one of the cacti
U8, U9, U1Q shown in Fig. 5. It is a trivial exercise to show that each of Ua, U9, Ulo is
reducible to P4, so that if n = 7, C is reducible to P4.

0,0

FIG. 5.

Now suppose that n > 7, and that the result holds for all cacti under consideration
which have order < n. Let us consider X to be a rooted cactus with root b. By
Lemma 2, Xis semi-stable at a point w^ b which is not a cutpoint. Since dt(C) = 1,
it follows that d^X) = 0, and so d^XJ = 0. We deduce that </4(CJ = 1, the
essential copy of P4 in Cw having the same points as the essential copy of P4 in C.
Since n>7, XW^P2, and so C is semi-stable at w. Now Cw is a cactus of order
n — 1 with dt(Cw) = 1. By the inductive hypothesis, Cw is reducible to P4. It follows
that C is reducible to P4.

The lemma now follows by induction. #

LEMMA 10. If C is a cactus such that di(C)>0, then C is reducible to P4.

PROOF. We shall prove the lemma by induction on | F(C)|. The lemma is true if
| V(C)\ = 4. (Here C^P4, and is the smallest cactus which has an essential copy
of P4.) Suppose, then, that | F(C)| = «>4 and that the lemma holds for all cacti
under consideration which have order <n. If dt(C) = 1, then C is reducible to P4

by Lemma 9. We shall therefore suppose that di(C)>l. By Theorem 1, C is
semi-stable at some point w which is either a non-cutpoint or a penultimate point.

https://doi.org/10.1017/S1446788700020188 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020188


[8] Stability index of a cactus 177

In the former case, Cw is a cactus of order n—1, with </4(Cw)> 1. By the inductive
hypothesis, Cw is reducible to P4, and so C is reducible to P4. In the latter case,
Cw is semi-stable at the endpoint x of C which is adjacent to w, and CWJ. is a
cactus of order n—2 with d£CWj) ^ 1. By the inductive hypothesis, CWiX is reducible
to P4, and so C is reducible to P4. The lemma therefore holds by induction. #

From Theorem 2, Lemma 8 and Lemma 10, we deduce

3
THEOREM 4. The cacti in AA are precisely those cacti C such that 2 d£C) = 0

i

#
We now consider the cacti in A5. Basically we follow the same steps as those

traced out above in characterizing the cacti in A±. Thus our first step is to prove a
result corresponding to Lemma 8. It is indeed straightforward to show that if
CeA5, then C contains an essential copy of P5. However, consider the cactus H
shown in Fig. 6. This cactus contains an essential copy of P5, but is only semi-stable
at points vt, v%, vt and v5, and consequently is not reducible to P5. To take into
account graphs like H which resist a straightforward paralleling of the steps used
to prove Theorem 4, we proceed as follows.

FIG. 6.

Let us say that an essential copy of P6 of the form of Fig. l(c) in a (rooted or
unrooted) cactus is strict if no branch of Y at vz is isomorphic to the rooted cactus Q,
with root x, shown in Fig. 6. Let d5(C) denote the maximum number of point
disjoint strict essential copies of P5 in the cactus C.

LEMMA 11. If C is a (rooted or unrooted) cactus such that db(C) = 0, and C is
reducible to the cactus C*, then db(C*) = 0.

PROOF. If C has no essential copies of P5, it is clear that C* has no essential
copies of P5. In this case the lemma holds. Let us suppose, then, that C has essential
copies of Ps (which are not strict), and that C* has the strict essential copy of Ps

whose successively adjacent points are vx, v2, vs, vit v5. Then <{»j, v2, v3, »4, »5}> is an
essential copy of P5 in C which, by hypothesis, is not strict. It follows that C has a
branch at v3 isomorphic to Q. Suppose that the points of this branch are v3, v6,
p7, vs and v9, as shown on H in Fig. 6. Let S be a partial stabilizing sequence for

https://doi.org/10.1017/S1446788700020188 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020188


178 Douglas D. Grant and D. A. Holton [9]

C such that Cs = C*. In reducing C to C* via S, at least one of the points v6, t>7

v8 and v9 is removed. However, removing any one of ve, t>7, v8, v9 creates new
automorphisms, contrary to the fact that S is a partial stabilizing sequence. This
contradiction invalidates the hypothesis that J5(C*)>0. #

REMARK. Lemma 11 formalizes and generalizes the reason why the graph H of
Fig. 6 fails to reduce to P5.

