THE PROBLEM OF APOLLONIUS1

H.S.M. Coxeter

1. Introduction. On behalf of the Canadian Mathematical
Congress, I wish to thank the University of Toronto for its
hospitality, the members of the Local Arrangements Committee
(especially Chandler Davis) for the many comforts and
pleasures they have provided, and our nine distinguished
visitors for the courses of lectures they gave at our Seminar.

Bearing in mind the subject of this afternoon's discussion,
I will try to show by some examples that good old-fashioned
elementary geometry is not dead, that mathematics can be
interesting without being obscure, and that clever ideas are
not restricted to professionals.

In the third century B. C., Apollonius of Perga wrote two
books on Contacts (é m o daf), in which he proposed and solved
his famous problem: given three things, each of which may be
a point, a line, or a circle, construct a circle which passes
through each of the points and touches the given lines and
circles. The easy cases are covered in the first book, leaving
most of the second for the really interesting case, when all
the three '"'things'' are circles. As Sir Thomas Heath remarks
[10, p.182], this problem '"has exercised the ingenuity of many
distinguished geometers, including Vieta and Newton'. I will
not ask you to look at any of their methods for solving it.
These are adequately treated in the standard textbooks
[e.g. 11, p.118]. Nor will I inflict on you an enumeration of
the possible relations of incidence of the three given circles.
This was done with great skill in 1896 by Muirhead [12].
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2. The Descartes Circle Theorem. I will confine the
discussion to the two cases that were described by Descartes
in letters of November 1643 to his favourite disciple, Princess
Elisabeth, daughter of King Frederick of Bohemia [8, pp. 27-50].
The first letter deals with three non-intersecting circles,
entirely outside one another. Descartes finds some relations
between the radii and central distances. The details are clumsy
but clear. The second letter deals with the limiting case when
the three given circles are mutually tangent at three distinct
points. He uses d, e, f{ to denote the radii of these three
circles, and x for the radius of a fourth circle that touches
them all externally. Thus d, e, f, x are the radii of four
circles in mutual (external) contact. Unfortunately there is a
gap in the argument [between pages 48 and 49] which precludes
any clear understanding of the crucial steps leading to his
conclusion:

ddeeff + ddeexx + ddffxx + eeffxx
= 2deffxx + 2deeffx + 2deefxx
+ 2ddeffx + 2ddefxx + 2ddeefx

It seems strange today that he did not express this equation
more concisely as

or

This beautiful result, which Pedoe [13, p.634] very
properly calls The Descartes Circle Theorem, was rediscovered
almost exactly 200 years later by Mr. Philip Beecroft of
Hyde, Cheshire, He published it in a journal not often consulted
nowadays: "The Lady's and Gentleman's Diary for the year of
our Lord 1842, being the second after Bissextile, designed
principally for the amusement and instruction of Students in
Mathematics: comprising many useful and entertaining
particulars, interesting to all persons engaged in that
delightful pursuit" [1].
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Dr. Leon Bankoff of Los Angeles is a dentist who spends
his spare time on the same delightful pursuit. When he saw the
announced title of my Presidential Address, he kindly sent me a
copy of this and two other papers by Beecroft. Although the
Descartes circle theorem was rediscovered again in 1936 by
Frederick Soddy [14], neither Soddy nor anyone else followed
Beecroft in his brilliant idea of regarding the configuration of
four circles in mutual contact as part of a configuration of
eight circles, each passing through the three points of contact
of three others, as in Figure 1.%

This configuration arises in its most symmetrical form
when we consider a regular octahedron and its circumsphere.
The eight face-planes of the octahedron cut the sphere in such
a set of eight circles, and we can obtain the planar configuration
by stereographic projection from an arbitrary point on the
sphere. In particular, projection from a vertex of the
octahedron yields four lines forming a square and four circles
having the sides of this square as diameters, as in Figure 2.
Any other case of Beecroft's configuration can be derived from
this simple one by an inversion.

Figure 1

% I am grateful to J.B. Wilker for drawing the figures.
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Figure 2

In the course of his rediscovery of the Descartes circle
theorem, Beecroft noticed that equation 2.1 holds for any
four circles in mutual contact, provided we make the convention
that, when two circles have internal contact, we regard the
larger circle as having a negative radius. Although he worked
with radii, it is obviously more convenient to use curvatures
(or, as Soddy would say, 'bends'), which are reciprocals of
radii. Let

30 f4 My My M3y Ny

be the curvatures of Beecroft's eight circles. Then the theorem

says that
2.2 25t = (zo)f

2 2
and of course, we shall have also 2Zn = (Zq) .

