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Summary

An equation is derived for the strains of an arbitrary elastic field in an
infinite matrix perturbed by several inclusions. The equation is solved exactly
when the shear moduli of the inclusions and matrix are identical, and also
when only a single ellipsoidal inclusion perturbs a field uniform at infinity.
Mean-values of the strains are then calculated for non-uniform fields perturbed
either by an ellipsoid or by a system of weakly-interacting spheres.

1. Introduction

Classical elasticity theory is here applied to the determination of the stress
and displacement in an infinite isotropic homogeneous matrix containing
several isotropic homogeneous inclusions of arbitrary shape and different
elastic properties. The inclusions are regarded as being bonded to the matrix,
which means that the traction and displacement are continuous across each
interface separating an inclusion from the matrix.

To solve the problem we imagine the matrix to be continuously extended
throughout the entire space and then determine what force distributions are
required in this fictitious medium to produce a displacement field identical to
that occurring in the original body. These forces involve the unknown strains
of the inclusion problem, but have the advantage of acting in an infinite homo-
geneous continuous medium. A straightforward integration therefore furnishes
a formula for the displacement which can then be used to derive a system of
integro-differential equations satisfied by the strains.

The approach is fundamentally similar to one described by Eshelby (2,
3, 4), but is more direct mathematically and provides a more concise treatment
of the general problem.

The basic equations for the strains can be solved exactly in two cases.
The first is when the shear moduli of the matrix and inclusions are identical,
and then the problem is reduced to one in potential theory. The second case
is when the matrix contains only a single inclusion in the shape of an ellipsoid
and the stress at infinity is uniform. This is the problem originally considered
by Eshelby. However, apart from these two situations, the equations appear
difficult to solve exactly, and for this reason we do not attempt to do so here.
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Instead, we employ the basic equations to calculate the mean-value of the
strains for non-uniform fields perturbed by an ellipsoidal inclusion, and also
by a system of weakly-interacting spherical inclusions of any size and number.

Some other recent contributions in this field of study have been concerned
with using variational techniques to derive bounds for the aggregate moduli
of multiphased materials possessing arbitrary phase geometry. In this con-
nexion reference should be made to Hashin and Shrikman (5) and Hill (7, 8),
where in particular bounds are presented for the bulk and shear moduli. Their
work does not in the main overlap with the present article which is devoted
more to a new derivation of the general exact solution.

We start by recording the field equations satisfied when the matrix is con-
tinuous and when it contains the inclusions, and then in Section 3 derive the
basic equations for the strains. This section also establishes the discontinuities
in the strains across an interface. Section 4 describes the two problems which
can be solved exactly, and Section 5 discusses mean-values.

2. Basic formulae
Consider first the situation when the matrix is extended continuously

through the whole space and is subjected to the boundary conditions of the
original inclusion problem. These consist of a body-force, / , distributed over
finite portions of space (including regions which may subsequently be occupied
by an inclusion), together with conditions at infinity, where either the stress
or the displacement, or combinations of them, are prescribed. The Cartesian
components of the stress, strain and displacement thus induced are denoted
respectively by <r?-, e?- and u,° and satisfy

o?j.j+ft=0, W = l , 2 , 3, (2.1)

e?j = Kui,j + Uj,i), (2.2)

4=^K). (2-3)
where here and in the following the convention is adopted of summing over
repeated suffixes, and a comma indicates partial differentiation.

Equation (2.3) is an abbreviation for the usual linear stress-strain law

in which 5tJ is the Kronecker delta, and A0, n° are the Lame constants of the
matrix. These are related to Poisson's ratio, v° by

A0 = 2/v°/(l -2v°).

As we shall later determine the strains when the inclusions are present
in terms of the strains, e;°, we always assume that equations (2.1), (2.2), (2.3)
can be solved subject to the given boundary conditions.

Next consider the matrix when it contains the inclusions. The stress,
strain and displacement have now respectively the Cartesian components
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0^, eti, uh which, except on an interface, everywhere satisfy

°v.l+fi = 0, (2.4)

e,, = K";,;+ «;,,) (2-5)
In the matrix, the stress-strain law is

ou = L°(elJ), (2.6)
while in an inclusion it is

otJ=UetJ\ (2.7)
or equivalently

where A, n are the Lame constants of a typical inclusion. The corresponding
Poisson's ratio is v.