LEMMA 12.1/CeAs, then J6(C)>0.

PROOF. Since CeA5, C reduces to an index-0 graph of order 5, which must be P5.
Since J5(P5) > 0, Lemma 11 shows that d~6(C) > 0. #

LEMMA 13. If C is a cactus such that db(C) = 1, then C is reducible to P6.

PROOF. C is of one of the forms of Fig. 1, where, if C is of form (c), no branch
at v3 is isomorphic to Q. The three cases must be dealt with separately. However,
we include here only the details for C of the forms (a) or (c), the proof for (b)
being similar to that of (a).

I. First of all, suppose that C is of form (a). We may suppose without loss of
generality that | F C Z ) ^ V(Y)\. We shall prove that C is reducible to P5 by
induction on n = | V{C) |. Note that n ̂  6. If n = 6, then C s C6, and C is reducible
to P6. Suppose that n>6, and that all cacti under consideration of order <n are
reducible to P5. If Xb is non-null, then by Lemma 2, X is semi-stable at a non-
cutpoint w^b. Since | V(X)\ <| V(Y)\, Xwg Y, and it follows that C is semi-stable
at w. By the inductive hypothesis, Cw is reducible to P5, and so C is reducible to P6.
Now suppose that Xb is null. Since n>6, YV3 is non-null. By Lemma 2, Yis semi-
stable at a non-cutpoint x^v3. Since ds(C) = 1, we have db{Yv) = 0, and C is
semi-stable at JC unless either

(i) V(Y) = {v3,x} or (ii) F * s Q ,

where Y* is the smallest branch of Y at v3, considered here as an unrooted graph.
If C is semi-stable at x, then by the inductive hypothesis Cx is reducible to Ps, and
so C is reducible to P5. If C is not semi-stable at x, and (i) is the case, then :v3, x:
is a partial stabilizing sequence for C, and CV3iX^Pb. If C is not semi-stable at x
and (ii) is the case, then the subgraph of C induced by {vt, v%, v3, i>4, v5) u V( Y*)
has two disjoint strict essential copies of P6, and so </5(C)> 1, which is a contra-
diction. We see that in all cases C is reducible to P5, and so the lemma holds for
cacti of form (a) by induction.

II. Now suppose that C is of form (c). Once more we shall prove that C is
reducible to P5 by employing induction on « = | V(C)\. Note that «>5. If n = 5,
then C%P5, and there is nothing to prove. Suppose, then, that «>5, and that all
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cacti under consideration of order <n are reducible to P5. Since n > 5 , YVz is
non-null. By Lemma 2, F i s semi-stable at a non-cutpoint w^v3. Let us suppose
w to be the vertex of semi-stability selected by McAvaney's algorithm.

Since J5(C) = 1, we deduce that d5(Y) = 0 and so db(Yw) = 0. It follows that if
C is not semi-stable at w, then the only automorphisms of Cw which do not extend
to automorphisms of C must map a branch of Yw at v3 which is isomorphic to P3

onto either <{u1; v2,v3}} or <{r3, vt, t>5}>. We deduce that Yw has a branch at v3

isomorphic to P3. Let us suppose that the successively adjacent points of this
branch are v3, uv u2 (see Fig. 7), and that < F( Y) \ {u±, M2, w}> is denoted by Z.

' 2 ' 3 ' 4 ' 5

FIG. 7. Part of Cw.

In C, w is adjacent to either or both of ult u2, and so there is a path P in C
joining v3 and w which includes at least one of ul9 H2. We shall now consider three
cases which exhaustively cover all possibilities. In each, let B denote the branch of
C at v3 which contains w, and D the block of B which contains w.

(a) There is no path in C joining v3 and w which is internally disjoint from P.
In this case w * v3. Since w is not a cutpoint of C, it follows that Nc[w] £ {ux, M2}.

If Uj^eNdw], then :ux,u2,w: is a partial stabilizing sequence for C, and CUlithW is
reducible to P5 by the inductive hypothesis. If Nc[w] = {M2}, then :M2, W: is a partial
stabilizing sequence for C, and C^ w is reducible to P5 by the inductive hypothesis.
In either case, C is reducible to P5.

(jS) w~r3.

Since C is a cactus, there is no path in C joining v3 and w which is internally
disjoint from both P and the path consisting of the line joining w and v3. Since w
is not a cutpoint, it follows that Nc[w]^{v3, ult wj. Arguing as in case (a) we find
that we can always reduce C to P5.