In the words of Soddy's poem,

Since zero bend's a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.
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Figure 3

Here is a simplified version of Beecroft's proof. Let a.
b, ¢, s, rand r denote the sides, semiperimeter, inradius
a

and first exradius of a triangle ABC, so that

- - - -b -
r2 = (s-a) (s-b) (s-¢) and similarly r 2 = s(s-b) (s-c)
s a s-a

[7, pp. 60, 164 (Ex.3)]. Any three mutually tangent circles
can be regarded as having centres A, B, C, and radii s-a,
s-b, s-c or else s, s-c, s-b, as in Figure 3. Accordingly

we write, in the former case,

1 1 1
— = r, " = s-a T = s-b, T = s-c
M 2 3 4

It follows that

e € +tee +ee "(1—+'1—+L)e€€

34 42 23 & €5 €, 234
gs-a!ﬂs-b!ﬂs-_cl _ s - 1
(s-a)(s-b)(s-c) ~ (s-a)(s-b)(s-c) r2

s-b-c _ s-a _ 1 My
-s(s-c)(s-b) ~ s(s-b)(s-c) N r 2
a
5
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2
imi + + =
Similarly naMy, tm, F g €4 and of course we can

permute the subscripts 1, 2, 3,'4. Hence

2 2 2 2
(Ze) = Ze +2€1£2 +... = Zeg +Zn
2
= (Zn),
and
Ze = Znm
Also
2 2 2 2 2 2 2
- + = - +
€ (£2+e3+e4) ei+ez+s3+e4 2111
T
Ty Ty Ty M4
= Znizn = Znizs ,
whence
2.3 - + + + = .
€y €, €, €, Zni

Adding four such equations after squaring each side, we obtain

whence
2 2 2
2Ze = Ze +Zn = (Zg) .
Thus 2.2 is proved.

This version of Beecroft's proof formally resembles one
of Pedoe's proofs [12, p. 638], but the meaning is quite
different.

One way of expressing the connection between the four

e's and the four n's is to remark that they are the roots of
quartic equations
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(t-:—Zu)Ze2 + (v-w)e + 2uw = O,
2
(n-2u) 112 - (v-w)e + 2uv = 0.

For instance, in Figure 1, where

1

™
n
™
1]
™
1)

J3 -1, ¢

1 2 3 4 y3+3,

1]

J3 +1,

1’11 = nz 1’13 T‘4 ‘/3 -3,
we have u=J3, v =-2(2+J3),. w=2(2-V3).
Again, in Figure 2, where

= = = = 0 = = =
£ > Ny N, and ny n, £ €

we have u=v = 0.
One pretty result which Beecroft himself missed is
2.4 Zen = 0.

This appeared, with a geometric proof, in the "Diary" for
1846 [1]. For an algebraic proof we can use 2.3 in the form

1
21 +n1 = 226,

whence
81'|-1']'1 = €2+n2 = 83-|-1—|3 = €4+n4
and

Zen = Ze(etn) - 252 = %(Ee)z - Zez = 0.

3. Triads of non-intersecting circles. Although radii
and curvatures belong to Euclidean geometry, it should not be
forgotten that the problem of Apollonius is still meaningful
in the wider field of the inversive plane, which may be thought
of as the surface of a sphere, or as the Euclidean plane
completed by a single point at infinity. In this kind of geometry
circles have no ''centres', but two intersecting circles still
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determine an angle, and two non-intersecting or tangent circles
have an inversive distance § such that, if an inversion transforms¢
one of the circles into a line and the other into a circle of radius

b whose centre is at distance p from the line, cosh § =p/b
[7, pp. 130, 176 (Ex. 4)].

In Beecroft's configuration, each of the eight circles is
orthogonal to three, tangent to three, and at a certain inversive
distance § from the remaining one. Figure 2 shows that
cosh § =2, whence & =1log(2+J/3), the logarithm of the ratio
of the radii of the two concentric circles in Figure 1.

In fact, any two non-intersecting circles can be inverted
into concentric circles, and their inversive distance is equal to
the logarithm of the ratio of the radii (the greater to the smaller)
of these two concentric circles [7, pp. 121, ’123].

