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Abstract

For multi-scale differential equations (or fast–slow equations), one often encounters
problems in which a key system parameter slowly passes through a bifurcation. In
this article, we show that a pair of prototypical reaction–diffusion equations in two
space dimensions can exhibit delayed Hopf bifurcations. Solutions that approach
attracting/stable states before the instantaneous Hopf point stay near these states for
long, spatially dependent times after these states have become repelling/unstable. We
use the complex Ginzburg–Landau equation and the Brusselator models as prototypes.
We show that there exist two-dimensional spatio-temporal buffer surfaces and memory
surfaces in the three-dimensional space-time. We derive asymptotic formulas for them
for the complex Ginzburg–Landau equation and show numerically that they exist also
for the Brusselator model. At each point in the domain, these surfaces determine how
long the delay in the loss of stability lasts, that is, to leading order when the spatially
dependent onset of the post-Hopf oscillations occurs. Also, the onset of the oscillations
in these partial differential equations is a hard onset.
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37L10, 37G15.

Keywords and phrases: slow passage through Hopf bifurcation, dynamic bifurcation,
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1. Introduction

Many systems of multi-scale differential equations undergo dynamic Hopf bifurcations
in which a parameter slowly changes and a stable state becomes unstable due to the
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slow, generic passage of a pair of eigenvalues through the imaginary axis. When the
governing equations in the multi-scale (or fast–slow) systems are analytic ordinary
differential equations (ODEs), it has been known for over 50 years that there are delays
in the onset of the instabilities [4, 20, 35–39, 44–47]. Solutions that have approached
the stable (attracting) states before the instantaneous Hopf bifurcations remain near
those states long after they have become unstable (repelling) in the dynamic Hopf
bifurcations. This phenomenon is known as delayed Hopf bifurcation (DHB).

A primary dynamic manifestation of DHB is that the onset of the post-Hopf
oscillations is a hard onset, with the systems transitioning rapidly to large-scale
oscillations when they leave neighbourhoods of the unstable states. This contrasts with
the gradual square root growth of the oscillation amplitudes in generic classical Hopf
bifurcations.

Applications of DHBs in ODE models have been studied in many areas of
science and engineering: chemistry [8, 28, 29, 45], electrical circuits [19, 22, 49],
electrocardiac models [30], fluid mechanics and geophysics [2, 14, 21, 32], mechanical
oscillators [11, 38], neuroscience [4, 5, 9, 10, 24, 42, 43, 46] and economics [18],
among others. For each of these models, the long delay between the instantaneous
bifurcation and the onset of oscillations, which is O(1/ε) in the fast time (where ε is
the small parameter measuring the time-scale separation), plays an important role in
the system dynamics.

Recently, it has been shown that the DHB phenomenon occurs not only in analytic
ODEs but also naturally in one-dimensional, multi-scale partial differential equations
(PDEs) of reaction–diffusion type [17, 25]. The phenomenon is governed by a
super-critical Hopf bifurcation occurring in the family of fast subsystems parametrized
by a slowly varying parameter. Examples studied in [17, 25] include the complex
Ginzburg–Landau equation, the FitzHigh–Nagumo PDE, and the Hodgkin–Huxley
PDE. Additional theory for problems with spectral gaps is given in [3].

In this paper, we show that the phenomenon of DHB also occurs in a pair of
multi-scale reaction–diffusion PDEs in two space dimensions. In particular, we study
DHBs in the complex Ginzburg–Landau (CGL) PDE in two dimensions and in the
Brusselator model in two dimensions. Both of these equations have Hopf bifurcations
in which an attracting quasi-steady state (QSS) becomes a repelling QSS, and we
consider the problems in which the bifurcation parameters slowly and generically pass
through the Hopf points.

First, we use asymptotic analysis on the linearized CGL PDE in two dimensions
to show that solutions that approach the attracting QSS before the instantaneous
Hopf bifurcation remain close to it even after it has become repelling in the Hopf
bifurcation. From the asymptotic analysis, we find that the delays between the time of
the instantaneous Hopf bifurcation and the onset of the post-Hopf oscillations are long
(O(1/ε) in the fast time) and generally spatially dependent.

Next, we quantify the duration of these delays. We define spatio-temporal buffer
surfaces and spatio-temporal memory surfaces in the three-dimensional space-time of
the CGL PDE. These are the surfaces along which the amplitudes of the particular and
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homogeneous solutions of the linearized CGL PDE, respectively, cross a threshold,
and cause the solution of the full PDE to diverge from the repelling QSS. We derive
asymptotic formulas for both surfaces, and we determine how they depend on the initial
data and on the properties of the source terms in the CGL PDE. We find that, at each
point (x, y) in the domain, numerically computed solutions of the fully nonlinear CGL
PDE with initial data given before the Hopf point stay close to the repelling QSS
until they reach the spatio-temporal memory surface or the spatio-temporal buffer
surface; whichever occurs first at that point. Hence, the linear terms appear to drive
the phenomena of DHB in these PDEs, just as they do in the analytic ODEs.

We use the label “buffer” for the spatio-temporal buffer surfaces, because no matter
how far in the distant past the data is given (that is, how large negative μ0 is) the
solution must leave the neighbourhood of the repelling QSS at the spatio-temporal
buffer surface since the attracting QSS also leaves the neighbourhood then. In addition,
we use the label “memory” for the spatio-temporal memory surface, because although
the memory of the initial data fades quickly after the initial time due to the rapid,
exponential contraction toward the attracting QSS, the memory of the data is not lost.
On the contrary, the component of the solution given by the initial data re-emerges in
a spatially dependent manner when the slowly varying parameter reaches the memory
surface to leading order. This terminology is consistent with that commonly used for
DHBs in ODEs.

Finally, we present numerical simulations showing that DHB also occurs in the
Brusselator PDE model in two dimensions. Since its creation [41], the Brusselator
has served as a prototypical model in pattern formation and chemical oscillation
theory (see, for example, [15]). Here, we consider the case when the main bifurcation
parameter slowly passes through the Hopf point. As with the CGL PDE, solutions
of the Brusselator PDE that approach the attracting QSS before the instantaneous
Hopf bifurcation remain near the QSS for long times after it has become repelling.
We find that there is a substantial—generally point dependent—delay before the onset
of oscillations occurs.

The asymptotic and numerical results that we present here for these prototypical
pattern-forming systems in two dimensions extend our earlier work on DHBs in PDEs
in one dimension [17, 25]. In particular, in [17] we defined buffer curves and memory
curves for the linearized CGL PDE in one dimension and derived asymptotic formulas
for their spatio-temporal dependence. We showed that key terms in the particular
solution are exponentially small up until the spatio-temporal buffer curve, and that
precisely along it these terms become O(1). Similarly, the homogeneous solution is
exponentially small up until the memory curve and large after that. Overall, for the
CGL PDE in one dimension, we showed that there is a competition between these
exponentially small terms: at each point in the one-dimensional domain the term that
ceases being small first determines the length of the delay to leading order at that
point, and hence also when the hard onset of the (post-Hopf) oscillations occurs. The
memory and buffer surfaces defined in this article play a similar role for the CGL PDE
in two dimensions.
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We recall that classical Hopf bifurcations are ubiquitous in PDEs and spatially
extended systems in two dimensions. General results are presented, for example,
in [48]. Some specific examples include electrodeposition models [31], bulk-surface
reaction–diffusion [40] and nematic liquid crystals [12, 13], in addition to the CGL
and Brusselator models studied here.

This paper is organized as follows. In Section 2, we present the main asymptotic
analysis to show that DHB occurs in the linearized CGL equation with a slowly varying
parameter in two space dimensions. In Section 3, we derive the asymptotic formulas
for the spatio-temporal buffer surface and the memory surface for the CGL PDE. In
Section 4, we present the results of numerical simulations for the fully nonlinear CGL
equation that complement the theoretical predictions (of the previous two sections) for
the spatio-temporal dependence of the delayed Hopf bifurcations. Section 5 features
the DHB results obtained from numerical simulations of the Brusselator model in two
dimensions. Conclusions are presented in Section 6. Some asymptotic calculations are
presented in Appendix A.

