ON THE ZEROS OF FUNCTIONS WITH DERIVATIVES IN H_1 AND H_{∞}

JAMES WELLS

1. Introduction. Let $\{z_k\}$, $0 < |z_k| < 1$, be a given sequence of points in the open unit disc $D = \{z: |z| < 1\}$ and let E be its set of limit points on the unit circle T. In this note we consider the problem of finding conditions on the sequence $\{z_k\}$ which will ensure the existence of a function f analytic in D satisfying

(A)
$$f(0) = 1, \quad f(z_k) = 0, \quad z_k = r_k e^{i\theta_k}$$

and whose derivative f' belongs to the Hardy class H_1 or, alternatively, whose derivatives of all orders are bounded in D. We shall prove the following two theorems.

THEOREM 1. If

$$(1) \qquad \qquad \sum_{k=1}^{\infty} \left(1 - |z_k|\right) < \infty,$$

and

(3)
$$\sum_{k=1}^{\infty} \operatorname{dist}(\theta_k, E)^{\alpha} < \infty \quad \text{for some } \alpha > 1,$$

then there is a function f analytic in D which satisfies (A) and its derivative f' belongs to H_1 .

THEOREM 2. If conditions (1) and (2) hold and for some $\alpha \geq 1$ and constant M we have

(4)
$$\operatorname{dist}(z_k, E)^{\alpha} < M(1 - |z_k|) \text{ for } k = 1, 2, \dots,$$

then there is a function f analytic in D which satisfies (A) and whose derivatives of all orders are bounded in D.

The special case in which only a finite number of derivatives is required to be bounded is due to Caughran [4].

Condition (3) allows z_k to approach E in a "very tangential" manner while condition (4) may be described by saying $\{z_k\}$ has finite degree of contact α at E. For example, the sequence $z_k = (1 - 1/k!) \exp(i/k)$ satisfies (3) for $\alpha = 2$, $E = \{1\}$, and (1) holds but not (4) for any $\alpha \ge 1$. Clearly (1) and (4) with

Received January 2, 1969 and in revised form, May 30, 1969.

 $\alpha \ge 1$ imply (3). However, the necessity of some restriction such as (3) in Theorem 1 is pointed out by taking

$$z_k = [1 - (k(\log k)^2)^{-1}] \exp(i/\log k).$$

This sequence satisfies (1) and $E = \{1\}$, and hence (2) holds, but $\{z_k\}$ is not the zero set of any non-zero analytic function with derivative in H^1 . This example, due to Carleson, is discussed in detail in [5]. Also in this connection and for a related study of the zero sets of functions with finite Dirichlet integral see the papers of Carleson [2] and Shapiro and Shields [11].

A Carleson set is a closed subset of the unit circle T of measure zero whose complement is the union of open arcs whose lengths ϵ_k satisfy

$$\sum \epsilon_k \log(1/\epsilon_k) < \infty$$
.

 H_p (0 < p < ∞) is the space of functions f analytic in D for which

$$\sup_{0 < r < 1} \int_{-\pi}^{\pi} |f(re^{i\theta})|^p d\theta < \infty;$$

 H_{∞} is the space of functions analytic and bounded in D. We shall write d(z, E) for dist(z, E) and $d(\theta, E)$ for dist $(\theta, E) = \text{dist}(e^{i\theta}, E)$.

Our proofs rest on certain estimates which are concerned with the order of growth of a Blaschke product near its singularities on T.

2. Derivatives of Blaschke products. The following lemmas have as their motivation the fact that if B is a Blaschke product whose zeros lie on the segment (0, 1), then $|B'(z)| = O(|z - 1|^{-2})$ (see [10, p. 311, problem 23]).

The Blaschke product associated with a sequence $z_k = r_k e^{i\theta_k}$, $0 < r_k < 1$, satisfying the convergence condition (1) is

(5)
$$B(z) = \prod_{k=1}^{\infty} \frac{\bar{z}_k}{|z_k|} \frac{z_k - z}{1 - \bar{z}_k z} .$$

Convergence in this product is uniform on any closed subset of the plane which is disjoint from E and the points $1/\bar{z}_k$ [8, p. 68]. Its derivative

(6)
$$B'(z) = B(z) \sum_{k=1}^{\infty} \frac{|z_k|^2 - 1}{(z_k - z)(1 - \bar{z}_k z)}$$

becomes

(7)
$$B'(e^{i\theta}) = e^{-i\theta}B(e^{i\theta})\sum_{k=1}^{\infty} \frac{1 - |z_k|^2}{|e^{i\theta} - z_k|^2}$$

at points $e^{i\theta} \notin E$. Since $|B(e^{i\theta})| = 1$ at such points,

(8)
$$|B'(e^{i\theta})| = \sum_{k=1}^{\infty} \frac{1 - |z_k|^2}{|e^{i\theta} - z_k|^2}$$

when $e^{i\theta} \notin E$.

