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Abstract
I develop and study a factor-augmented quasi-vector autoregressive (FAQVAR) model for economic pol-
icy analysis in tumultuous times. An observation-driven framework that exploits the information from
the score of the model allows a maximum likelihood estimation. This multivariate FAQVARmodel, which
assumes a Student t error distribution, is robust to atypical observations such as the global financial cri-
sis and the recent pandemic. The model outperforms the FAVAR moving average model because of the
assumed heavy tails that capture the COVID-19 atypical data and other turbulent episodes. An empirical
application to the U.S. economy assessing its monetary policy reveals that estimates and impulse responses
are stable when considering the sample before and during COVID-19.
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1. Introduction
Given the recent pandemic and similar global shocks such as the U.S. financial crisis, it is impor-
tant to account for this information in a model that can identify unusual observations in variables
with robust estimates. Harvey (2013) discusses multivariate location models using a score-driven
framework that models shocks using a Student t distribution. This approach emerges from
works by Harvey (2013) and Creal et al. (2013), which employ an observation-driven framework
exploiting the information from the model’s score. Moreover, this approach is robust to unusual
observations as a result of its nonlinear filters capable of accommodating extreme episodes in the
data. In addition, Blasques et al. (2018) as well as Blasques et al. (2022) derive invertibility con-
ditions for the consistency and asymptotic normality of maximum likelihood estimators in these
types of models, which minimizes the Kullback–Leibler divergence of the true and estimated filter
values. This particular property of score-driven filters optimally utilizes the score information.

Harvey’s (2013) multivariate location model is also known as a quasi-vector autoregressive
(VAR) model [Blazsek et al. (2020, 2022b)] since it allows a similar reduced form in comparison
to VAR models. VAR models introduced by Sims (1980) are useful for macroeconomists who
assess impulse response functions (IRFs) from monetary and fiscal policy shocks. However, high
dimensional VAR models imply a large number of parameters to estimate, and adding factors to
their structure emerges as a practical solution.
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The principal contribution of this article is the addition of factors into QVAR score-driven
models where the multivariate error term follows a Student t distribution. Factor components can
capture relevant information from a large dataset of variables from several sectors of the economy.
In this way, factor-augmented quasi-VAR (FAQVAR) models do not incorporate many variables
explicitly and, at the same time, can address episodes of great disturbances. Given its score-driven
dynamics, the FAQVAR model can be estimated using frequentist methods rather than Bayesian
techniques.

The study of factors using macroeconomic variables starts with the work of Stock and Watson
(2002). They show an improvement in forecasts for macroeconomic U.S. series using principal
component methods. Bernanke et al. (2005) incorporate factors following Stock and Watson’s
(2002) principal component procedure in VAR dynamics when analyzing the effects of mone-
tary policy, and also they jointly estimate factors and VAR models using Bayesian techniques.
This model is used extensively in the literature because of its flexibility. For instance, Abbate et
al. (2016) estimate factor models by considering the financial crisis episode and its effects on
greater economies while Laine (2020) assesses the effectiveness of monetary policy with a zero
lower bound (ZLB) in the European Union.

I estimate FAQVAR models using the two-step procedure of Bernanke et al. (2005), where in
the first step the unobservable factors are obtained using principal component analysis, and then
in the second step the estimated factors are added to the QVAR system. An alternative is the two-
step maximum likelihood estimation undertaken by Bai, Li and Lu (2016), who analyze inference
properties of estimates and impulse responses for FAVAR models. However, I follow the two-step
procedure of Bernanke et al. (2005) and use Yamamoto’s (2019) bootstrap strategy to deal with
the uncertainty generated in the first step of the estimation of factors.

Dufour and Stevanović (2013) utilize a bootstrap approach for their FAVAR moving average
(FAVARMA) model and argue that the VARMA structure is able to capture the information from
VARmodels with long lags, so parsimonious. VARMAmodels allow similar impulse response esti-
mates with considerably fewer parameters to estimate. The QVAR model collapses to a VARMA
model with Gaussian errors when the degrees of freedom of the Student t distribution errors
tend to infinity [Blazsek et al. (2020)]. Therefore, a limiting case for the FAQVAR model is the
FAVARMA model, which is the benchmark model in this study. In addition, Blazsek et al. (2020)
highlight that the QVAR specification can capture seasonal effects in IRFs.

Studies of the score-driven framework in macroeconomics include the work of Angelini and
Gorgi (2018), where they apply the score-driven approach to dynamic stochastic general equi-
librium (DSGE) models with time-varying parameters and volatility. Additionally, Blazsek et al.
(2023b) establish score-driven representations with fat tails and heteroskedastic errors for DSGE
models, while Blazsek et al. (2023a) propose score-based cointegration models. Blazsek et al.
(2022a) propose a multivariate Markov-switching QVARmodel, which allows for common trends
and cointegration dynamics. In addition, Blazsek et al. (2022b) develop a multivariate location
plus scale model and derive its maximum likelihood conditions. These works constitute the first
applications of the score-driven approach inmacroeconomic systems that consider just a few vari-
ables in their composition. I extend this analysis to include factor-augmented variables that have
not yet been studied in the literature and that this article aims to cover.

Recent literature dealing with observations from the pandemic includes the work of Lenza
and Primiceri (2022), who model the specific change in volatility during the pandemic within a
VAR framework. Carriero et al. (2021) treat the pandemic episode as outliers in their VAR model,
which instead uses stochastic volatility errors following the approach of Stock andWatson (2016).
Antolín-Díaz et al. (2021) make a nowcasting analysis of the U.S economic activity with a dynamic
factor model that also includes outliers.

Schorfheide and Song (2021) analyze the forecasts of a mixed-frequency VAR model and
conclude that the model excluding pandemic data generates more accurate long-term forecasts.
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However, Hartwig (2021) and also Bobeica and Hartwig (2023) highlight the importance of mod-
eling errors with a Student t distributionwhen the COVID-19 shock is considered in a VARmodel,
since the parameter estimates and density forecasts from a Gaussian version are sensitive to the
pandemic data. All these works employ a Bayesian approximation for the estimation of their VAR
models, whereas this article adopts an observation-driven approach, which can be estimated using
frequentist methods.