By thinking of circles on a sphere (without any distinction
between ''great' and ''small' circles), we see that, when the
inversive problem of Apollonius is considered for three
non-intersecting circles, the number of solutions can only
have two possible values: zero or eight. The number is 0 if
the circles are nested, as in Figure 4 (where every circle
tangent to X and v intersects p in two distinct points).

Itis 8 in the remaining case (Figure 5), where we naturally
speak of the three non-intersecting circles as an Apollonian
triad. In particular, any three circles that belong to a
non-intersecting pencil of coaxal circles are nested.

A

Figure 4
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Figure 5

4. A "Non-Triangle Inequality' for Nested Circles.
It is clear from considerations of continuity that, for any three
positive numbers «, B, y, there exists an Apollonian triad
of circles whose mutual inversive distances have these values.
Accordingly, it is remarkable that the mutual inversive
distances of three nested circles satisfy a ''mon-triangle inequality
(which thus serves as a necessary, but not sufficient, condition
for three circles to be nested):

n

4.1 Among the mutual inversive distances between three
nested circles, one is greater than or equal to the sum
of the other two. Equality holds only when the three
circles are coaxal.

Although this is a theorem of inversive geometry, the
simplest proof employs Euclidean ideas. Let \, p, v be the
nested circles, as in Figure 4, and let o, 3,y be their
inversive distances: \ to p, p to vy v to A. Since the
circles are non-intersecting, there is at least one circle p
orthogonal to all of them [11, p.34]. Since either of the
intersections of p and p is the centre of a circle inverting
these two circles into perpendicular lines, we lose no
generality by taking p to be a line parallel to the radical
axis of X and v, as in Figure 6.

https://doi.org/10.4153/CMB-1968-001-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-001-7

Figure 6

Let \ and y have centres L and N, radii a and b,
and let p meet LN in M, so that LM = a cosh « and
MN =b cosh B. Since

2
(a cosha + b cosh 5)2 = LN2 = a + b2 + 2ab coshy

[6, p.77], it follows that

(a sinh o - b sinh B)Z = 2ab {coshy - cosh (o + B)},
whence

Yy>atB,

with equality only when a sinh o=b sinh B. Since (a sinh ar)2

and (b sinh B)z are the powers of M with respect to X and v,
this exceptional case is when p coincides with the radical axis
of A\ and v. From the standpoint of inversive geometry, this
means that the nested circles \, p, v are coaxal. Thus 4.1

is proved.

By regarding the inversive plane as a sphere, we see that
each circle determines an enveloping cone which can be regarded
as the null cone at a point in an exterior - hyperbolic space
[5, pp.'83-84]. The inversive distance between two
non-intersecting circles now appears as the non- Euclidean
distance between two points lying on a secant of the sphere,

10
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and the three nested circles are represented by the vertices of the
kind of triangle for which the non-triangle inequality was observed
as long ago as 1907 by E. Study [16, p. 108; see also 3, p.225].

Du Val [9] proved in 1924 that the events in de Sitter's
space-time can be represented by the points of an exterior-
hyperbolic 4-space: the part of real projective 4-space that
lies outside a non-ruled quadric 3-fold. Thus the exterior-
hyperbolic 3-space that we have been discussing may be regarded
as a 3-dimensional section of de Sitter's 4-dimensional world,
and the terminology of space-time is appropriate. For instance,
the light-cone at a given event is the enveloping cone from a
given point to the absolute quadric surface () (the 3-dimensional
section of the quadric 3-fold).

The '"dictionary' relating the inversive plane to exterior-
hyperbolic 3-space begins as follows:

Circle Point (or "event!)
Coaxal circles Collinear points
Intersecting pencil Spacelike line

Tangent pencil Null line (tangent tof?))

Non-intersecting pencil Timelike line (secant toQ)

Limiting points The beginning and end of
eternity
Orthogonal pencils Polar lines

Angle of intersection

of circles Space interval
Inversive distance Time interval
Homography Lorentz transformation

To establish the connection, we regarded Q as a sphere.
Pedoe [13, p. 635] prefers a paraboloid of revolution.