2. Analysis of DHB in the two-dimensional CGL equation

In two space dimensions, the CGL equation with a source term and a slowly varying
parameter is given by

At = (μ + iω0)A − (1 + iα)|A|2A +
√
εIa(x, y) + εdΔA,

μt = ε.
(2.1)

Here, (x, y) ∈ R2, Δ = ∂2/∂x2 + ∂2/∂y2, t ≥ 0, A = A(x, y, t) is complex valued, and
0 < ε � 1 is a small parameter. The linear growth rate μ = μ(t) is real for the main
phenomena we study. The other system parameters satisfy that ω0 > 0, α is real and
d may be complex valued (d = dR + idI) with dR > 0, and these parameters are all
independent of ε. The source term Ia(x, y) breaks the symmetry A→ Aeiθ for any real θ
of the CGL equation and is taken to be bounded and positive, with uniformly bounded
derivatives. The initial data at μ(0) = μ0 < 0 is A(x, y, 0) = A0(x, y), and taken to be
bounded and continuous for all (x, y). We refer to [1] for the classical CGL PDE.

2.1. The attracting and repelling QSSs The PDE (2.1) has an attracting QSS for
all μ < −δ, where δ > 0 is small and O(1) with respect to ε, and solutions approach
it at an exponential rate. Similarly, it has a repelling QSS for all μ > δ, from which
solutions diverge at an exponential rate. These QSS are given by

AQSS(x, y) = −
√
ε

Ia(x, y)
μ + iω0

+ ε3/2
( Ia(x, y) + d(μ + iω0)ΔIa(x, y)

(μ + iω0)3 −
(1 + iα)I3

a(x, y)

(μ + iω0)2(μ2 + ω2
0)

)

+ O(ε5/2). (2.2)

Here, the O(ε5/2) terms depend on (x, y) and μ.
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2.2. Solution of the linearized equation In this section, we consider μ0 < 0 and
solve the linearized equation,

At = (μ + iω0)A +
√
εIa(x, y) + εdΔA,

μt = ε.

This equation may be simplified using an integrating factor. Let B(x, y, μ) =
A(x, y, μ)e−(μ+iω0)2/2ε. The equation for B is an inhomogeneous heat equation,

√
εBμ =

√
εdΔB + Ia(x, y)e−(μ+iω0)2/2ε. (2.3)

The solution of (2.3) with initial data B(x, y, μ0) = A0(x, y)e−(μ0+iω0)2/2ε is obtained
by superimposing the homogeneous solution Bh(x, y, μ) and the particular solution
Bp(x, y, μ). For μ > μ0, we find

Bh(x, y, μ) =
e−(μ0+iω0)2/2ε

4πd(μ − μ0)

∫
R2

exp
[−(x − x′)2 − (y − y′)2

4d(μ − μ0)

]
A0(x′, y′) dx′ dy′.

Here, we have used the fundamental solution of the heat equation in two dimensions,

Φ(x, y, μ) =
1

4πdμ
e(−(x2+y2))/4dμ.

Also, for μ > μ0,

Bp(x, y, μ) =
1
√
ε

∫ μ

μ0

g(x, y, μ − μ̃)e−(μ̃+iω0)2/2ε dμ̃,

g(x, y, μ) =
1

4dπμ

∫
R2

exp
[−(x − x′)2 − (y − y′)2

4dμ

]
Ia(x′, y′) dx′ dy′.

Transforming back to the original dependent variable using the integrating factor,
we find that, for μ > μ0, the homogeneous solution is

Ah(x, y, μ) =
e(μ2−μ2

0+2iω0(μ−μ0))/2ε

4πd(μ − μ0)

∫
R2

e(−(x−x′)2−(y−y′)2)/(4d(μ−μ0))A0(x′, y′) dx′ dy′. (2.4)

Furthermore, for μ > μ0, the particular solution is

Ap(x, y, μ) =
e(μ+iω0)2/2ε

√
ε

∫ μ

μ0

g(x, y, μ − μ̃)e−(μ̃+iω0)2/2ε dμ̃,

g(x, y, μ) =
1

4πdμ

∫
R2

exp
[−(x − x′)2 − (y − y′)2

4dμ

]
Ia(x′, y′) dx′ dy′.

This completes the derivation of the solution of the linearized equation. We calculate
Ah for several different types of initial data A0(x, y) in Section 3.1, and we calculate Ap
for several different types of source terms in Section 3.2. Also, we observe here that
it will be useful to distinguish between initial data A0(x, y) given for μ0 ≤ −ω0 and for
−ω0 < μ0 < 0.
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2.3. Solutions stay near the repelling QSS at least until μ = ω0 In this section,
we consider solutions with μ0 ≤ −ω0. We show that not only do the solutions of (2.1)
with μ0 ≤ −ω0 remain close to the attracting QSS until the time of the instantaneous
Hopf bifurcation at μ = 0, but after the parameter crosses the instantaneous Hopf
bifurcation they remain close to the repelling QSS as well, at least until the time
μ = +ω0 at all points (x, y) for the functions Ia(x, y) we consider.

We consider complex values of μ in a horizontal strip with mid-line on the real
axis and of sufficient height (at least 3ω0). This enables the use of classical methods
of stationary phase and steepest descents (see, for example, [6, 26, 34]) to calculate
Ap(x, y, μ). We find, for δ ≤ μ ≤ ω0,

Ap(x, y, μ) = −
√
ε

Ia(x, y)
μ + iω0

+ ε3/2
( Ia(x, y) + d(μ + iω0)ΔIa(x, y)

(μ + iω0)3

)

+ O
(

ε5/2

(μ + iω0)5

)

+ (
√

2πg(x, y, μ + iω0) + O(
√
ε))e(μ+iω0)2/2ε. (2.5)

The calculation is presented in Appendix A.
The first and second terms are precisely the leading-order terms in the expansion of

the repelling QSS for the linear CGL (compare with (2.2), where the QSSs are given
for the cubic CGL equation). The third (remainder) term contains the higher-order
terms in the asymptotic expansion of the repelling QSS, and continued integration by
parts will yield them. The fourth term is exponentially small for μ ∈ [δ,ω0 − Kεr), for
some K > 0 and any 0 < r < 1. It is a classic Stokes-type term. This term is not in the
expansion of the repelling QSS (on μ > δ) to all orders. Rather, it is beyond all orders,
O(e−ω

2
0/2ε), arising naturally from tracking solutions on (and near) the attracting QSS

along a contour over the saddle point in the complex μ plane and into the regime of
Re(μ) > 0. It is a measure of the exponentially small distance between the attracting
and repelling QSS at μ = 0.

Overall, formula (2.5) shows that, at all points (x, y), the solutions of the linear CGL
equation with Gevrey regular data A0(x, y) given at μ0 ≤ −ω0 remain near the repelling
QSS at least until μ = ω0 to leading order.

Next, one also needs to include the nonlinear terms from (2.1). This was done for
DHB in the one-dimensional CGL PDE in Section 6 of [17]. There, we first used the
same type of integrating factor (as used in (2.3) above) to rewrite the nonlinear PDE for
B(x, μ). Then, we split the solution into two parts: B(x, μ) = Bp(x, μ) + b(x, μ), where
we recall that Bp is the particular solution of the linearized equation. The PDE for the
remainder term b(x, μ) was converted into an integral equation. We showed formally
that there is a mild solution of that integral equation, using an iterative method, and
that the magnitude of b(x, μ) remains small at least until μ = ω0. Hence, the solution
of the full nonlinear PDE remains near the repelling QSS at least until ω0.

As the estimates of the mild formulation of the one-dimensional nonlinear equation
only used L∞ → L∞ estimates for the heat semi-group, we expect that a similar formal
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analysis will hold for two spatial dimensions, as well. That is, based on decomposing
B(x, y, μ) = Bp(x, y, μ) + b(x, y, μ), we expect that b(x, y, μ) remains small at least until
μ reaches ω0. Fundamentally, the nonlinear terms remain exponentially small at least
as long as the linear terms do.

3. The spatio-temporal memory surface and spatio-temporal buffer surface for
the CGL equation

In this section, we derive the general formulas for the spatio-temporal memory and
buffer surfaces of (2.1), and we apply these to several classes of initial data A0(x, y)
and several different source terms Ia(x, y), respectively.

3.1. The spatio-temporal memory surface By writing the homogeneous solution
Ah(x, y, μ) as a single exponential function, we define the spatio-temporal memory
surface to be the set of points (x, y, μmem(x, y)) at which the real part of the argument of
the exponential vanishes. In this section, we examine three different types of initial
data: constant, Gaussian and periodic, in order to study how the spatio-temporal
memory surface depends on the functional form of A0(x, y).