In addition, Guerron-Quintana et al. (2023) cover nonlinearities and asymmetries in state and
measurement equations in VARmodels using Bayesian estimation. The FAQVARmodel proposed
in this study is observation-driven with a closed-form likelihood that is estimated by maximum
likelihood. Further, the FAQVAR model is robust to recently experienced extreme episodes such
as the pandemic, given the modeling of errors as a Student t distribution. To the best of my knowl-
edge, this article presents the first research considering the pandemic sample with a score-driven
FAQVAR model.

I analyze the U.S. economy estimating the factor components using McCracken and Ng
(2016)’s macroeconomic monthly variables from January 1959 to May 2021, which cover tumul-
tuous times for this market. Then, in the second step I estimate the model using the previously
estimated factors and the federal funds rate (FFR) to evaluate monetary policy shocks. The
FAQVAR model proposed in this study is robust to extreme episodes, including the recent pan-
demic, and it outperforms the FAVARMAmodel, producing a better fit to the data. The FAQVAR
impulse response forecasts from a monetary shock follow the expected reactions from the eco-
nomic theory. Additional robustness checks using different numbers of factors, a subsample
before COVID-19, and the ZLB episodes indicate the stability of the estimates.

The structure of this article is as follows: Sections 2 and 3 discuss the structure of the FAQVAR
model and its estimation, respectively. Section 4 presents the estimates in the application of the
model to assess monetary policy in the U.S. economy. Section 5 checks the robustness of the
estimates by estimating models with different numbers of factors, samples, and the unbounded
shadow rate. The conclusions are presented in the last section.

2. Methodology
I incorporate factor components into the first-order QVAR model of Harvey (2013) and Blazsek
et al. (2020). The model for a yt = (ft , xt) vector of K = k+ r variables contains the k factors, ft ,
and the vector of r observed macroeconomic variables, xt , as follows:

yt = c+μt + εt , (1)

μt =�μt−1 +�ut−1, (2)

zt =�f ft +�xxt + et , (3)

εt ∼ tν(0,�), (4)

ut ∝
∂ ln f (yt|Yt−1)

∂μt
, (5)

where c is a vector of constants, μt is a location component with persistence �, � is the updat-
ing scale matrix from the score term component ut , and the vector of errors term εt follows an
independent and identically centered multivariate Student t distribution with scale � and ν > 2
degrees of freedom. Following Bernanke et al. (2005), I consider a set of Z informational variables
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for the estimation of factors, and each of these variables zt is linked to the main observed vari-
ables with the linear representation, where �f are the factor loadings with dimension Z × k, �x
of dimension Z × r is the effect of the observed economic variables on the informational dataset,
and et is the error term of this linear regression.

The multivariate scale matrix is positive definite so that � =	−1	−1′ can have a Cholesky
decomposition which allows the identification of the model. The likelihood conditional on past
information Yt−1 = (y1, . . . , yt) is given by

log f (yt|Yt−1)= log 

(
ν +K
2

)
− K

2
log(νπ)− log 


(ν
2

)
− log |�|

2
(6)

− ν +K
2

log
(
1+ ε′t�−1εt

ν

)
.

Finally, the score term ut is proportional to

∂ ln f (yt|Yt−1)
∂μt

= ν +K
ν

�−1 ×
(
1+ ε′t�−1εt

ν

)−1
εt , (7)

= ν +K
ν

�−1 × ut . (8)

3. Estimation
Factors are not observable, and accordingly, I first estimate these factors using the strategy of
Bernanke et al. (2005). The first step involves the estimation of factors that capture the main fea-
tures from the informational variables zt . When evaluating monetary policy, we may consider
indicators such as economic activity, stock markets, and inventories.

I divide the group of informational variables based on whether or not each is contemporane-
ously affected by the monetary policy instrument it .1 Stock and Watson (2002) remark that the
principal components from the informational dataset, Ĉk(ft , zt), may generate linear combina-
tions of the policy instrument it when forecasted. To remove this effect, Bernanke et al. (2005)
consider the following regression:

Ĉk(ft , zt)=ωk + akĈk(ft)+ bkit + ξkt , (9)

where Ĉk(ft) are the components from all non-contemporaneous variables, ωk is an intercept, ak
and bk are elasticities, and ξkt is an error term. The estimate for the factor components is given by

f̂kt = ω̂k + âkĈk(ft , zt)+ ξ̂kt . (10)

The second estimation step consists of augmenting the QVAR system with the factors so that
yt = (f̂t , xt). The FAQVAR model is estimated by maximizing the logarithm of the likelihood with
respect to the parameter set ψ = (�,� ,�, ν):

log L(ψ)=
T∑
t=1

log f (yt|Yt−1). (11)

Following Proposition 39 of Harvey (2013), the maximum likelihood estimates are consistent
since the score and the errors model are assumed to be identically and independently distributed.
In addition, Harvey (2013) and Blazsek and Licht (2020) establish conditions for the explicit
derivation of the information matrix for the QVAR model standard error estimates. In contrast,
I apply the non-parametric approach of Yamamoto (2019) for the estimation of standard errors
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and IRFs of the FAQVAR model, which also capture the error estimation uncertainty from the
first step.