We make repeated use of the inequalities

(9a)
$$|1 - z|^2 \le (1 - r)^2 + |\theta|^2,$$

(9b)
$$|1 - z|^2 \ge (1 - r)^2 + 4^{-1}r|\theta|^2,$$

where $z = re^{i\theta}$, $0 \le r \le 1$, and $-\pi \le \theta \le \pi$.

LEMMA 1. If the sequence $\{z_k\}$ satisfies (1) and (2) and B is the associated Blaschke product (5), then the series (3) converges for $\alpha > 1$ if and only if

(10)
$$\int_{-\pi}^{\pi} d(\theta, E)^{\alpha} |B'(e^{i\theta})| d\theta < \infty.$$

Proof. Since E has measure zero, $B'(e^{i\theta})$ exists for almost all θ and at every point of T-E the function $|B'(e^{i\theta})|$ is given by the series (8). An application of the monotone convergence theorem shows that the existence of the integral (10) is equivalent to

(11)
$$\sum_{k=1}^{\infty} (1 - r_k^2) \int_{-\pi}^{\pi} \frac{d(\theta, E)^{\alpha}}{|e^{i\theta} - z_k|^2} d\theta < \infty.$$

First we show that convergence of this series implies convergence of the series in (3). Assume that $-1 \in E$ so that $F = \{\theta \in [-\pi, \pi]: e^{i\theta} \in E\}$ is the union of disjoint open intervals (a_n, b_n) . If $\theta_k \in F$, the corresponding term in (3) vanishes; hence suppose that $\theta_k \in (a_n, b_n)$ and, to make a choice, assume that $\theta_k - a_n \leq b_n - \theta_k$ (inequalities similar to the following hold in case $\theta_k - a_n > b_n - \theta_k$). Put $\Delta = 2^{-1}d(\theta_k, E)$ and let I_k denote the interval $(\theta_k - \Delta, \theta_k + \Delta)$. There exists a constant c > 0, depending only on E, such that $d(\theta, E) \geq c|\theta - a_n|$ for $\theta \in I_k$. If S_k denotes the integral in the kth term of (11), this last inequality and (9a) imply that

$$S_{k} > c^{\alpha} \int_{I_{k}}^{1} \frac{|\theta - a_{n}|^{\alpha}}{(1 - r_{k})^{2} + (\theta - \theta_{k})^{2}} d\theta$$

$$= c^{\alpha} \int_{-\Delta}^{\Delta} \frac{|\theta + (\theta_{k} - a_{n})|^{\alpha}}{(1 - r_{k})^{2} + \theta^{2}} d\theta$$

$$\geq c^{\alpha} 2^{1 - \alpha} d(\theta_{k}, E)^{\alpha} \int_{0}^{\Delta} \frac{d\theta}{(1 - r_{k})^{2} + \theta^{2}}$$

$$= c^{\alpha} 2^{1 - \alpha} d(\theta_{k}, E)^{\alpha} (1 - r_{k})^{-1} \tan^{-1} \left[\frac{d(\theta_{k}, E)}{2(1 - r_{k})} \right].$$

From this we infer that convergence in (11) implies that

$$\sum_{k=1}^{\infty} d(\theta_k, E)^{\alpha} \tan^{-1} \left[\frac{d(\theta_k, E)}{2(1 - r_k)} \right] < \infty,$$

and if J denotes the integers k for which $d(\theta_k, E) > 2(1 - r_k)$, then, by (1),

$$\sum_{k=1}^{\infty} d(\theta_k, E)^{\alpha} < 4\pi^{-1} \sum_{k \in J} d(\theta_k, E)^{\alpha} \tan^{-1} \left[\frac{d(\theta_k, E)}{2(1 - r_k)} \right] + 2^{\alpha} \sum_{k \in J} (1 - r_k) < \infty,$$
 as required.