For constant initial data A0(x, y) = 1, one finds from (2.4) that

Ah(x, y, μ) = e(μ2−μ2
0+2iω0(μ−μ0))/2ε. (3.1)

It is independent of (x, y). Hence, Ah(x, y) is exponentially small for all μ ∈ (μ0,−μ0).
At μ = −μ0, the real part of the exponential vanishes, which implies that the memory
surface is a horizontal plane in the (x, y, μ) space: that is,

μmem(x, y) = −μ0 for all (x, y), (3.2)

where we recall that μ0 < 0. Then, for μ > −μ0, Ah becomes exponentially large.
For Gaussian initial data A0(x, y) = e−(x2+y2)/4σ, formula (2.4) shows that the homo-

geneous solution is given by

Ah(x, y, μ) =
[

σ

σ + d(μ − μ0)

]
e(μ2−μ2

0+2iω0(μ−μ0))/2εe−(x2+y2)/(4(σ+d(μ−μ0))). (3.3)

At each (x, y), the real part of the argument of the exponential vanishes for

μ2 − μ2
0

2ε
+ ln(σ) − 1

2
ln((σ + dR(μ − μ0))2 + d2

I (μ − μ0)2)

− (x2 + y2)(σ + dR(μ − μ0))

4[(σ + dR(μ − μ0))2 + d2
I (μ − μ0)2]

= 0, (3.4)

where we recall that d = dR + idI in (2.1). Hence, to leading order asymptotically, we
find that the spatio-temporal memory surface is parabolic in x and y,
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μmem(x, y) = |μ0| −
ε

|μ0|

(
ln(σ) − 1

2
ln((σ + 2dR|μ0|)2 + 4d2

I |μ0|2)
)

+
ε

4|μ0|

( (x2 + y2)(σ + 2dR|μ0|)
(σ + 2dR|μ0|)2 + 4d2

I |μ0|2
)
+ O(ε2). (3.5)

For periodic initial data A0(x, y) = cos(π(x − y)/L) cos(π(x + y)/L), the homoge-
neous solution for μ > μ0 is

Ah(x, y, μ) = e(μ2−μ2
0+2iω0(μ−μ0))/2εe−4π2d(μ−μ0)/L2

cos
π

L
(x − y) cos

π

L
(x + y). (3.6)

Hence, at any point (x, y), the real part of the argument vanishes for

1
2ε

(μ2 − μ2
0) − 4π2d(μ − μ0)

L2 + ln
∣∣∣∣∣cos

π

L
(x − y) cos

π

L
(x + y)

∣∣∣∣∣ = 0. (3.7)

Asymptotically to leading order, one finds logarithmic dependence on A0,

μmem(x, y) = |μ0| +
8επ2d

L2 − ε

|μ0|
ln
∣∣∣∣∣cos

π

L
(x − y) cos

π

L
(x + y)

∣∣∣∣∣. (3.8)

These theoretical results for μmem(x, y) with constant, Gaussian and periodic initial
data are compared with simulations of (2.1) in Section 4.

REMARK 1. In [17], for the CGL PDE in one dimension, we used the label homo-
geneous exit time curve. (There, homogeneous referred to the curve being defined
by Ah, not that the curve is spatially homogeneous.) Here, we label it instead the
spatio-temporal memory surface, since it is determined by the memory of the initial
data. One could also label it the spatio-temporal way-in way-out surface, in analogy
with the way-in way-out function defined for DHB in analytic ODEs [35, 36].

3.2. The spatio-temporal buffer surface In this section, we focus on the particular
solution Ap(x, y, μ) with special emphasis on the fourth (last) term in the general
formula (2.5). We consider δ ≤ μ ≤ ω0 and label this term G, where

G(x, y, μ) = (
√

2πg(x, y, μ + iω0) + O(
√
ε))e(μ+iω0)2/2ε. (3.9)

The function G is the component of the particular solution Ap(x, y, μ) that measures
the deviation from the repelling QSS (where we recall that the first three terms in (2.5)
represent the QSS). It is generated by passage over the saddle point at μ = −iω0 in the
complex μ-plane, as shown in Appendix A. It is present in all solutions that start from
initial data at any μ0 < 0, including solutions on the attracting QSS.

The spatio-temporal buffer surface is defined as the surface along which

|G(x, y, μ)| = 1, (3.10)

to leading order. Here, we derive a general formula for the spatio-temporal buffer
surface for smooth, bounded sources Ia(x, y), and asymptotic formulas for it with
constant, Gaussian, periodic and stripe sources. We see that, in general, G ceases to be
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exponentially small and becomes O(1) in a spatially dependent manner. This implies
that all solutions with initial data given at μ0 < 0, including those on the attracting
QSS, must leave an O(1) neighbourhood of the repelling QSS when μ reaches the
buffer surface, irrespective of how large |μ0| is; that is, irrespective of how far in the
distant past the solutions approached the attracting QSS.

From (3.9), we find that the spatio-temporal buffer surface is given implicitly by

Re
[
ln(
√

2πg(x, y, μ + iω0)) +
1
2ε

(μ + iω0)2
]
= 0

for general smooth and bounded source terms Ia(x, y). We label the solution μbuf(x, y).
Its graph is the spatio-temporal buffer surface. To leading order,

μ2
buf(x, y) = ω2

0 − ε ln(2π) − 2ε ln|g(x, y,ω0 + iω0)|. (3.11)

At each point (x, y), the buffer surface μbuf(x, y) determines the time at which the
deviation of Ap(x, y, μ) from the repelling QSS ceases to be exponentially small.

We begin with constant source terms, IC(x, y) = c, and set c = 1 without loss of
generality. Substituting this into the integral for g in (2.5), we find

g(x, y, μ − μ̃) = 1 for all (x, y) and μ > μ̃ ≥ μ0. (3.12)

Hence, by (3.11), the buffer surface is to leading order

μbuf(x, y) = ω0 −
ε

2ω0
ln(2π) for all (x, y). (3.13)

It is independent of (x, y). Hence, at all points in the domain, the particular solution
ceases to be exponentially small uniformly at this time, μbuf .

Next, we consider Gaussian source terms, IG(x, y) = e−(x2+y2)/4σ with σ > 0. Using
(2.5), we find

g(x, y, μ − μ̃) =
(

σ

σ + d(μ − μ̃)

)
exp
[ −(x2 + y2)
4(σ + d(μ − μ̃))

]
.

Hence, (3.11) implies that, to leading order, the buffer surface is

μbuf(x, y) = ω0 −
ε

2ω0
ln
( 2πσ2

(σ + ω0(dR − dI))2 + ω2
0(dR + dI)2

)

+
ε

4ω0

[ (σ + ω0(dR − dI))

(σ + ω0(dR − dI))2 + ω2
0(dR + dI)2

]
(x2 + y2). (3.14)

For periodic source terms, IP(x, y) = cos(π(x − y)/L) cos(π(x + y)/L), (2.5) yields

g(x, y, μ − μ̃) = e−4π2d(μ−μ̃)/L2
cos

π

L
(x − y) cos

π

L
(x + y).
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Hence, (3.11) implies that, to leading order, the buffer surface is

μbuf(x, y) = ω0 −
ε

2ω0
ln(2π) +

4επ2(dR − dI)
L2

− ε

ω0
ln
∣∣∣∣∣cos

π

L
(x − y) cos

π

L
(x + y)

∣∣∣∣∣. (3.15)

Finally, we let H denote the Heaviside step function (1 on x > 0 and 0 on x < 0) and
study stripe source terms

IS(x, y) =
∑

k

[H(x − xk) − H(x − (xk + h))].

Here, h is the width of the stripe, xk denotes the left edge of the kth stripe and xk+1 −
xk = Δ > h for each k. We use (2.5) to derive

g(x, y, μ − μ̃) =
1
2

∑
k

(
erf
( xk + h − x√

4d(μ − μ̃)

)
− erf

( xk − x√
4d(μ − μ̃)

))
, (3.16)

where erf z = 2/
√
π
∫ z

0 e−t2
dt is the error function. Hence, (3.11) implies that, to

leading order, the buffer surface is given by

μbuf(x, y) = ω0 −
ε

2ω0
ln(2π) − ε

ω0
ln|g(x, y,ω0(1 + i))|, (3.17)

where g is given by (3.16). For these source terms, the spatio-temporal buffer surface
is compared with the numerical solutions of the PDE (2.1) in Section 4.