3.1. Impulse response function
Blazsek et al. (2020) establish the moving average representation of the stationary process μt ,
provided its persistence� has a modulus λ less than one in equation (2). The MA form is

μt =
∞∑
h=1

�h�[(ν − 2)ν]1/2	−1 εt−1−h
ν − 2+ ε′t−1−hεt−1−h

, (12)

with εt being the error term for the MA representation of the FAQVAR model,

εt =
[

ν

ν − 2

]−1/2
	× εt . (13)

The impulse responses for the shock εt at the horizon j= 1, . . . ,∞ to the variable yt are given
by

�̂j = E
[
∂yt+j

∂εt

]
, (14)

=�j�[(ν − 2)ν]1/2	−1E[Dt−1−j], (15)

where

Dt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν − 2+ ε′tεt − 2ε21t
(ν − 2+ ε′tεt)2

−2ε1tε2t
(ν − 2+ ε′tεt)2

. . .
−2ε1tεKt

(ν − 2+ ε′tεt)2
−2ε2tε1t

(ν − 2+ ε′tεt)2
ν − 2+ ε′tεt − 2ε22t
(ν − 2+ ε′tεt)2

. . . . . .

. . . . . . . . . . . .

−2εKtε1t
(ν − 2+ ε′tεt)2

. . . . . .
ν − 2+ ε′tεt − 2ε2Kt
(ν − 2+ ε′tεt)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

The expectation in (14) can be obtained considering the time average of Dt . The impulse
responses to the full description of informational variables come from the regression in (8) since

ẑt = �̂f f̂t + �̂xxt , (17)

=
[
�̂f �̂x

] [ f̂t
xt

]
, (18)

= �̂y′
t , (19)

= �̂ [c+�μt−1 +�ut−1 + εt]′ . (20)

For the estimation of standard errors and impulse responses, I follow the residual approach of
Yamamoto (2019). This bootstrap method deals with the 2-step estimation errors from the pre-
estimation of factors of Bernanke et al. (2005). Dufour and Stevanović (2013) adapts Yamamoto’s
(2019) algorithm for a FAVARMA model, which is the limiting case of the first-order FAQVAR
model. The score-driven framework assumes that the second moments for the score and errors
are finite and normally distributed as in Yamamoto’s (2019) bootstrap method, and then we can
modify the linear algorithm to the FAQVAR model with the following steps:
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1. Obtain the parameter estimates ĉ, �̂, �̂ , �̂, ν̂, �̂f , and �̂y from the model in (1) along with
their respective residuals ε̂t and êt . Estimate the impulse responses �̂i,j, and the IRFs for
the augmented model determined by �̂.

2. Proceed with sampling residuals with replacement to generate ε∗t and e∗t for the boot-
strapped samples y∗

t so that

y∗
t = ĉ+μ∗

t + ε∗t , (21)
μ∗
t = �̂μ∗

t−1 + �̂u∗
t−1, (22)

z∗t = �̂f f ∗t + �̂yx∗
t + e∗t . (23)

3. Estimate the two-step system with y∗
t and obtain the bootstrapped parameter estimates ĉ∗,

�̂∗, �̂∗, �̂∗, ν̂∗, �̂∗
f , �̂

∗
y , and the bootstrapped impulse responses �̂∗

i,j.
4. Repeat steps 2–3 R times.
5. Compute the bootstrapped standard errors for model parameters.
6. Sort the bootstrapped impulse responses from the centered statistic si,j = �̂∗

i,j − �̂i,j, select
the significance level α to obtain the confidence interval [�̂i,j − s1−α/2, �̂i,j − sα/2], where
s1−α/2 and sα/2 are 1− α/2 and α/2 percentiles, respectively.

4. Empirical results
I use 128 variables from the McCracken and Ng (2016) dataset that spans 1959:01 to 2021:05. I
screen the data for observations associated with input errors and events such as labor strikes as
noted by Stock and Watson (2002) assuming these observations are greater than 10 times their
interquartile range.2 In addition, I employ their expectation maximization algorithm to replace
the missing and the screened values in the standardized panel data. The panel contains the FFR
and a group of informational variables zt with indicators for output and income, the labor market,
consumption, housing starts and sales, inventories and orders, the stock market, exchange rates,
interest rates, money and credit, prices, as well as average hourly earnings and the consumer index.
Further details for all variables are given in the Supplementary Material.3

I estimate the first 10 factors using principal components as in Bernanke et al. (2005), and
a preliminary scree plot provides evidence of the contribution of each component to the total
variance. Figure 1 shows this decomposition.

Jointly, these 10 components contribute 54.4% of the explained variance of the data. The first,
second, third, and fourth components explain 17.1, 7.4, 6.8, and 5.3% of the total variance, respec-
tively, and the other factors contribute smaller amounts of less than 5% each. Bai and Ng (2002)
propose information criteria4 for the optimal selection of factors in a dynamic factor model and I
consider the following three criteria:

ICp1(k)= log

(
1
N

N∑
i=1

ê′kiêki
T

)
+ k

(
N + T
NT

)
log

(
NT

N + T

)
, (24)

ICp2(k)= log

(
1
N

N∑
i=1

ê′kiêki
T

)
+ k

(
N + T
NT

)
log(min[N, T]) , (25)

ICp3(k)= log

(
1
N

N∑
i=1

ê′kiêki
T

)
+ k

log(min[N, T])
min[N, T]

, (26)

https://doi.org/10.1017/S1365100523000330 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100523000330


976 W. Alanya-Beltran

Table 1. Bai and Ng (2002) number of factors criteria

Factors

Criteria 1 2 3 4 5 6 7 8 9 10

ICp1 −0.145 −0.195 −0.246 −0.283 −0.319 −0.335 −0.349 −0.355 −0.355 −0.353
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ICp2 −0.143 −0.192 −0.242 −0.278 −0.312 −0.327 −0.338 −0.344 −0.342 −0.339
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ICp3 −0.150 −0.205 −0.261 −0.304 −0.344 −0.366 −0.384 −0.396 −0.401 −0.404

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

Component

V
ar

ia
n
ce

Figure 1. Scree plot.

where k is the number of factors, N =K − 1 since the FFR is not considered directly in the esti-
mation of factors, and êki are the residuals from the estimate of a dynamic factor model assuming
k factors. I evaluate the criteria using the first 10 components, and Table 1 presents their values.