At infinity, the stress and displacement must satisfy the prescribed values.
Across an interface, Z there is continuity of traction and displacement, so
that if n = (/,) is the unit outward normal, we have on E,

[ijOij] = 0, [ii,] = 0, (2.8)

where the square bracket denotes the jump in the enclosed quantity along n,
e.g.

[wj = M; (matrix)—«; (inclusion).
We observe that (2.8) do not imply the continuity of all the stress and strain
components across S, and indeed in the next section we establish precisely
what these discontinuities are.

3. Equations for the displacement and strain
Because the operator, L, is linear the stress-strain law (2.7) may be rewritten

as
ffu = L°(etJ) + (L-L°)(e(j) (3.1)

We now regard L°(ei}) as the stress produced by the strain, etj, in an infinite
medium whose Lame constants are everywhere X°, n°, i.e. the original matrix
is extended continuously to fill the whole space. It follows from (2.4), (2.7),
and (2.8) that the stress L0(etj) is maintained in equilibrium by a layer of
surface-force

-(Z.-L°)(ey)/,, (3.2)

over the interface of each inclusion, together with a body-force,

(L-L°Xev), Jt (3.3)

distributed over the region of each inclusion. In addition to these forces
there are also the original boundary conditions to be satisfied, except that
where an inclusion is located at infinity the stress is altered by the amount

-(L-L°)(eiJ) (3.4)

Thus the strains and displacements arising when the inclusions are present
can be reproduced in the matrix when it is continuously extended throughout
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all space, if, besides the original boundary conditions, the forces (3.2) and
(3.3) are introduced. Several methods of solution are available. The one
we select is the so-called Betti method of integration and requires the following
expression for the displacement in the rth direction at the point P(xy, x2, x3)
due to a unit point-force in theyth direction at the point Q(yt, y2, J3):

KiJ = 4 t R (35)

where
R2 =(xi-

and differentiation is with respect to xu x2, x3.
If the matrix is not infinite, then K^ has to be augmented by a regular part

Gij which satisfies certain conditions on the boundary of the matrix. For
nstance, if the traction is specified there, then Ky+Gfj must produce vanishing
surface tractions. Because the form of Gti is known for so very few bodies,
we do not consider finite problems.

By means of (3.5) we may determine the displacement due to the force-
distributions (3.2) and (3.3) and the boundary conditions of the problem. A
simple integration with respect to Q yields

= - UL-L°)(etJ)ljKi,dS+ hL-L°)(etJ),jKitdv + uf(P), (3.6)

where the integrals are over the interfaces and volumes of all the inclusions.
On applying the divergence theorem, (3.6) becomes

ih{P) = ~ J (L-

or, since
8R oR. J(}

we may re-write this equation in the form

ui(P)= ^ - [{L-L°){etj{Q))Ku{P, Q)dv(Q) + u?(P), (3.7)

where for clarity we exhibit the dependence of the functions on their arguments.
Substitution of (3.7) into the strain-displacement relation and use of (3.5)
then leads to

Snn°ldxtdXj) R dx.dxtJ R

(L-L°)(.ekl)Rdv + e?j(P), (3.8)J
which represents the main result of the paper. A contraction with respect to
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i and./ immediately gives an expression for the dilatation:

ekk{P)= 1 JL_ f t f ^ W dt) + eok(p) (3.9)
47i(X + 2fr) oxfixj J R

Before investigating solutions of equation (3.8) we examine the discontinuity
in the strain components across an interface.

These may be derived in two ways. The first uses equation (3.8) and the
discontinuity relations for the harmonic and biharmonic potentials. These
are given, for instance, by Eshelby (4) and show that:

where the square bracket is defined in the sense of (3.8) and et. represents the
strain on the inclusion side of the interface. The second method is independent
of (3.8) and uses the property (see Hill (6)) that the partial derivatives of the
continuous displacement can possess only the discontinuities

where r\x is some function to be determined. The first of (3.8) can be rewritten as

and so by means of a relation of the type

[fg] = f + [g]+9+[f]+ [/][#]>

we have

\A. +2/x J \ \i ) (i (1—v )

which is equivalent to (3.10).
We next consider how equation (3.8) can be solved.

4. Some solutions
An exact solution is always possible whenever the shear moduli of the

inclusions and matrix are identical, for then

5 *

and so from equation (3.9), we have in an inclusion,

_ / A ° + 2 A A o ( .