(y) w *< »8, and there is a path R in C joining i>3 and w which is internally
disjoint from P.

Note that in this case we cannot have both W~MX, W~H 2 . Suppose first of all
that W~M2. Inspection of McAvaney's algorithm shows that w could not have been
selected at Step 2 or Step 4. It follows that w was selected at Step 5, so that D is
a cycle, the only cutpoints of C which lie in D being v3 and the point x, say, of
D other than w2 which is adjacent to w. Further, the branch on D at x is isomorphic
to P2. Now C is semi-stable at ux (see Fig. 8(a)), and CUl is reducible to P5 by the
inductive hypothesis. It follows that C is reducible to P5.
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"3 U, ' 3 u, U2

(a) (b)
FIG. 8. (a) Part of Yin case (y), with w~uz. (b) Part of yin case (y), with )f~«1.

Now suppose that w~uv Here HX is a closest cutpoint in B to P3, and the branch
at ux which does not contain t>3 is isomorphic to P2. Since McAvaney's algorithm
selected w rather than w2

 a s t n e point of semi-stability of Y, it follows that Step 5
of the algorithm was executed. Further, w could only be selected at Step 5 if ux

was the only cutpoint of B in D. We deduce that D is a cycle, and, since no branch
of C at v3 is isomorphic to Q, | V(D) | > 5. Let y denote the point of D other than
«! which is adjacent to v3. Then C is semi-stable at y (see Fig. 8(b)), and Cy is
reducible to P5 by the inductive hypothesis. It follows that C is reducible to P5.

All cases having been covered, the lemma holds for cacti of form (c) by
induction. #

The proof of the following lemma is similar to that of Lemma 10.

LEMMA 14. If C is a cactus such that d5(C)>0, then C is reducible to P6. #

From Lemmas 12 and 14 and Theorems 2, 3 and 4 we deduce

THEOREM 5. The cacti in A5 are precisely those cacti C such that 2 d^C) = 0

and4(C)>0. #

We now characterize the cacti in A6.

LEMMA 15. IfCeA6, then either C^ U2, or L^cc or </6(C)>0.

PROOF. If CeA6, then C reduces to an index-0 graph of order 6. All such graphs
are connected, and so C reduces to an index-0 cactus of order 6. Thus C reduces
to C/2, Ux or P6. Since l/2 is the only cactus which is a semi-stable extension of U2, it
follows that if CgtU2, then C reduces to Ux or P6. In the former case, C/x£C and
in the latter de(C) > 0. #

By following the steps of Lemmas 9 and 10, and using similar techniques, we
can prove

LEMMA 16. Ifd6(C)>0, then C is reducible to P6. #

We now deal with the case where U^C. Note that if 2 d^C) = 0 and
i = 2

# c C is isomorphic to C3, then there is H*^^ such that HsH*cC. This
prompts
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4
LEMMA 17. If 2 ^(C) = 0 and C has just one subgraph isomorphic to C3, then

i=2

C is reducible to Uv

PROOF. Let H, with points wv w2, w3, be the subgraph of C isomorphic to C3

and let the cacti Ylt Y2, Yz be rooted at wlt w2, w3 respectively (see Fig. 9). Suppose

without loss of generality, that | K(jy|<| K(yg)|<| VOQ\. Since 2 dt(C) = 0, we
i = 2

have |F(72)|^2 and |F(y3)|^3. We shall prove that C is reducible to V1 by
induction on n = | K(C)|. Note that n^ 6. If n = 6, then C^ Ux and there is nothing
to prove. Suppose, then, that n > 6 and that the lemma holds for all cacti under
consideration of order < n. Let k be the least i such that | F(7f) | > /, such an i
existing since n>6. By Lemma 2, Yk is semi-stable at a non-cutpoint w^wk. By
the choice of k, it follows that C is also semi-stable at w. Now Cw is reducible to
Ux by the inductive hypothesis, and so C is reducible to t^. The lemma follows by
induction. #

FIG. 9.

The proof of the following lemma is similar to that of Lemma 10.