The first two criteria suggest eight factors, while the last criterion indicates 10 factors.5 I chose
the model with eight factors as the main model. I estimate these eight factors using principal
components following Bernanke et al. (2005).

Factors 1 and 2 capture most of the variance according to the principal components method-
ology. In addition, in Figure 2, we can see the atypical observations and outliers generated after
2005 associated primarily with the U.S. financial crisis, the pandemic and other turbulent episodes
since 1959.

I analyze a FAQVAR model using eight factors chosen according to Bai and Ng (2002)’s cri-
teria, and these factors are able to capture the large variability of the data, especially during
the U.S. financial crisis and the pandemic. Hence, the dependent variables comprise nine vari-
ables ordered from the first factor to the eighth as well as the FFR. I also estimate the limiting
FAVARMA Gaussian model of Dufour and Stevanović (2013) when ν→ ∞. Table 2 reports the
FAVARMA and FAQVAR model estimates, with each column containing estimates for one of the
nine dependent variables.6

The persistence estimates of the FAQVAR model in matrix �̂ are generally higher than the
FAVARMA values, and the estimates for the impact matrix 	̂−1 are lower for the FAQVARmodel.
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Figure 2. Factor estimates.

This might be explained because the degrees of freedom capture (to some extent) the impact from
shocks. In addition, the entries for the updating matrix �̂ are more pronounced relative to those
of the FAVARMA specification.

Table 3 presents the model diagnostics that allow assessment of stationary conditions and fit to
the data. Both systems are stable given that for both models the maximum eigenvalues of �̂ are
0.958 and 0.994 in modulus. In addition, Blazsek et al. (2023a) provide conditions to ensure that
the QVARmodel is stationary and ergodic, which also apply to the FAQVAR specification.

There are important gains in the in-sample fit to the data from the likelihood values and
the Akaike (1974) information, Bayesian information [Schwarz (1978)], and Hannan and Quinn
(1979) criteria when I consider the score-driven approach. The estimate of the degrees of
freedom is small and the addition of this parameter to the model is statistically significant,
this means that the FAQVAR model is able to capture the atypical observations in the panel
data.

After the estimation of parameters and factor loadings, I produce and plot the impulse
responses7 to a one standard-deviation contractionary monetary shock, or equivalently to a 116
basis points rise in the FFR,8 as shown in Figure 3. I evaluate the impacts of some relevant eco-
nomic variables after scaling them in levels, although all impulse responses can be reproduced
from the informational set zt employing the estimates of equations (14) and (19). As in Yamamoto
(2019), the variables considered for analysis are: industrial production index, consumer price
index, the exchange rate of Yen to U.S. dollar, the civilian unemployment rate, and new orders
for durable goods. The dotted 95% confidence bands are obtained using 1000 residual bootstrap
iterations.9

Figure 4 displays a comparison between responses to contractionary monetary policy shocks
implied by the FAVARMA and FAQVAR models. The responses from the FAVARMA model are
influenced by crash periods during the global financial crisis and the pandemic that distorted the
effects on the consumer price index, exchange rate, and new orders, this generates a greater decay
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Table 2. FAVARMA and FAQVARmodels estimates

Parameter FAVARMA FAQVAR

1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR

c′ 0.09b 0.06 −0.02 −0.10a 0.10a −0.01 0.04 0.02 0.00 0.07a 0.04c 0.01 −0.13a 0.14a −0.01 0.05a 0.01 −0.09a

�̂ 0.76a −0.10 −0.02 −0.47a −0.13 0.13 −0.06 −0.09 −0.02 1.07a −0.11a 0.14a −0.30a −0.31a −0.15a 0.01 0.07c −0.02b

0.42a 0.49a −0.18a −0.04 −0.19c −0.18 −0.03 −0.12 −0.02 0.13a 0.66a −0.29a 0.10b 0.19a −0.06 −0.10a 0.05 0.01

−0.07 −0.15b 0.65a 0.20b 0.49a −0.23 −0.49a −0.16 −0.02 0.07b −0.18a 0.73a 0.23a 0.26a 0.03 −0.03 −0.03 −0.04a

0.17 −0.45a 0.04 0.18 −0.81a −0.31 −0.20 0.12 0.02 −0.04 −0.08b 0.04 0.59a −0.33a 0.10b −0.02 −0.03 −0.01
0.02 −0.12 0.14b −0.35a 0.66a −0.97b −0.67b 0.80b 0.04 0.03b 0.03 0.10a −0.14a 0.82a −0.04c −0.01 0.00 −0.04a

0.16b 0.06 0.11a 0.21a 0.06 0.66a −0.12 0.10 0.00 0.01 0.10a 0.14a 0.07b 0.03 0.78a −0.04 0.00 0.02a

0.00 −0.05 −0.06c −0.14a −0.03 −0.04 0.78a −0.08 −0.03a 0.01 0.02 −0.01 0.00 −0.01 0.05b 0.97a 0.00 −0.03a

0.19a −0.02 0.05 0.08 −0.10 0.10 0.17 0.70a −0.03 0.05a 0.01 0.01 0.01 −0.01 0.05c 0.01 0.88a −0.02a

1.33a −0.69b 0.79a −1.40a −2.15a −0.16 0.60 0.09 0.56a 0.35a −0.23a 0.94a −1.93a −1.98a −0.33a −0.06b −0.02 0.79a

	̂−1 −0.30a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.18a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.07a −0.17a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03b −0.15a 0.00 0.00 0.00 0.00 0.00 0.00 0.00

−0.03a −0.13a −0.09a 0.00 0.00 0.00 0.00 0.00 0.00 −0.01b −0.11a −0.08a 0.00 0.00 0.00 0.00 0.00 0.00

−0.01 −0.02a 0.05a −0.14a 0.00 0.00 0.00 0.00 0.00 −0.01c −0.01b 0.03b −0.12a 0.00 0.00 0.00 0.00 0.00