' " -ViTvJ" ' (

and in the matrix,
ea=e& (4.2)

The dilatation is therefore directly proportional to the unperturbed value
even though this is non-uniform. The strain is obtained by substituting (4.1)

E.M.S.—E
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into (3.8) and is

. (A-A") d> [e°kkd 0
11 4nVL + 2n°) dxjx) R "'

with the displacement being given by

" = A ,~ Jo, 8rad ft*
J R

The problem thus reduces to the determination of a known gravitational
distribution, e°k, over the region of the inclusions. Moreover, the effect of
the inclusions is linear since by (4.1) and (4.2) they do not interact with each
other, and so to find, for instance, the displacement due to several inclusions we
simply add together displacements due to each inclusion acting alone. It is
also worthwhile noting that the discontinuities (3.10) simplify considerably
and with the help of (4.1) can be made to depend entirely upon the known
unperturbed dilatation. These conclusions have been previously derived by
the present author (10) using a different approach.

Hill (7, 8) has also solved this problem for a body loaded so as to produce
a constant dilatation in the matrix and inclusion. The method utilises a semi-
inverse procedure in potential theory.

Probably the most obvious manner of solving the basic equation (3.8)
is to use an iterative procedure in which the nth approximation, effl, to the
strain, e,7, is given by the recurrence relation

where H stands for the operator on the right-hand of (3.8). In general it
would appear rather lengthy to evaluate the strains in this way, but there is
one notable exception in which the iterative procedure leads to an algebraic
system of equations. This is for a single ellipsoidal inclusion perturbing a
stress uniform at infinity, and with no body-force present. Then, by virtue
of the property of harmonic and biharmonic potentials for an ellipsoid, all
the approximations to the strains within the inclusion are constant, and so
we must have that the inclusion strains satisfy

< 4 ' 3 )

Here, <j> and \j/ are respectively the harmonic and biharmonic potentials of a
gravitational distribution of unit density over the ellipsoidal inclusion.

Eshelby solved this problem (2, 3, 4) in a somewhat less direct manner
than the one adopted here. In (4), he determined the various partial derivatives
of </>, ip that enter into (4.3), and with the help of these the complete solution
can be derived. To avoid duplication, we do not record the solution. However,
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it is interesting to observe that the shear strain within the inclusion is directly
proportional to the corresponding unperturbed shear strain, while the normal
strain-components are influenced by all components of the unperturbed normal
strains in rather a complicated way.

We now leave aside the question of the exact solution of (3.8) and next
consider mean-values of the strains for ellipsoidal and spherical inclusions in
a non-uniform field.

5. Mean-values of the strains
We start again with the simple problem of the single ellipsoidal inclusion

and integrate both sides of equation (3.8) over the inclusion to obtain

67C/I

where <j> and \j/ are the potentials of (4.3), and the bar indicates an integral over
the inclusion. Equations (5.1) are identical in structure to those of (4.3) and
therefore have the same solution. We observe, however, that now no restriction
is placed upon the unperturbed strain.

In the special case of a spherical inclusion, the perturbed and unperturbed
volume expansions are related by

(3A+2/<+4/)^ = 3(^+2/1°)^ (5.2)

When no body-force acts within the inclusion, the dilatations ekk, ekk are both
harmonic there, and hence by the classical mean-value theorem for a sphere,
equation (5.2) may be replaced by

°t(C), (5.3)

where C is the centre of the sphere. The remaining mean-values of the strains
are given by

where

_ ' / (7-5v°)-2 / i (5v°-4) '
(5.4)

Again, let no body-force act in the inclusion. Then etj, efj, are biharmonic
there, and their mean-values can be replaced by their values at the centre as
follows. The solid mean-value theorem for biharmonic functions (1) gives

-eUkk(C) (5.5)
10 J>
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where a is the radius of the sphere. From the Navier equations,

we easily deduce that

and with another application of the harmonic mean-value theorem we get

( + j)
j , kk — ekk, iji

But, by (3.9), and remembering that </>,ijk, = 0, we have

f A f 0 A
ekk, ijdv = ekK ijdv.