4. DHB in the CGL equation with constant, Gaussian and stripe sources

In this section, we report on the spatially dependent duration of the DHB observed
in direct numerical simulations of solutions of the CGL PDE (2.1) with μ0 < 0. We
examine both cases in which the initial time satisfies μ0 ∈ (−ω0, 0) and μ0 ≤ −ω0.
We recall that the escape surface is the graph of the time μesc(x, y) in (x, y, μ)
space. Numerically, we obtain μesc(x, y) by calculating the set of points at which
|Re(Anum(x, y)) − Re(AQSS(x, y))| = δth, where Anum(x, y) is the numerically computed
solution of (2.1), AQSS(x, y) is the value of A along the QSS (2.2) and δth denotes a
threshold.

We show that μesc(x, y) agrees with the predictions made from the memory and
buffer surfaces. At each point (x, y),

μesc(x, y) ≈ min(μmem(x, y), μbuf(x, y)).

We work with several different types of source terms (constant, Gaussian and stripe)
and with the asymptotic expansions for these surfaces derived in Section 3.

In the numerical simulations, we used symmetric Strang splitting [33], with centred
finite differences for the spatial discretization and fourth-order Runge–Kutta with fixed
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FIGURE 1. Delayed onset of oscillations in (2.1) with constant source term IC(x, y) = 1 and Gaussian
initial data (4.1) given at μ0 = −0.3. (a) Snapshot of Re u at μ = −μ0 = 0.3 showing that the solution
is radially symmetric. (b) Space-time evolution along y = 0. The red line indicates the instantaneous
Hopf bifurcation. The temporal evolution of Re u (black curve) is compared with the QSS (blue curve)
at the centre of the Gaussian at (x, y) = (0, 0) (c), at a radial distance of three spatial units from the
origin at (x, y) = (3/

√
2, 3/
√

2) (d), and at a radial distance of 10 spatial units from the origin at (x, y) =
(10/
√

2, 10/
√

2) (e). In each case, the numerical solution stays close to the QSS well past the instantaneous
Hopf bifurcation at μ = 0, after which there is a hard onset to large-amplitude oscillations.

time step for the time discretization. The results were also checked independently using
a Chebyshev grid for the spatial discretization, finding good agreement.

4.1. DHB with constant source term In the first representative simulation, we
study DHB in (2.1) with constant source term IC(x, y) = 1 and Gaussian initial data

A0(x, y) = c1 + c2e−(x2+y2)/4σ, c1, c2 > 0, (4.1)

given at μ0 = −0.3, which we note is in (−ω0, 0). The dynamics are shown in Figure 1,
and a quantitative comparison between the escape surface for this solution and the
memory surface calculated using the analysis of the previous section is shown in
Figure 2. (Note that the solution is radially symmetric, because the initial data was cho-
sen to be radially symmetric for simplicity in this first simulation; see also Figure 1(a).)

As expected, the solution stays near the repelling QSS at least until μ reaches
−μ0 (see Figure 1(a) and (b)). Then, the delayed, post-Hopf, temporal oscillations are
initiated at the origin of the domain, near μ = −μ0 (see Figure 1(c)). As μ continues
to slowly increase, the oscillations occur on successively larger disks about the origin
(see Figure 1(d) and (e) for two other points). Then, once μ reaches approximately
0.327 (which depends on the chosen threshold), there is a fairly rapid transition to
large-scale oscillations, and these occur on the entire domain.

For this first simulation, we also show the escape surface in Figure 2(a). Below the
escape surface, that is for allO(1) values μ < μesc(x, y), the solution is near the repelling
QSS. Then, at each point (x, y), the oscillations of amplitude O(

√
ε) set in when μ
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FIGURE 2. (a) In the three-dimensional (x, y, μ) space, the surface μesc(x, y) is where the hard onset of
the oscillations occurs. It has been obtained from direct numerical simulation of the PDE (2.1) with
constant source term IC(x, y) = 1 and Gaussian initial data A0(x, y) = c1 + c2e−(x2+y2)/4σ with (c1, c2,σ) =
(0.5, 0.5, 2.5), given at μ0 = −0.3. (b) The memory surface μmem(x, y) is given by (3.4). It gives the leading
order asymptotics of the escape time for all (x, y). (c) The difference |μesc(x, y) − μmem(x, y)| is shown in
the projection onto the (x, y) plane. Here, the parameters are d = 1, ω0 = 0.5, α = 0.2 and ε = 0.01.

reaches μesc(x, y). Furthermore, at each point (x, y), the amplitude of the oscillations
becomes large (O(1)) as soon as μ is slightly beyond μesc(x, y), which confirms for all
points (x, y) what is shown for just three points in Figure 1.

For comparison, we show the memory surface μmem(x, y) in Figure 2(b). The
memory surface was computed as follows. First, we combined the homogeneous
solutions (3.1) and (3.3) to determine the homogeneous solution, Ah, with the initial
data (4.1), A0(x, y) = c1 + c2e−(x2+y2)/4σ. Then, by enforcing the condition |Ah| = 1, we
obtained the leading order asymptotic relationship

μ2 − μ2
0 + 2ε ln

∣∣∣∣∣c1 + c2
σ

σ + d(μ − μ0)
exp
( −(x2 + y2)
4(σ + d(μ − μ0))

)∣∣∣∣∣ = 0 (4.2)

for the memory surface corresponding to this A0.
The difference |μesc(x, y) − μmem(x, y)| is shown in Figure 2(c). At the centre of

the Gaussian, the difference is small (with magnitude of approximately 10−5, that
is, O(ε5/2)). Then, in an annular region about the origin (red and dark red), the
difference is slightly larger, due to nonlinear effects. Finally, both surfaces exhibit
a fairly rapid transition into the regime (blue region in Figure 2(c), red in (a)
and (b)) where they are essentially constant, since the Gaussian is tiny. Here,

μmem(x, y) =
√
μ2

0 − 2ε ln c1 ≈ 0.322 to leading order (as obtained from (4.2) for large

x2 + y2), which agrees well with the value observed numerically in (2.1). Similar
results were observed for solutions and the escape and memory surfaces with other
values of −ω0 < μ0 < 0 (data not shown).

Moreover, for the CGL with this (constant) source term, the buffer sur-
face lies above the memory surface for all (x, y) in three dimensions, since
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FIGURE 3. (a) In the three-dimensional (x, y, μ) space, the surface μesc(x, y) is where the hard onset of
the oscillations occurs. It has been obtained from direct simulation of (2.1) with constant source term
IC(x, y) = 1 and periodic initial data A0(x, y) = p1 + p2 cos(π(x − y)/L) cos(π(x + y)/L) at μ0 = −0.3 with
(p1, p2, L) = (1, 0.5, 25). (b) The memory surface μmem(x, y) given by (3.7). (c) The surface |μnum(x, y) −
μmem(x, y)| shown in the projection onto the (x, y) plane. The parameters are d = 1,ω0 = 0.5, α = 0.2 and
ε = 0.01.

μbuf(x, y) =
√
ω2

0 − ε ln(2π)≈0.481 for all (x, y). Hence, for all (x, y), the minimum
in μesc(x, y) ∼ min{μmem(x, y), μbuf(x, y)} is given entirely by the memory surface in
this simulation.

The second representative simulation is also with IC(x, y) = 1. However, now the
initial data given at −ω0 < μ0 < 0 is periodic,

A0(x, y) = p1 + p2 cos
π

L
(x − y) cos

π

L
(x + y),

with p1 > p2 > 0, so that A0(x, y) is strictly positive everywhere. The results are shown
in Figure 3.

The escape surface computed from the numerical simulations (Figure 3(a)) shows
that the oscillations first occur at time μ ≈ 0.281 at the points (x, y) = (j1L, j2L),
where j1, j2 = −1, 0, 1 (dark blue), that is, at the maxima of A0(x, y), where
cos(π(x − y)/L) cos(π(x + y)/L) = 1. About each of those points, the oscillations set in
on successively larger disks as μ slowly increases, until those disks collide at μ ≈ 0.306
(near the transition from yellow to orange). Then, as μ increases further, the escape
surface consists of the four inverted paraboloid segments (orange and red). The peaks
occur at time μ ≈ 0.315 at the points (x, y) = (j1L/2, j2L/2), where j1, j2 = −1, 1 (dark
red), that is, at the minima of A0(x, y), where cos(π(x − y)/L) cos(π(x + y)/L) = −1.