0.05a 0.02a 0.05a −0.08a −0.10a 0.00 0.00 0.00 0.00 0.02b 0.02b 0.03a −0.06a −0.08a 0.00 0.00 0.00 0.00

0.01 0.00 0.05a 0.02a 0.02a −0.13a 0.00 0.00 0.00 0.00 0.01 0.05a 0.01b 0.02b −0.11a 0.00 0.00 0.00

−0.01a −0.01b 0.02a −0.04a 0.06a −0.06a −0.09a 0.00 0.00 0.00 0.00 0.01b −0.04a 0.05a −0.04a −0.08a 0.00 0.00

0.00 −0.01b 0.01c −0.02a 0.02a 0.03a 0.00 −0.14a 0.00 0.02b −0.02b 0.02b −0.02b 0.02b 0.03b 0.01b −0.12a 0.00

−0.07b 0.13a −0.17a −0.05c 0.14a −0.09a 0.17a −0.06b 0.76a −0.03 0.06b −0.13b −0.03 0.07b −0.10b 0.06b −0.02 0.62a
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Table 2. continue

Parameter FAVARMA FAQVAR

1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR

� 0.43a 0.23a −0.22a −0.47a 0.56a −0.19a −0.11b 0.00 0.03a 0.82a 0.44a −0.32a −0.43a 0.72a −0.66a 0.03 0.01 0.05b

0.06a −0.07b −0.39a 0.14a −0.08c 0.09b 0.14a 0.10a 0.01 0.32a −0.11b −0.97a −0.13a −0.31a 0.03 0.14a 0.08 0.02

−0.01 −0.40a 0.12a 0.13a 0.29a 0.16a 0.04 0.12a −0.04a −0.05 −0.92a 0.33a 0.27a 0.42a 0.17a −0.08 −0.01 −0.11a

0.05b 0.06c −0.14a 0.38a −0.08b 0.15a −0.25a −0.01 0.05a −0.03 −0.20a −0.13a 0.81a −0.44a 0.21a −0.46a −0.01 0.11a

0.14a 0.23a −0.04 −0.21a 0.38a −0.14a 0.13a 0.01 −0.01b 0.26a 0.44a −0.11b −0.09c 0.60a −0.23a 0.04 −0.03 −0.03b

−0.02 −0.09a 0.30a 0.03 0.05 0.06b 0.02 −0.03 0.00 0.15a 0.12a 0.21a 0.31a −0.27a 0.21a −0.16a −0.03 0.03c

−0.03b −0.02 0.08a −0.03 0.24a 0.06b 0.11a 0.05b 0.01c −0.20a 0.04 0.01 0.03 0.24a 0.05 0.09b 0.01 0.03c

−0.08a 0.01 0.16a 0.18a −0.13a 0.12a 0.01 0.02 −0.01b 0.01 0.06 0.06 0.07 0.07 0.03 0.00 0.07 0.01

0.52a −0.70a 1.23a −0.18 2.54a 0.09 −0.27b −0.44a 0.32a 1.39a −0.83a 1.76a 0.42a 4.91a −0.40a 0.07a −0.01 0.97a

ν ∞ 5.86a

Notes: a , b , and c denote residual bootstrapping significance at 1%, 5%, and 10%, respectively. The model is yt = c+μt + εt , where μt =�μt−1 +�ut−1 and εt ∼ tν (0,	−1	−1′). F and FFR denote factor
and federal funds rate, respectively.
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Table 3. FAVARMA and FAQVARmodel diagnostics

Diagnostic

Model λ log L AIC BIC HQ

FAVARMA 0.985 2623.881 −4815.762 −3818.692 −4839.630
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FAQVAR 0.994 3250.469 −6066.939 −5065.253 −6090.917
Notes: λ is the maximum eigenvalue for the persistence matrix �̂. AIC, BIC, and HQ are the Akaike, Bayesian,
and Hannan and Quinn information criteria, respectively.
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Figure 3. Impulse responses from a contractionary monetary policy shock.
Note: Impulse responses from the FAQVARmodel with eight factors, with 95% confidence intervals in dotted lines.

during the first months relative to the responses from the FAQVAR model. In comparison to the
FAVARMA model, the FAQVAR model effects on new durable goods orders are smoother and
more conservative. Moreover, the confidence intervals for most of the variables are wider in the
first months after the shock when considering the linear model as reported in Figure A1 in the
Supplementary Material. This reveals a greater uncertainty generated by multiple shocks that are
not captured in the FAVARMA specification.

As expected from the proposed nonlinear model, the responses from the FAQVAR model
generate hump shapes that raise the effect on the consumer price index and industrial pro-
duction as soon as the interest rate reaches negative territory.10 In particular, the higher
hump-shaped reaction that starts at the 9th month might have originated from the quantita-
tive easing policies during the financial crisis and pandemic, which aimed to boost economic
activity.

Further, the FAQVAR model captures the turbulent episodes as atypical since it is modeled
with a heavy tail distribution. The impulse responses follow the expected pattern when a contrac-
tionary monetary shock occurs: a decrease in industrial production, a decline in prices, a rise in
the unemployment rate, a reduction in the number of orders, and an increase in the Yen/Dollar
exchange rate. The FAVAR model estimates of Bernanke et al. (2005) and the FAVARMA model
of Dufour and Stevanović (2013) find similar patterns for a sample that extends until 2005 which
did not include last turbulent episodes.
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Figure 4. Impulse responses from a contractionary monetary policy shock: FAVARMA and FAQVAR.
Note: Impulse responses in months from FAVARMA and FAQVARmodels with eight factors.

5. Alternative specifications
In this section, I estimate additional models with different numbers of factors to verify the robust-
ness of the estimates in the FAQVARmodel. I also estimate the model using a subsample that does
not include the pandemic period. Figure 5 shows the IRFs from models that consider two, four,
and six augmented factors.