J J
Hence, by a further application of the harmonic mean-value theorem we
arrive at

4na3 ,^ 2na5

and finally an elimination of etj between this equation and (5.4) gives ei}(C)
in terms of the known strains e?-:

Once having found the mean-values of the strains, we can immediately
determine the displacement at large distances from the inclusion by means
of MacCullagh's formula applied to equation (3.7). Thus, for P at a large
distance we have,

Uj(i>)= ( I ^ & > JL/A - * (L-L°)(etJ)R,ijt + u?(P), ..(5.7)
Any? dX\Rj 16?i/r(l v°)

where R is now the distance between P and the centre of the ellipsoid. If the
unperturbed field u° corresponds to a pure dilatation, then the above result
shows that at large distances the inclusion may be replaced by a centre of
dilatation acting at its centre. If u° corresponds to a pure shear, then the
displacement (5.7) is appropriate to a double force placed at the centre of the
inclusion.

As a second application consider a system of spherical inclusions which
weakly-interact with each other, i.e. the interaction is a first-order effect. To
examine more closely what this approximation implies we treat first of all
the problem when only two inclusions are present. Let their centres be a
distance, F, apart and let their line of centres be along the 3-axis. Further,
let (xt) and (y,) be respectively the coordinates relative to the centre of two
points situated in sphere 1 and sphere 2. The distance, R, between these
points is then,

R2 =R\-2x,y, + 2y3r, (5.8)
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where i?x is given by
Rl = xiXi+r2-2Tx3, (5.9)

and so is the distance between (xt) and the centre of the sphere 2.
To solve the problem, we apply (3.8) with P taken at the point (xt) of the

sphere 1, and by the multinomial theorem expand in terms of F the values
of R~l and R which occur in the integrals over the sphere 2. Thus, for the
harmonic potential integral, we use (5.8) to obtain,

xtdxj}2 R dxtdxj]2R1

= ̂ -\~\ f
dxtdxj (KtJ J

dxtdxj}2 t j ] 2 1 l l J

^ \ \ f (5.10)

where it is assumed that the strain, ei}, is bounded. Upon carrying out the
differentiation in (5.10), and then expanding R~3, R~5 in terms of F by means
of (5.9), we see that the right-side of (5.10) reduces to

.(5.11)

Similarly, it may be shown that

R(L-L°)(ekt)dv

(L-L°)(ekt)dv + 0(r-4) (5.12)[
The approximation consists in neglecting the 0(F~4) terms in (5.11) and (5.12).

The method can obviously be applied to any number of spheres, but the
calculations are rather cumbersome. For simplicity, therefore, we treat only
the following problem in which the integrals of the strains over the inclusion
are assumed the same. Consider an infinite plane square array of equal
spherical inclusions, of radii a, and whose base square is of side p. Select
the origin of coordinates to be at the centre of any sphere, and take the point,
P, of (3.8) to be in this sphere. Substitution of (5.11) and (5.12) for the appro-
priate integrals over the remaining spheres that arise in (3.8), and then integra-
tion over the base sphere leads to a system of equations whose solution is

Meu = e?j+{NI(M-3N)}eo
kk5u, (5.13)

where

M = l + 2(/i-/i0X4-5v0)/15/i°(l-v0)

- [ (M-/X1 - 2 V > 3 / { 3 / ( 1 - v V } ] £ (

N = [2(5 v° - 4)(A - A0) + 3(K - K°)]/30/X°(1 - v°)

+ {[3(K-/c°)-(l-2v0)(A-A0)]a3/{6/(l-vV}} E (
l
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and we have introduced the bulk modulus, K, denned by

3K = (3A+2/0,

with a corresponding definition for K°.
The summation entering into the expressions for M, N, is over all values

of /, m, in ( — 00, oo), except / = m = 0. It has been evaluated by Van der
Hoff and Bensen (9) who give the value 9-0336. They have also evaluated
(9) the sum corresponding to a hexagonal array, and give the value 11 0342.

It should be observed that we cannot apply this treatment to a three-
dimensional array because the sums involved are divergent.

Note added in proof
Since this manuscript was prepared, a monograph by V. D. Kupradze

(Progress in Solid Mechanics, Vol. 3, 1963) has appeared. This concerns a
basic treatment of the inclusion problem in both the static and dynamic cases
for finite and infinite matrices. It deals extensively with the existence and
uniqueness of the solution to the equations corresponding to our (3.8), and
discusses their numerical solution.
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