For comparison, the memory surface μmem(x, y) is defined by

μ2 − μ2
0 + 2ε ln

∣∣∣∣∣p1 + p2 exp
(
− 4π2d(μ − μ0)

L2

)
cos

π

L
(x − y) cos

π

L
(x + y)

∣∣∣∣∣ = 0, (4.3)

and shown in Figure 3(b). It has global minima (dark blue) when

μmem =

√
|μ0|2 − 2ε ln(1 + 0.5e(−8π2d|μ0 |)/L2 ) ≈ 0.2866
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to leading order, with μ0 = −0.3. These occur at the points where A0(x, y) has its
maxima. Also, the memory surface has global maxima (dark red) when μ ≈ 0.3211,
at the points where A0(x, y) has its minima. In between, it has the same conical shape
qualitatively as the escape surface.

The difference between μesc(x, y) and μmem(x, y) is shown in Figure 3(c). The
nonlinear terms cause μesc to grow more steeply from the local minima, compared
with the memory surface, so that the disks collide at a slightly later time than for the
memory surface. Then, after the disks collide, the inverted paraboloids are slightly
wider in μesc(x, y) due to the nonlinear terms.

Finally, for this second representative simulation, we report that the buffer surface
also lies above the memory surface for all (x, y) in three dimensions. Indeed, with

constant source IC(x, y) = 1, μbuf(x, y) =
√
ω2

0 − ε ln(2π) ≈ 0.481. Hence, here also the
minimum is given by the memory surface for all (x, y).

REMARK 2. In the second simulation, we also combined two homogeneous solutions,
(3.1) and (3.6), to determine the homogeneous solution Ah that corresponds to
the periodic initial profile A0(x, y) = p1 + p2 cos(π(x − y)/L) cos(π(x + y)/L). Then, by
setting |Ah| = 1, we obtain (4.3).

REMARK 3. We also explored the effect of giving the initial data at different times,
including μ0 < −ω0, while keeping the source term and initial data the same as
in the second simulation. In these simulations (data not shown), we observe that
μesc(x, y) = ω0 − ε ln(2π) to leading order for all (x, y), as determined by Ap (recall
(3.13)). This is as expected from the analysis, because μbuf(x, y) < μmem(x, y) at all
points when the initial data is given at time μ0 < −ω0 and ε is sufficiently small.

4.2. DHB with Gaussian source term Gaussian source terms can be used to
model spatially localized, radially symmetric inputs, such as a circular spot of
visible light that shines on the reactor in a chemical pattern-forming experiment. A
representative example of (2.1) with Gaussian source term is shown in Figure 4. Here,
IG(x, y) = exp(−(x2 + y2)/4σ) with σ = 1, and the initial data at μ0 = −0.75 (which is
chosen so that μ0 < −ω0) is

A0(x, y) = cos
π

L
(x − y) cos

π

L
(x + y) with L = 25.

From direct numerical simulations of the PDE, we find that the domain of the
escape surface (Figure 4(a)) can be split into two distinct parts: the annular region
RG = {(x, y) | x2 + y2 ≤ 11.52} and its complement RP = R

2\RG. On RG, the earliest
numerically detected escape occurs at the origin for μ ≈ 0.4905. The escape surface is
radially symmetric and increases on concentric rings, which thus creates a rotationally
symmetric paraboloid. In contrast, for (x, y) ∈ RP, the escape surface is no longer
radially symmetric, and is instead a periodic tile pattern, reflecting the initial data.
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FIGURE 4. (a) In the three dimensional (x, y, μ) space, the surface μesc(x, y) is where the hard onset
of the oscillations occurs. It has been obtained from direct simulation of (2.1) with Gaussian source
term IG(x, y) = exp(−(x2 + y2)/4σ) and periodic initial data A0(x, y) = cos(π(x − y)/L) cos(π(x + y)/L) at
μ0 = −0.75 with L = 25. (b) The predicted escape surface is given by the minimum of μbuf(x, y) (parabolic
part) and μmem(x, y) (periodic part). (c) The surface |μesc(x, y) −min{μmem, μbuf}| shown in the projection
onto the (x, y) plane. The parameters are d = 1,ω0 = 0.5, α = 0.2 and ε = 0.01.

The minima occur at μ ≈ 0.738 (yellow/green regions) and the maxima at μ ≈ 0.812
(red lines between yellow/green regions).

For this source term and initial condition, the buffer surface is given by (3.14) and
the memory surface is given by (3.7). In Figure 4(b), we plot min{μbuf(x, y), μmem(x, y)}.
On RG, the minimum is given by the buffer surface, whereas it is given by the
memory surface on RP. The buffer surface predicts that the earliest onset occurs at
the origin at μ ≈ 0.4908. The values of μbuf increase in a radially symmetric fashion
until μ ≈ −μ0 = 0.75 on the boundary of RG. Then, for (x, y) on RP, the memory surface
predicts the onset. (Compare Figure 4(a) and (b).)

The difference |μesc(x, y) −min{μbuf(x, y), μmem(x, y)}| is small throughout, as shown
in Figure 4(c). The difference is especially small (of the order of the neglected terms
in the asymptotic expansion) near the onset at the origin, which is at the minimum of
the buffer surface, and also near the local minima of the memory surface.

4.3. DHB with stripe source term Stripe source terms are also of fundamental
interest. For example, chemical reactions irradiated with constant intensity light
filtered through stripe masks can produce complex patterns (see [7, 16] and references
within).

Here, we use a simple model for a strictly positive stripe source term,

IS(x, y) = 1 +
1
2

2∑
k=−2

[H(x − xk) − H(x − xk − h)], (4.4)

where h is the stripe width, xk denotes the left edge of the kth stripe and
xk+1 − xk = Δ > h. We set x0 = −1.25, h = 2.5 and Δ = 10.

https://doi.org/10.1017/S1446181125000112 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000112


16 R. Goh, T. J. Kaper and T. Vo [16]

FIGURE 5. (a) The surface μesc(x, y), shown here in the projection onto the (x, y) plane, is where the
hard onset of oscillations occurs. It has been obtained from numerical simulation of (2.1) with stripe
source term IS(x, y) (4.4) and constant initial data A0(x, y) = 1 given at μ0 = −1. (b) The buffer surface
μbuf(x, y) defined by (3.11), with g given by the linear combination of (3.12) and (3.16). (c) The difference
|μesc(x, y) − μbuf(x, y)|. The parameters are d = 1,ω0 = 0.5, α = 0.2 and ε = 0.01.

For the PDE (2.1), the surfaces μesc(x, y) (calculated from direct numerical simula-
tions) and μbuf(x, y) (calculated from (3.12) and (3.16)) are shown in Figure 5(a) and
(b), along with the difference in Figure 5(c). From the plot of μesc(x, y), we see that the
hard onset of oscillations occurs first at the points where IS(x, y) has its maximum, that
is, inside the stripes. See the green stripes in the plot of μesc(x, y) in Figure 5(a). The
buffer curve μbuf(x, y) also has local minima inside the stripes (blue stripes in Figure
5(b)), and these stripes have approximately the same width as those of the escape
surface. The difference in the green and blue stripes is of O(ε

√
ε).

In the complementary regions, the PDE simulations show that the duration of the
DHB is longer. The escape surface lies just below ω0, by about 2ε (see the yellow
stripes in Figure 5(a)). In the complementary regions, the buffer surface transitions
more gradually to its local maxima, which also occur at the local minima of the source
term. Here, the difference is of O(ε

√
ε).

The narrow red strips between the green and yellow bands in Figure 5(a) correspond
to the regions where the Heaviside function has a discontinuity. This discontinuity is
smoothed out in the predicted buffer surface Figure 5(b), so that μbuf(x, y) is smooth
and continuous across the whole domain. This difference is highlighted in Figure 5(c).
There, the error is small and of O(ε

√
ε) throughout the blue regions, and is of O(ε) in

the thin strips where the Heaviside function has jump discontinuities.
We add that, in this simulation with the stripe source term (4.4) and the constant

initial data given at μ0 = −1, the memory surface (3.2) lies well above the buffer
surface (3.13) for all (x, y). Hence, the escape time is determined exclusively by the
buffer surface, as reported.

4.4. The competition between μmem(x, y) and μbuf(x, y) In the above simulations,
we have shown that at each point (x, y), μesc(x, y) ∼ min(μmem(x, y), μbuf(x, y)) to leading
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order. Therefore, in effect, there is a competition at every point (x, y) between Ah(x, y, μ)
and Ap(x, y, μ) in which the first one that ceases being exponentially small determines
the maximal duration of the delay in the Hopf bifurcation to leading order.

The memory surface μmem(x, y) depends to leading order on the initial time μ0.
Then, at O(ε), it also depends on the logarithm of |Ah(x, y; μ)| (recall, for example,
equations (3.2), (3.5) and (3.8)).