We can observe that the impacts derived from a model that only considers two factors are
bigger and exhibit some breaks in industrial production, unemployment rate, and new orders. As
the dimension increases the responses are smoother in general. The paths of the shocks are similar
in all scenarios except for the reaction of the exchange rate when four factors are used. However,
because the model incorporates more information from the components the responses become
quite similar, as when we compare the figures for six and eight factors, for instance. This may
suggest informational sufficiency from the informational variables [Forni and Gambetti (2014)].

5.1. Estimates before and during COVID-19
I provide an additional robustness check by comparing the subsample up to the end of 2019 before
the declaration of the COVID-19 pandemic and the full sample that takes the pandemic into
account. As a benchmark exercise, Table 4 shows the estimates from the Gaussian FAVARMA
model for both samples. We can see the effect of the pandemic on the estimates of the FAVARMA
linear model, mainly affecting the estimates associated with the first factor. This means that a
Gaussian assumption in times of high uncertainty can have severe effects on the linear model and
policy assessment since the model does not accommodate extreme observations in comparison to
a heavy tail distribution.

In contrast, the estimates and impulse responses from the FAQVAR model with a Student t
distribution are almost identical for both samples. Figure 6 exhibits the impulse responses from
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Figure 5. Impulse responses from a contractionary monetary policy shock and different number of factors.

factors andmonetary shocks to their same variables. The responses are identical for the subsample
until December 2019 and the full sample until May 2021. There are a couple of points to highlight:
first that the estimates of the FAQVAR model are robust to unprecedented behavior of variables
during the pandemic, and second, that the estimates are stable given that the trajectory of the
responses is almost the same.

In Table 5, I report the bootstrap mean estimates from the FAQVAR models using the sub-
sample until December 2019, and the full sample. In line with the findings of Bobeica & Hartwig
(2023), the average of the degrees of freedom estimates supports the model with heavy tails before
and after COVID-19 with a slightly lower average when considering the pandemic period.11
Further, the intercept vector, persistence, and updatingmatrices display similar entries across both
samples.

5.2. Zero lower bound
The sample considered also covers periods of ZLB in the FFR, which may influence the impulse
responses from the monetary policy shock if it occurs at the ZLB. There are recent develop-
ments in the literature to deal with lower bounded policy rate, for instance we may extend the
FAQVAR model with the interactive VAR model of Caggiano et al. (2017), though that extension
is beyond the scope of this article. I instead employ the shadow rate series proposed by Wu and
Xia (2016) replacing the effective FFR observations during ZLB episodes: the first episode started
in December 2008 and lasted until December 2015, and the second one started in March 2020 as
a rapid response from the pandemic threat. I re-estimate the model with the shadow rate and I
show in Figure 7 the impulse responses from the FFR and the shadow rate shocks.

Overall, the impulse responses are similar between the effective and shadow rates exhibiting
hump-shaped reactions from the score-driven FAQVAR model. As we can see on the top left
response, the shadow rate is even further negative in comparison to the FFR, as a result the initial
impact for industrial production is relatively moderate. The consumer price index response still
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Table 4. FAVARMAmodels estimates

Parameter FAVARMA 2019 FAVARMA 2021

1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR

c′ 0.09a 0.07a −0.05a −0.08a 0.05a 0.00 0.01c 0.00 0.04a 0.09b 0.06 −0.02 −0.10a 0.10a −0.01 0.04 0.02 0.00

�̂ 0.99a −0.04a 0.11a −0.19a −0.16a −0.04a 0.07a 0.07a −0.03a 0.76a −0.10 −0.02 −0.47a −0.13 0.13 −0.06 −0.09 −0.02
0.34a 0.44a −0.33a 0.12a 0.11a −0.11a −0.04a −0.07a −0.01a 0.42a 0.49a −0.18a −0.04 −0.19c −0.18 −0.03 −0.12 −0.02
0.13a −0.28a 0.66a 0.23a 0.28a −0.08a −0.15a −0.01 −0.04a −0.07 −0.15b 0.65a 0.20b 0.49a −0.23 −0.49a −0.16 −0.02

−0.06a −0.20a 0.00 0.44a −0.51a 0.03b −0.12a −0.07a 0.01a 0.17 −0.45a 0.04 0.18 −0.81a −0.31 −0.20 0.12 0.02

−0.31a 0.10a 0.10a −0.59a 0.51a −0.11a −0.36a 0.11a 0.03a 0.02 −0.12 0.14b −0.35a 0.66a −0.97b −0.67b 0.80b 0.04

0.00 0.10a 0.09a 0.04a 0.03a 0.75a −0.18a −0.02c 0.02a 0.16b 0.06 0.11a 0.21a 0.06 0.66a −0.12 0.10 0.00

0.07a −0.02c −0.04a 0.08a 0.08a −0.01 0.96a 0.02c −0.03a 0.00 −0.05 −0.06c −0.14a −0.03 −0.04 0.78a −0.08 −0.03a

0.10a −0.03b 0.02b 0.04a −0.02c −0.06a −0.03a 0.88a −0.01a 0.19a −0.02 0.05 0.08 −0.10 0.10 0.17 0.70a −0.03
0.44a −0.28a 0.95a −1.95a −1.87a −0.31a −0.04a −0.02b 0.51a 1.33a −0.69b 0.79a −1.40a −2.15a −0.16 0.60 0.09 0.56a

	̂−1 −0.21a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.30a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.04a −0.17a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07a −0.17a 0.00 0.00 0.00 0.00 0.00 0.00 0.00

−0.01b −0.13a −0.09a 0.00 0.00 0.00 0.00 0.00 0.00 −0.03a −0.13a −0.09a 0.00 0.00 0.00 0.00 0.00 0.00

−0.02a −0.02a 0.05a −0.14a 0.00 0.00 0.00 0.00 0.00 −0.01 −0.02a 0.05a −0.14a 0.00 0.00 0.00 0.00 0.00

0.01b 0.02a 0.04a −0.08a −0.09a 0.00 0.00 0.00 0.00 0.05a 0.02a 0.05a −0.08a −0.10a 0.00 0.00 0.00 0.00