5. Two special solutions of the Problem. After that
wild excursion, let us return to the Euclidean plane and consider
two non-intersecting (or possibly tangent) circles of equal
radius b. Since their inversive distance o is twice the inversive
distance between either circle and their radical axis, the

1
Euclidean distance between their centres is 2b cosh'z" .

11
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Hence three non-intersecting (or possibly tangent) circles can be
inverted into congruent circles if and only if their three inversive

1
distances o, P,y are such that cosh > coshl B, cosh%y are the

2
mutual (ordinary) distances of three points in the Euclidean

plane. Since three congruent circles are tangent to two parallel
lines, or to two concentric circles, according as their centres
are or are not collinear, we can deduce the following theorem of
inversive geometry:

5.1 Among the eight circles that touch an Apollonian triad
with inversive distances o, 8, y, two are non-intersecting
[or tangent] if and only if each of the three numbers

1 1
coshE @, cosh Eﬁ, cosh %y is less than the sum of the

other two [or one of them is equal to the sum of the other
two].

After noticing that three circles cannot always be inverted
into congruent circles, Roger Johnson [11, p. 97] says ""This
negative result is highly regrettable'. In order to refute his
pessimistic attitude, let us work again in the Euclidean plane
and consider an Apollonian triad consisting of two concentric
circles \, p, whose radii satisfy a > b, and a third circle .
Since \ and p are concentric, the circles that touch both
consist of two one-parameter families of congruent circles in
the closed annulus bounded by \ and p: one family having

1 1
radius '2-(a+b) (Figure 7) and one having radius E(a—b)
(Figure 8). Since the triad \pv is Apollonian, v must lie

1
strictly within this annulus and have radius less than E(a—b).

Figure 8

12
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The eight solutions of the problem of Apollonius for Apv
consist of four members of each family. We see at once from
the figures that each of \,u,v is separated from the other two
by two of the eight. (Of the four circles in Figure 7, two surround
p and vy, separating them from )\, and two surround yp,
separating it from X\ and v. Of the four in Figure 8, two
surround vy, separating it from X and ). The two circles
emphasized in Figure 8 are special in that they do not separate
A, K, v at all. In this figure they happen to be non-intersecting
(as in Theorem 5.1), but they could just as easily be tangent,
as in Figure 9, or intersecting, as in Figure 10.

Figure 9

Figure 10

13
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It is this last possibility that Johnson considered
""regrettable''. Its redeeming feature is that, of the four
"crescents'' or lunes into which these two intersecting circles
decompose the inversive plane, just one contains all three of
the original circles )\, p, v. Consequently, when the intersecting
circles are inverted into intersecting lines, which decompose the
Euclidean plane into four angular regions, the new versions of
N, &, v are all inscribed in the same one of the four angles, that
is, they are homothetic in pairs from the same centre of
dilation. Our conclusion may be summed up as follows:

5.2 Every Apollonian triad can be inverted into three circles
which are either congruent or homothetic.

6. Mid-circles. Any two non-intersecting circles have
a unique mid-circle which inverts them into each other
[7, pp. 121-122]. For instance, the mid-circle of two concentric
circles is concentric with them, and its radius is the geometric
mean of the two radii. Since mid-circles invert into mid-circles,
we are now ready to prove the following nice theorem.

6.1 The three mid-circles of an Apollonian triad are coaxal.

If the Apollonian triad can be inverted into three congruent
circles, their mid-circles become their radical axes [7, p. 35],
which are either concurrent (Figure 11) or parallel (Figure 12),
and of course three concurrent or parallel lines are a special
case of three coaxal circles. If, on the other hand, the Apollonian
triad can be inverted into three homothetic circles (inscribed in
an angle), their mid-circles become concentric circles (Figure
13), which are another special case of coaxal circles.

Figure 11 Figure 12

14
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Figure 13

Figure 14

15
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The most familiar Euclidean example of an Apollonian
triad consists of three circles all outside one another. In this
case the centres of the three mid-circles are the external
centres of similitude of the pairs of circles (Figure 14).

Since coaxal circles have collinear centres, the inversive
theorem 6.1 has the Euclidean corollary

6.2 If three non-intersecting circles of different sizes are
mutually external, so that every two of them have four
common tangents, then the three points of intersection
of the pairs of external common tangents are collinear.

This result is of special interest in the present context,
because it was used as a lemmma in Apollonius' own solution
of his problem [10, p. 182]. Although it follows easily from
Menelaus [2, p.188], it pleased Herbert Spencer so much
that he wrote of it as ''a truth which I never contemplate
without being struck by its beauty at the same time that it
excites feelings of wonder and of awe' [15, pp. 187-188;
see also pp. 606-608].
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