The space-time buffer surface μbuf(x, y) (recall (3.11) in Section 3.2) is determined
to leading order by ω0, which is the frequency at the instantaneous Hopf bifurcation,
and then at O(ε) by the logarithm of the Stokes term g(x, y,ω0(1 + i)) in (3.11). Indeed,
as highlighted by the analysis in the complex μ plane in Appendix A, the Stokes line
through the saddle point at μ = −iω0 crosses the negative μ-axis at μ = −ω0 (see
Figure A.1). Hence, the initial time μ0 is to the left of that here, and the contour
used to find Ap(x, y, μ) for values of μ > 0 goes through that saddle. The saddle
point method (applied in Appendix A) shows that the function G(x, y, μ) given by
(3.9) arises owing to passage over the saddle at −iω0. For each μ > 0, G(x, y, μ)
measures the deviation of the solution Ap from the repelling QSS. On μ > 0, it
stays exponentially small at least until μ reaches +ω0, where the other Stokes line
through the saddle reaches the positive μ-axis. Then, as μ slowly increases beyond ω0,
G(x, y, μ) ceases to be exponentially small—and grows to become O(1)—in a spatially
dependent manner. This is why the buffer surface is defined by (3.11), that is, when and
where |G| = 1.

Therefore, at O(1), μ0 and ω0 determine the competition, and at O(ε) it is
determined by the logarithmic terms. Moreover, for any finite value of ε, there can
be a changeover between the two terms for which one wins the competition, since,
in general, the logarithmic terms in both expressions can grow due to their spatial
dependence (see, for example, Figure 4).

5. DHB in the two-dimensional Brusselator model

In two space dimensions, the Brusselator model with a source term and a slowly
varying rate constant is given by the system

ut = a(x, y) − (1 + b)u + u2v + εduΔu,

vt = bu − u2v + εdvΔv,
bt = ε.

(5.1)

Here, the independent variables are (x, y) ∈ R2 and t ≥ 0, Δ = (∂2/∂x2) + (∂2/∂y2), and
the subscript t denotes the partial derivative on t. The dependent variable u denotes the
concentration of the activator chemical and v denotes that of the inhibitor species. The
small parameter 0 < ε � 1 measures the separation in the time scales. The spatially
dependent source term, a(x, y), is taken to be positive, bounded, O(1) with respect to ε
and smooth. The parameter b > 0 denotes a rate constant that slowly increases in time,
and du, dv > 0 are the diffusivities of the activator and inhibitor.
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5.1. Hopf bifurcation of the QSS The Brusselator PDE (5.1) has a QSS,

uQSS(x, y) = a(x, y) + εΔ
(
dua(x, y) + dv

b
a(x, y)

)
+ O(ε2),

vQSS(x, y) =
b

a(x, y)
+

ε

a2(x, y)
Δ

(
(1 − b)

dvb
a(x, y)

− bdua(x, y)
)
+ O(ε2).

We perform a linear stability analysis about the QSS by setting u = uQSS + û and
v = vQSS + v̂. The linearized system for û and v̂ is

[
ût

v̂t

]
= M
[

û
v̂

]
+ ε

[
du 0
0 dv

] [
Δû
Δv̂

]
,

where

M =
[

2uQSSvQSS − (1 + b) u2
QSS

b − 2uQSSvQSS −u2
QSS

]
.

Hence, by setting Tr(M) = 0, we find that the PDE (5.1) exhibits a spatially dependent
Hopf bifurcation at b = bH(x, y), where

bH(x, y) =
1 + a2 + 2εaduΔa + O(ε2)

1 + 2εdv((1 − a2)/a)Δ(1/a) + O(ε2)
, (5.2)

and we have written a for a(x, y). At each point (x, y) ∈ R2, the QSS is linearly stable
for b < bH(x, y) and linearly unstable for b > bH(x, y). Moreover, the frequency, ωH , at
bH is ωH = a(x, y) + O(ε).

REMARK 4. The Brusselator model (5.1) exhibits (super-critical) Turing bifurcations.
For example, with source a(x, y) = a0 + εa1(x, y) + O(ε2), where a0 > 0 and O(1),
Turing bifurcations occur at bT = (1 ±

√
du/dva0)2 + O(ε), in which spatially periodic

states are created. The parameter values here were chosen so the Turing bifurcations
do not have an impact on the DHB phenomenon. It would be of interest to study the
interactions between the two bifurcations.

5.2. Spatio-temporal dependence of the DHB in the Brusselator model In this
section, we present the results of numerical simulations showing the spatio-temporal
dependence of the DHB in the Brusselator model (5.1). We take the initial values
b(t0) < bH(x, y) for all (x, y), so that the system slowly passes through the Hopf
bifurcation bH(x, y) as b slowly increases (recall (5.2)). We work with a stripe source
term,

aS(x, y) = 1 + εα
∑

k

[H(x − xk) − H(x − (xk + h))], (5.3)

where α > 0, xk denotes the left edge of the kth stripe, xk+1 − xk = Δ, h < Δ is the width
of the stripe and the stripes are sufficiently well separated.

https://doi.org/10.1017/S1446181125000112 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181125000112


[19] Delayed Hopf bifurcations in R–D systems in 2D 19

In the simulations, the solutions rapidly approach the attracting QSS for b < bH(x, y)
and, after the instantaneous Hopf point is crossed, they stay near the repelling QSS for
long times, of O(1/ε) in the fast time t. This is the delay in the Hopf bifurcation,
and the solutions leave a neighbourhood of the QSS in a spatially dependent manner.
Moreover, they do so by making a large rapid jump, so that there is a hard onset of
large-amplitude oscillations.

For the representative simulation shown in Figure 6, we set α = 5, h = 0.1,
x0 = −0.05 and Δ = 0.3. The initial data is spatially periodic,

u0(x, y) = a(x, y) + 0.5 cos(π2xy), v0(x, t) =
b0

a(x, y)
+ ε. (5.4)

The initial value of the parameter is b0 = b(t0) = 1.5 (Figure 6(a)), below the Hopf
point bH = 2 here. As b slowly increases, the solution rapidly approaches the attracting
QSS, and the component of the solution given by the spatially periodic initial data
decreases. By the time b = 1.7, the remnant of the initial data is faint (Figure 6(b)).
Then, when b reaches bH = 2, there is no visible trace of the initial data (Figure 6(c)).

As b continues to increase, the solution remains near the repelling QSS (Figure 6(d),
where b = 2.2). It is not until b = 2.4 that small amplitude temporal (post-Hopf) oscil-
lations set in (Figure 6(e)). Also, the solution has regained a significant component
given by the initial data. The oscillations rapidly gain large amplitude as b increases
further (Figure 6(f)–(h), where b = 2.6, b = 2.8, b = 3.0; note the changes in the
vertical scales). Hence, the observed onset is a hard onset. Also, significant interactions
occur between the components coming from the initial data and the stripe source.

Further increases in b result in spatio-temporal patterns, such as spiral waves
(Figure 6(i)). These arise from the interaction of the oscillations (which occur beyond
the memory surface), the stripe source and the diffusion.

A cross-section through y = 0 is shown in Figure 6(j). The space-time plot shows
that the solution stays close to the QSS (blue state) well past the instantaneous Hopf
bifurcation (red line) and the large-amplitude oscillations do not set in until b ≈ 2.5.
Cross-sections taken at other values of y are qualitatively the same, with some slight
shifts in x.

The hard onset of oscillations occurs along the escape surface, besc(x, y), which at
each point (x, y) is given by the value of b at which

|(u(x, y), v(x, y)) − (uQSS(x, y), vQSS(x, y))| = δth.