−0.01b 0.01c 0.04a 0.02a 0.02a −0.12a 0.00 0.00 0.00 0.01 0.00 0.05a 0.02a 0.02a −0.13a 0.00 0.00 0.00

0.00 −0.01b 0.02b −0.04a 0.05a −0.06a −0.09a 0.00 0.00 −0.01a −0.01b 0.02a −0.04a 0.06a −0.06a −0.09a 0.00 0.00

0.03a −0.01b 0.02a −0.01b 0.01b 0.03a 0.00c −0.13a 0.00 0.00 −0.01b 0.01c −0.02a 0.02a 0.03a 0.00 −0.14a 0.00

−0.05b 0.12a −0.19a −0.05b 0.19a −0.09a 0.21a −0.08a 0.83a −0.07b 0.13a −0.17a −0.05c 0.14a −0.09a 0.17a −0.06b 0.76a
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Table 4. continue

Parameter FAVARMA 2019 FAVARMA 2021

1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR

� 0.39a 0.11a −0.10a −0.50a 0.67a −0.29a 0.12a −0.01 0.04a 0.43a 0.23a −0.22a −0.47a 0.56a −0.19a −0.11b 0.00 0.03a

0.04a −0.03a −0.51a 0.16a −0.20a 0.14a 0.00 0.06a 0.00 0.06a −0.07b −0.39a 0.14a −0.08c 0.09b 0.14a 0.10a 0.01

−0.05a −0.49a 0.20a 0.12a 0.30a 0.20a 0.04a 0.08a −0.05a −0.01 −0.40a 0.12a 0.13a 0.29a 0.16a 0.04 0.12a −0.04a

−0.03a −0.08a −0.06a 0.43a −0.09a 0.12a −0.19a −0.04a 0.05a 0.05b 0.06c −0.14a 0.38a −0.08b 0.15a −0.25a −0.01 0.05a

0.13a 0.15a −0.01 −0.24a 0.39a −0.17a 0.21a 0.02b −0.02a 0.14a 0.23a −0.04 −0.21a 0.38a −0.14a 0.13a 0.01 −0.01b

0.03a −0.05a 0.22a 0.17a −0.12a 0.02c −0.06a 0.03a 0.00 −0.02 −0.09a 0.30a 0.03 0.05 0.06b 0.02 −0.03 0.00

−0.11a −0.12a 0.17a 0.08a 0.17a 0.09a 0.08a 0.03a 0.00c −0.03b −0.02 0.08a −0.03 0.24a 0.06b 0.11a 0.05b 0.01c

−0.06a 0.03a 0.11a 0.15a −0.04a 0.11a −0.03a −0.01 −0.01a −0.08a 0.01 0.16a 0.18a −0.13a 0.12a 0.01 0.02 −0.01b

1.09a −0.70a 1.73a 0.18a 4.55a −0.31a 0.00 −0.07a 0.43a 0.52a −0.70a 1.23a −0.18 2.54a 0.09 −0.27b −0.44a 0.32a

ν ∞ ∞
Notes: a , b , and c denote residual bootstrapping significance at 1%, 5%, and 10%, respectively. The model is yt = c+μt + εt , where μt =�μt−1 +�ut−1 and εt ∼ tν (0,	−1	−1′). F and FFR denote factor
and federal funds rate, respectively.
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Figure 6. Impulse responses from factors andmonetary policy shocks.

shows a price puzzle (positive reaction after a contractionary shock) in the first month, for then
generate a disinflationary effect, and a lower increase in the medium term when considering the
shadow rate. Also, the unemployment rate and new orders generate slightly bigger reactions from
the shadow rate shock, and there is a more pronounced hump-shaped reaction in the exchange
rate response.

6. Conclusions
This research studies a FAQVAR model, which allows the assessment of macroeconomic poli-
cies in turbulent times. The benefit of this approach is its flexibility as a nonlinear model and its
robustness to critical episodes such as the U.S. financial crisis and the pandemic, when I evalu-
ate the U.S. monetary policy since 1959. Unlike traditional FAVARMA models, FAQVAR models
assume a Student t distribution model for their multivariate errors capable of accommodating big
shocks, and they are observation and score-driven. The addition of these features generates sta-
ble estimates through turbulent episodes from FAQVAR models that are not well captured in the
FAVARMA specification. In addition, the estimates from the proposed model are robust to the
number of factors, pre-pandemic sample, and ZLB times.

As compared to the base FAVARMAmodel, the FAQVARmodel generates a better in-sample fit
and the generated impulse responses are hump-shaped. An assessment of monetary policy in the
USA unveils that the characterized Student t errors provide a significant improvement to macro-
modeling relative to FAVARMA models and the impulse responses from factors and monetary
shocks are robust. Further, the impulse responses to a group of informational variables are in line
with economic theory.

The proposed model allows several extensions, which include the modeling of heteroskedas-
tic errors, time-varying parameters for the multivariate location model, specific modeling at or
around the lower bound with interactive or Markov-switching models, and additional identifica-
tions for structural shocks.
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Table 5. FAQVARmodels mean bootstrap estimates

Parameter December 2019 May 2021

1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR

c′ 0.07 0.04 0.01 −0.13 0.14 −0.01 0.06 0.00 −0.10 0.07 0.04 0.01 −0.13 0.14 −0.01 0.04 0.00 −0.08
�̂ 1.07 −0.11 0.14 −0.31 −0.32 −0.14 0.02 0.02 −0.02 1.04 −0.09 0.14 −0.29 −0.31 −0.13 0.03 0.07 −0.02

0.12 0.66 −0.28 0.08 0.19 −0.04 −0.09 0.03 0.01 0.11 0.64 −0.29 0.07 0.18 −0.06 −0.09 0.07 0.01