4
LEMMA 18. If 2 d^C) = 0 and C3£ C, f/ren C is reducible to Uv #

i = 2

From Lemmas 15, 16 and 18, and Theorems 2, 3, 4 and 5 we deduce

THEOREM 6. The cacti in A6 are precisely U2 and those cacti C such that

2 d%{C) = 0, J5(C) = 0, and either CZ^C or a\(C) >0. #
t = 2

Finally we characterize the cacti in Ar In fact, we have already done so, since
CeA1 if and only if C^(^0u^4uJ45u^6u^uC/)\{t73,£'7,l/4,P7}. Theorems 1,
2, 4, 5 and 6 therefore imply

THEOREM 7. The cacti in A1 are precisely those cacti C such that

i=2

andC3$:CandC$UandC£U2andC£U5. #
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Since we have determined index-0 graphs to which given cacti in Ait A& and A6

optimally reduce, we similarly determine the index-0 graph to which a given
cactus in A7 optimally reduces.

First of all, we have

LEMMA 19. If CeA7, then either C^P7, Cg or Ut, or 1/3SC or E7<^

PROOF. If CeA7, then C is reducible to an index-0 graph of order 7. It follows
that C is reducible to P7, U3, l/4 or E7. If C£P7, C8 or E/4, then by Lemma 7, C is
reducible to U3 or to E7, so that either l / 3 £ C o r £ , c C . #

Finally, by using the techniques of the proof of Lemma 17, we can prove

LEMMA 20. IfCeA7 and C4£ C, then C is reducible to U3. #
The results of the paper can now be summarized in the theorem below which

enables us to see the stability index of any given cactus, and a graph to which it
may be optimally reduced, by consideration of simple structual properties of the
cactus.

THEOREM 8. Let C be a cactus.
(i) CeA if and only ifC^Pn, n>4,or C^E7, U^ U2, U3, Ut, U5. These cacti may

not be reduced at all.
(ii) CeUif and only if C s Cn, n ^ 9, or C ^ U6, U7. These cacti all have stability

index 1 and if C^ Cn, it is optimally reducible to Pn, ifC^ C76 it is optimally reducible
to P8, and if C1^, U7 it is optimally reducible to U&.

(iii) CeA0 if and only if either C^KX or C has an essential copy of P% or P3.
These cacti may be completely reduced.

(iv) Ce>44 if and only if C contains an essential copy ofPt but no essential copy of
P2 or P3. These cacti are all optimally reducible to P4.

(v) C e A5 if and only if C contains a strict essential copy ofP6 but no essential copy
ofP2, P$ or P4. These cacti are all optimally reducible to P5.

(vi) CeA6 if and only ifCc? l/2 or C contains an essential copy ofP6 or a copy of
C3, but no essential copy ofP2, P3 or P4, nor a strict essential copy ofPs. IfC1^ U2 it is
not reducible, ifC contains an essential copy ofP6 it is optimally reducible to P6, and
if C contains a copy of Cz it is optimally reducible to Uv

(vii) CeA7 if and only ifCis not one of the graphs in

UKJAQVA^A5^A^[A\ {P7, E7, U3, US-

IfC^P7,CB, it is optimally reducible to P7, if'Cst/4 it is not reducible, if C£P7,
C8, C/4 and does not contain a copy of C4 it is optimally reducible to E7, otherwise
C is optimally reducible to U3. #

https://doi.org/10.1017/S1446788700020188 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020188


[14] Stability index of a cactus 183

References
D. D. Grant (1974), "The stability index of graphs", Proc. Second Australian Conference on

Combinatorial Mathematics, Lecture Notes in Mathematics No. 403 (Springer-Verlag,
Berlin), pp. 29-52.

F. Harary (1969), Graph Theory (Addison-Wesley, Reading, Mass.).
P. Heffernan (1972), Trees (M.Sc. Thesis, University of Canterbury, New Zealand).
D. A. Holton and D. D. Grant (1975), "Regular graphs and stability", / . Austral. Math. Soc.

20, (Ser. A), 377-384.
K. L. McAvaney (1975), "Semi-stable and stable cacti", / . Austral. Math. Soc. 20 (Ser. A),

419-430.
K. L. McAvaney, D. D. Grant and D. A. Holton (1974), "Stable and semi-stable unicyclic

graphs", Discrete Math. 9, 277-288.
N. Robertson and J. A. Zimmer (1972), "Automorphisms of subgroups obtained by deleting a

pendant vertex", / . Combinatorial Theory, Ser. B. 12, 169-173.

Department of Mathematics
University of Reading
England

Department of Mathematics
University of Melbourne
Parkville 3052
Australia

https://doi.org/10.1017/S1446788700020188 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020188