This is the analogue of μesc(x, y). Plots of besc(x, y) are shown for two different initial
values: b(t0) = 0.1 in Figure 7(a) and b(t0) = 1.5 in Figure 7(b). Here, the parameters
are the same as in Figure 6. These escape surfaces reveal that the spatio-temporal
buffer surface (defined by the particular solution of the equation linearized about
the QSS) and the spatio-temporal memory surface (defined by the homogeneous
solution) play similar roles here for (5.1). For initial values b(t0) far from bH = 2,
as in Figure 7(a), the escape surface is determined entirely by the stripe source and,
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FIGURE 6. DHB in the two-dimensional Brusselator with stripe source (5.3) and spatially periodic initial
data (5.4) given at b(t0) = 1.5. (a)–(i) The solution u(x, y) rapidly converges to the source-dependent
QSS, stays close to the QSS well beyond the instantaneous Hopf bifurcation at b = 2 and exhibits a
hard transition to oscillations. Note the different scales on the vertical colour bars in panels (a)–(i).
(j) Space-time evolution along y = 0. The parameters are ε = 0.01, du = 1 × 10−3, dv = 5 × 10−4, α = 5,
h = 0.1, x0 = −0.05 and Δ = xk+1 − xk = 0.4.

hence, by the particular solution. The initial data has no influence on besc(x, y), because
the escape surface is almost invariant. Indeed, this was verified across four different
choices of b(t0). Then, for initial values of b(t0) close to bH (as in (b)), the escape
surface is located below the buffer surface at all points. The homogeneous solution
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FIGURE 7. Contours of the escape surface, besc(x, y), where the hard onset of oscillations occurs. The
parameters are as in Figure 6 with different values of b at the initial time t0: b(t0) = 0.1 (a) and b(t0) = 1.5
(b). The escape surface in (a) depends only on the stripe source and has no memory of the initial data.
Similar escape surfaces to (a) are observed for b(t0) = 0, 0.2 and 0.3. The escape surface in (b) depends
on the initial profile.

determines the exit time for all (x, y). The earliest escape times (dark blue regions)
are where the initial data has its smallest amplitude (in the hyperbolic bands with the
minima of the cosine term) and the light blue hyperbolic bands occur where the cosine
term is maximal. In the regions of the stripes, the initial data is larger and the hard
onset occurs later, although still before the buffer surface.

Overall, we find that these primary features of DHBs in the two-dimensional
Brusselator—the long, spatially dependent DHB; the hard, spatially dependent onset
of large-amplitude oscillations; and the properties of the escape surface—are the same
as those observed for DHBs in the CGL PDE in two dimensions (Section 4), as well as
for DHBs in PDEs in one dimension [3, 17, 25], in analytic ODEs [4, 20, 35–39, 44,
46, 47] and in the applications cited in the Introduction.

6. Conclusions

In this paper, we studied a pair of prototypical pattern-forming PDEs in two space
dimensions. In both, an attracting QSS becomes a repelling QSS as a key parameter
varies slowly in time through a generic, super-critical Hopf bifurcation. We reported
the discovery of DHBs in which solutions of these PDEs in two dimensions stay near
the (post-Hopf) repelling QSS for long, spatially dependent periods of time (O(1/ε)
fast time), before the spatially dependent hard onset of large-amplitude oscillations
occurs.
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First, we generalized the asymptotic and numerical results of [17] for DHBs
in the CGL PDE in one space dimension to two dimensions. We introduced the
spatio-temporal memory surface μmem(x, y) and the spatio-temporal buffer surface
μbuf(x, y), and we derived asymptotic formulas for them in the CGL PDE (recall
Sections 3.1 and 3.2). These are the two-dimensional analogues of the one-dimensional
memory and buffer curves introduced in [17].

The memory surface μmem(x, y) is determined by when the homogeneous solution
of the linearized equation reaches amplitude one, and hence stops being exponentially
small. It is labelled the memory surface for the following reason. Although the memory
of the initial data fades quickly after the initial time μ0 < 0, because the solution
rapidly (exponentially in time) approaches the attracting QSS before the instantaneous
Hopf bifurcation, the memory of it is not lost. On the contrary, the component of
the solution given by the initial data re-emerges (or resurges) in a spatially dependent
manner at μmem(x, y) to leading order. The asymptotic formula for μmem(x, y) quantifies
its dependence on μ0 and on the spatial structure of the general bounded, smooth initial
data A0(x, y). We applied it to several structurally different types of data (see (3.2), (3.5)
and (3.8)).

The buffer surface μbuf(x, y) is determined from the particular solution Ap(x, y, μ)
by when |G| = 1(recall (3.10)). It plays a central role in the dynamics of solutions
for which initial data A0(x, y) is given at μ0 ≤ −ω0. In particular, to leading order,
all solutions with initial data given at μ0 ≤ −ω0, including those on the attracting
QSS, leave an O(1) neighbourhood of the repelling QSS when μ reaches the buffer
surface, irrespective of how large |μ0| is; that is, irrespective of far in the distant past
the solutions approached the attracting QSS. Furthermore, we derived the asymptotic
formula for μbuf(x, y), finding its dependence on the frequency ω0 at the Hopf point and
on the spatial structure of general, smooth, bounded source terms. Also, we applied
the general formula to the cases of constant, Gaussian, periodic and stripe sources (see
(3.13), (3.14), (3.15) and (3.17)).

Overall, for solutions of the CGL PDE (2.1) with initial data given at μ0 < 0,
we found that the spatially dependent duration of the DHB is given by μesc(x, y) =
min{μmem(x, y), μbuf(x, y)} to leading order. Also, we found that there is good quan-
titative agreement between the asymptotic formulas for μmem(x, y) and μbuf(x, y) and
the numerically calculated escape times μesc(x, y) for different types of initial data and
source terms (see Section 4).

We distinguished between the DHBs observed for solutions with initial data given
at μ0 ∈ (−ω0, 0) and for those with initial data given at μ0 ≤ −ω0. For the former (μ0 ∈
(−ω0, 0)), there are points at which the memory surface is reached before the buffer
surface. We have shown examples where the entire memory surface lies below the
buffer surface in three dimensions: that is, μmem(x, y) < μbuf(x, y) for all (x, y) (recall
the first and second representative simulations in Section 4.1). There are also examples
in which only a portion of the memory surface lies below the buffer surface. In this
case, A0(x, y) is such that μmem(x, y) grows with ‖(x, y)‖ and then exceeds μbuf(x, y) on
some part of the domain, since ε has a small but finite value.
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For the latter (where μ0 ≤ −ω0), the buffer surface is reached first as μ slowly
increases. That is, there are points (x, y) at which μbuf(x, y) ≤ μmem(x, y) (noting
that equality can arise when μ0 = −ω0). Crucially, there are two cases: (1)
μbuf(x, y) ≤ μmem(x, y) for all (x, y) and (2) μbuf(x, y) ≤ μmem(x, y) in some regions
while μmem(x, y) < μbuf(x, y) in the complementary regions. The example in Section 4.3
illustrates case (1), and an example of case (2) is given in Section 4.2. In case (2), the
source term is such that it grows with ‖(x, y)‖ and then exceeds μmem(x, y) on some part
of the domain. In all simulations, we found μesc(x, y) ≈ min{μmem(x, y), μbuf(x, y)}.

Finally, we showed numerically that DHB occurs in the Brusselator model in
two space dimensions. For several source terms a(x, y), the solutions spend spatially
dependent, O(1/ε) long times near the repelling QSS. Also, the spatially dependent
onset of oscillations is a hard onset, as shown, for example, in going from Figure 6(e)
to (f), where we note the change in scales. Moreover, after the oscillations have
set in, there are dynamically complex interactions between the source term and the
re-emergent component given by the initial data.

Looking ahead, we observe that it may be possible to extend the results for the
CGL PDE in two dimensions to include some source terms Ia(x, y) that are not strictly
positive or bounded. For example, in Section 8 of [17], we showed that the asymptotics
for the buffer curve in the one-dimensional CGL PDE extend to include bounded
sign-changing source terms (such as cos(x)) and even some algebraically growing
source terms (quadratic in space), and that the asymptotics still agree well with the
results of numerical simulations in one dimension. Also, it may be possible to extend
the results to include large-amplitude source terms and O(1) diffusivity, as was done
for the one-dimensional CGL PDE in [17, Sections 9 and 10].

We think it would be of interest to put the Brusselator PDE (5.1) into normal
form for dynamic super-critical Hopf bifurcation, and to carry out an analysis of the
linearized equation in the complex time plane similar to that done for the CGL PDE
(2.1) in two dimensions. It would be of interest to determine where the saddle points
are and where the Stokes lines through them cross the real time axis, as well as to
derive the homogeneous and particular solutions of the linearized equation and hence
determine the spatio-temporal memory and buffer surfaces.