0.07 −0.18 0.73 0.23 0.26 0.03 −0.04 −0.03 −0.04 0.08 −0.20 0.71 0.22 0.26 0.04 −0.05 −0.04 −0.04
−0.04 −0.07 0.05 0.59 −0.31 0.08 −0.01 −0.01 −0.01 −0.04 −0.09 0.03 0.58 −0.33 0.06 −0.03 −0.02 −0.01
0.02 0.03 0.11 −0.16 0.80 −0.03 0.00 0.00 −0.04 0.02 0.04 0.11 −0.15 0.81 −0.03 0.00 0.01 −0.04
0.03 0.10 0.15 0.07 0.01 0.77 −0.04 −0.01 0.02 0.02 0.09 0.14 0.05 0.01 0.77 −0.05 −0.01 0.02

0.00 0.03 0.00 −0.01 −0.01 0.03 0.96 0.02 −0.03 0.00 0.02 −0.01 0.00 0.00 0.04 0.97 0.02 −0.02
0.05 0.00 0.00 0.01 −0.01 0.04 −0.02 0.83 −0.01 0.05 0.01 0.01 0.01 −0.02 0.05 0.01 0.87 −0.02
0.36 −0.22 0.93 −1.94 −1.98 −0.33 −0.05 −0.01 0.80 0.37 −0.22 0.93 −1.92 −1.97 −0.32 −0.07 −0.02 0.76

	̂−1 −0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.02 −0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 −0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00

−0.01 −0.07 −0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.03 −0.12 0.00 0.00 0.00 0.00 0.00 0.00

−0.01 −0.01 0.01 −0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 −0.12 0.00 0.00 0.00 0.00 0.00

0.01 0.01 0.02 −0.03 −0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.01 −0.01 −0.10 0.00 0.00 0.00 0.00

0.00 0.01 0.03 0.01 0.01 −0.11 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 −0.12 0.00 0.00 0.00

0.00 0.00 0.01 −0.02 0.03 −0.02 −0.09 0.00 0.00 0.00 0.00 0.00 −0.01 0.01 −0.01 −0.10 0.00 0.00

0.01 −0.01 0.01 −0.01 0.01 0.02 0.01 −0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 −0.12 0.00

−0.02 0.04 −0.09 −0.01 0.05 −0.07 0.04 −0.01 0.63 −0.01 0.03 −0.04 0.00 0.02 −0.03 0.02 0.00 0.64
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Table 5. Continued

Parameter December 2019 May 2021

1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR 1stF 2ndF 3rdF 4thF 5thF 6thF 7thF 8thF FFR

� 0.76 0.42 −0.29 −0.39 0.69 −0.63 0.01 0.00 0.05 0.71 0.37 −0.27 −0.38 0.67 −0.60 0.01 0.01 0.05

0.28 −0.12 −0.91 −0.12 −0.29 0.03 0.10 0.02 0.02 0.28 −0.13 −0.85 −0.12 −0.29 0.03 0.12 0.07 0.01

−0.05 −0.83 0.28 0.23 0.41 0.17 −0.09 −0.02 −0.09 −0.04 −0.77 0.24 0.24 0.38 0.14 −0.06 −0.01 −0.08
−0.03 −0.18 −0.10 0.74 −0.37 0.19 −0.41 −0.01 0.11 −0.02 −0.17 −0.11 0.69 −0.36 0.19 −0.40 0.00 0.09

0.24 0.38 −0.09 −0.09 0.56 −0.22 0.04 0.00 −0.02 0.24 0.35 −0.06 −0.07 0.55 −0.21 0.04 −0.01 −0.02
0.12 0.11 0.18 0.29 −0.25 0.19 −0.15 −0.02 0.03 0.13 0.11 0.18 0.26 −0.24 0.17 −0.13 −0.02 0.03

−0.17 0.05 0.02 0.03 0.24 0.05 0.09 0.01 0.02 −0.16 0.03 0.03 0.03 0.22 0.05 0.08 0.02 0.02

0.01 0.02 0.03 0.02 0.02 0.01 0.00 0.11 0.00 0.00 0.05 0.07 0.06 0.07 0.03 0.00 0.03 0.00

1.38 −0.83 1.74 0.43 4.89 −0.39 0.06 −0.01 0.90 1.37 −0.82 1.74 0.43 4.88 −0.40 0.06 −0.01 0.91

ν 5.60 5.38

Note: The model is yt = c+μt + εt , whereμt =�μt−1 +�ut−1 and εt ∼ tν (0,	−1	−1′). F and FFR denote factor and federal funds rate, respectively.
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Figure 7. Impulse responses from a contractionary monetary policy shock.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/
S1365100523000330

Notes
1 I estimate the model with one observed variable xt , which is the monetary policy instrument it .
2 Antolín-Díaz et al. (2021) carry out a similar data treatment for their factor model. This treatment does not impact the
estimation of principal components and the outliers generated around the financial crisis and the pandemic.
3 For instance, the prices series are twice differenced to ensure stationarity.
4 Bernanke et al. (2005) assert that these criteria may not suffice to determine the added number of factors. In addition, den
Reijer et al. (2021) explain that the Bai and Ng (2002)’ criteria might be affected by non linearities or dynamic factors in the
data. To overcome these limitations, I check the robustness of Bai and Ng (2002)’ selection in the next section.
5 The results for criteria ICp1 and ICp3 are the same using 30 factors, meanwhile that ICp2 chooses 18 factors.
6 The initial conditions are set by using the previous estimates from a model with one less factor. I begin the loop with a
model with one-augmented factor whose estimates are robust to general initial conditions.
7 I use R= 1000 bootstrap iterations from the algorithm described in Section 3.1.
8 Similar increases in the FFR were executed in 2008 and 2020 after the financial crisis and the health shocks, respectively.
9 A minimum of 100 bootstrap iterations gives fairly similar confidence bands.
10 This pattern is also observed by Guerron-Quintana et al. (2023) in their nonlinear dynamic factor model.
11 Also, themedian of the bootstrap replications for the degrees of freedomdisplays a decrease from 5.81 before the pandemic
to 5.38 for the full sample.
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