The spatially dependent source terms studied here are similar to those studied in
reaction–diffusion equations in two (or more) spatial variables. In [27], the authors
established the conditions under which radially symmetric inhomogeneities create
coherent structures, including sources, contact defects and sinks. Also, spatial inhomo-
geneities have been analysed in the Swift–Hohenberg and Ginzburg–Landau equations
in two dimensions in [23] and the references therein. The authors demonstrate the
existence of weakly deformed stripe patterns, which are small perturbations of the
uniform vertical stripes, where the small parameter measures the amplitude of
the spatial inhomogeneity. Although these studies are for fixed parameters, it might
be of interest to study the spatio-temporal dynamics that result from the interactions
between these types of heterogeneities and the slow passage of a parameter through a
Hopf bifurcation.
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Appendix A. Calculation of Ap(x, y, μ) using the saddle point method

In this appendix, we apply the saddle point method to find the asymptotic formula
(2.5) for the particular solution Ap(x, y, μ) of the linearized CGL PDE. In the complex
μ̃ plane (μ̃ = μ̃R + iμ̃I), the phase function in Bp is

φ + iψ = − 1
2 (μ̃ + iω0)2,

where

φ = − 1
2 (μ̃2

R − (μ̃I + ω0)2) and ψ = −μ̃R(μ̃I + ω0).

This phase has a saddle point at μ̃ = −iω0. The level sets of φ are hyperbolas and also
known as Stokes lines. The Stokes lines with φ = 0 through the saddle (which are the
asymptotes of the hyperbolas) bound the valleys and hills. They may be parametrized
by μ̃R via μ̃I = ±μ̃R − ω0. Also, the level sets of ψ are hyperbolas (with asymptotes
given by the axes), and they are referred to as anti-Stokes lines.

Let δ > 0 be a small number, independent of ε. We fix an arbitrary value
of μ ∈ [δ,ω0]. We consider the contour Cr = Cr1

⋃
Cr2
⋃

Cr3
⋃

Cr4, where Cr1 =

[μ0,−ω0]; Cr2 is the segment of the Stokes line μ̃I = −μ̃R − ω0 from −ω0 down to
the saddle at −iω0; Cr3 is the segment of the Stokes line μ̃I = μ̃R − ω0 from the saddle
up to the point qr =

√
ω0μ + i(

√
ω0μ − ω0), for this fixed value of μ; and Cr4 consists

of the segment of the steepest ascent curve ψ = −ω0μ from qr up to the point μ (see
Figure A.1).

We evaluate the integrals in the same manner as in Section 2.3 of [17]. We take any
initial Bp(x, y, μ0) with μ0 ≤ −ω0 on or near the attracting QSS, and we track it along
Cr to the fixed value μ. At that point,

Bp(x, y, μ) = Ir1 + Ir2 + Ir3 + Ir4,

where, for δ ≤ μ ≤ ω0,

Irj =
1
√
ε

∫
Crj

g(x, y, μ − μ̃)e−(μ̃+iω0)2/2ε dμ̃, j = 1, 2, 3, 4.

FIGURE A.1. The contour Cr = Cr1
⋃

Cr2
⋃

Cr3
⋃

Cr4 in the complex μ̃ plane.
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The integral Ir1 along the segment Cr1 = [μ0,−ω0] is evaluated using the method of
steepest descents along the contour formed by the union of the Stokes line through
μ = −μ0 out to −∞ − iω0 and the Stokes line back from −∞ − iω0 up to μ = −ω0.n
The dominant contribution comes from the final segment along the latter Stokes line
near μ = −ω0.

Ir1 =

{ √
ε

2ω0
(1 + i)g(x, y, μ + ω0) + O(ε3/2)

}
eiω2

0/ε. (A.1)

Next, we parametrize Cr2 by μ̃R, with μ̃I(μ̃R) = −(μ̃R + ω0) and μ̃R : −ω0 → 0.
Hence, −(μ̃ + iω0)2/2 = iμ̃2

R for all μ̃ on Cr2. It is purely imaginary, corresponding to
the fact that Cr2 lies on a Stokes line φ = 0. Hence, for each μ̃ on Cr2, the integrand is
of the form to which the method of stationary phase applies; namely, g · e(i/ε)h(μ̃R) with
h(μ̃R) = μ̃2

R. Moreover, the end point μ̃ = −iω0 of Cr2 (μ̃R = 0) is a point of stationary
phase, since h′(0) = 0 and h′′(0) = 2 � 0, and it is the only such point along Cr2.
(For the general method in which an end point is a saddle (or turning) point, see,
for example, Section 4.1 of [34], in particular formula (4.14).)

Applying the method of stationary phase, we insert the parametrization of Cr2, use
ν̃ = −μ̃R, Taylor expand about ν̃ = 0 (that is, μ̃ = −iω0) and observe that the dominant
contribution asymptotically comes from the point of stationary phase at the saddle,

Ir2 =
1
√
ε

∫ 0

−ω0

g(x, y, μ − [μ̃R − i(μ̃R + ω0)])eiμ̃2
R/ε(1 − i) dμ̃R

=
1
√
ε

(1 − i)
∫ ω0

0
g(x, y, μ + [ν̃ + i(−ν̃ + ω0)])eiν̃2/ε dν̃

=
1
√
ε

(1 − i)g(x, y, μ + iω0)
∫ ω0

0
(1 + O(ν̃))eiν̃2/ε dν̃

=

√
π

2h′′(0)
eiπ/4(1 − i)g(x, y, μ + iω0) + O(

√
ε)

=

√
π

2
g(x, y, μ + iω0) + O(

√
ε) for any μ ∈ [δ,ω0]. (A.2)

This leading order term in Ir2 will turn out to be half of the leading order term in the
total integral for Bp(x, y, μ) for each μ ∈ [δ,ω0].

Next, we show that Ir3 gives the other half of the leading order term in Bp. From
the definition of Cr3, we have that, for any μ ∈ [δ,ω0],

Ir3 =
1
√
ε

∫ qr

−iω0

g(x, y, μ − μ̃)e−(μ̃+iω0)2/2ε dμ̃.

We use μ̃R to parametrize Cr3 as μ̃I = μ̃R − ω0, now with μ̃R : 0→ √ω0μ. Hence,
−(μ̃ + iω0)2/2 = −iμ̃2

R along Cr3; and, for each μ̃ on Cr3, the integral is also of the form
to apply the method of stationary phase, g · e(i/ε)h̃(μ̃R), with h̃(μ̃R) = −μ̃2

R. Moreover, the
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initial point μ̃ = −iω0 of Cr3 (μ̃R = 0) is a stationary phase point, since h̃′(0) = 0 and
h̃′′(0) = −2 � 0, and it is the only such point along Cr3. We find

Ir3 =
1
√
ε

∫ √ω0μ

0
g(x, y, μ − [μ̃R + i(μ̃R − ω0)])e−iμ̃2

R/ε(1 + i) dμ̃R

=
1
√
ε

g(x, y, μ + iω0)
∫ √ω0μ

0
e−iμ̃2

R/ε(1 + O(μ̃R))(1 + i) dμ̃R

=

√
π

2|h̃′′(0)|
g(x, y, μ + iω0)e−iπ/4(1 + i) + O(

√
ε)

=

√
π

2
g(x, y, μ + iω0) + O(

√
ε) for any μ ∈ [δ,ω0]. (A.3)

Finally, we calculate Ir4. Implicitly parametrize Cr4 using σ,

Cr4 : − 1
2 (μ̃ + iω0)2 = − 1

2 (μ + iω0)2 + σ.

The parameter σ starts from −(ω2
0 − μ

2)/2 at the point qr and increases monotonically
along Cr4 to zero at μ. The explicit representation is

μ̃(σ) = −iω0 + [(μ + iω0)2 − 2σ]1/2.

The integration along Cr4 gives

Ir4 =
√
εe−(μ+iω0)2/2ε

∫ 0

−(ω2
0−μ2)/2

g(x, y, μ + iω0 − [(μ + iω0)2 − 2σ]1/2)eσ/ε√
(μ + iω0)2 − 2σ

dσ.

Hence, one finds

Ir4 =

[
−
√
εIa(x)

μ + iω0
+ ε3/2

( Ia(x, y) + d(μ + iω0)ΔIa(x, y)
(μ + iω0)3

)

+ O
(

ε5/2

(μ + iω0)5

)]
e−(μ+iω0)2/2ε. (A.4)

Summing (A.1), (A.2), (A.3) and (A.4), we have that, for δ ≤ μ ≤ ω0,

Bp(x, y, μ) = Ir1 + Ir2 + Ir3 + Ir4

= −
√
εIa(x, y)
μ + iω0

e−(μ+iω0)2/2ε

+ ε3/2
( Ia(x, y) + d(μ + iω0)ΔIa(x, y)

(μ + iω0)3

)
e−(μ+iω0)2/2ε

+ O
(
ε5/2e−(μ+iω0)2/2ε

(μ + iω0)5

)
+
√

2πg(x, y, μ + iω0) + O(
√
ε).

Finally, we translate the formula back to the dependent variable A, which completes
the derivation of (2.5).
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