Now suppose that the series (3) converges. Write

$$u_k(\theta) = |e^{i\theta} - z_k|^{-2}d(\theta, E)^{\alpha}$$

and, as above, denote the integral of u_k by S_k . By (1) there is a $\delta > 0$ such that $|z_k| \ge \delta$. When $\theta_k \in F$ we have

$$d(\theta, E)^{\alpha} \leq |\theta - \theta_k|^{\alpha}$$
 and $u_k(\theta) \leq 4\delta^{-1}|\theta - \theta_k|^{\alpha-2}$;

thus, since $\alpha > 1$, S_k is bounded by a constant independent of k. Otherwise, suppose that $\theta_k \in (a_n, b_n)$ and let A_1 and A_2 denote the integral of u_k over I_k and $[\theta_k - \pi, \theta_k + \pi] - I_k$, respectively. It follows from (9b) and the inequality

$$d(\theta, E)^{\alpha} \leq 2^{\alpha-1}[|\theta - \theta_k|^{\alpha} + d(\theta_k, E)^{\alpha}]$$

that

$$u_k(\theta) \leq \delta^{-1} 2^{\alpha+1} [|\theta - \theta_k|^{\alpha-2} + |\theta - \theta_k|^{-2} d(\theta_k, E)^{\alpha}],$$

and since $\theta \notin I_k$ implies that $2^{\alpha}|\theta - \theta_k|^{\alpha} > d(\theta_k, E)^{\alpha}$, one has

$$u_k(\theta) \leq \delta^{-1}2^{\alpha+1}[|\theta - \theta_k|^{\alpha-2} + 2^{\alpha}|\theta - \theta_k|^{\alpha-2}]$$

when $\theta \notin I_k$. Therefore A_2 is bounded by a constant independent of k. To obtain a bound on A_1 write

$$A_{1} = \int_{I_{k}} u_{k}(\theta) d\theta \leq \operatorname{const} d(\theta_{k}, E)^{\alpha} \int_{I_{k}} \frac{d\theta}{|e^{i\theta} - z_{k}|^{2}}$$

$$\leq \operatorname{const} d(\theta_{k}, E)^{\alpha} \int_{0}^{\Delta} \frac{d\theta}{(1 - r_{k})^{2} + 4^{-1}\delta\theta^{2}}$$

$$\leq \operatorname{const} d(\theta_{k}, E)^{\alpha} (1 - r_{k})^{-1}.$$

From these various estimates we conclude that

$$\sum_{k=1}^{\infty} (1 - r_k^2) \int_{-\pi}^{\pi} \frac{d(\theta, E)^{\alpha}}{|e^{i\theta} - z_k|^2} d\theta \leq \operatorname{const} \sum_{k=1}^{\infty} (1 - r_k^2) + \operatorname{const} \sum_{k=1}^{\infty} d(\theta_k, E)^{\alpha} < \infty$$

by (1) and (3); hence the integral in (10) exists and the proof is complete.

The requirement $\alpha > 1$ in Lemma 1 is essential since convergence of the series (3) for $\alpha = 1$ does not imply convergence in (10). For example, take $1 - r_k = \theta_k = \epsilon_k = [k(\log k)^2]^{-1}$; then (1) and (2) hold and (3) converges with $\alpha = 1$ but the integral in (10) exceeds

const
$$\sum \epsilon_k + \text{const} \sum \epsilon_k \log(1/\epsilon_k) = +\infty$$
.

We omit the routine proofs for the remaining lemmas.

LEMMA 2. If the sequence $\{z_k\}$ satisfies (4) and $|z_k| \ge \delta > 0$, then there exists a constant L, depending only on α , δ , and M such that

(12)
$$\sup_{|z|<1} \frac{d(z,E)^{\alpha}}{|1-\bar{z}_k z|} \leq L \quad \text{for } k=1,2,\ldots.$$

Lemma 3. If the sequence $\{z_k\}$ satisfies (1) and (4) and B is the associated Blaschke product, then there is a sequence of constants M_p such that

$$(13) |C^{(p)}(z)|d(z,E)^{2\alpha p} \leq M_p \text{ in } D$$

for $p = 0, 1, 2, \dots$ and any subproduct C of B.

3. Proof of main theorems. In addition to the lemmas of the preceding section we need a result obtained by Novinger [9, Theorem 4.3] and independently by Taylor and Williams [12].

Theorem A. Let E be a Carleson set. Then there exists an outer unction F such that

- (a) the zero set of F in \bar{D} is E,
- (b) $F^{(p)} \in H_{\infty} \text{ for } p = 1, 2, \ldots,$
- (c) the zero set of $F^{(p)}$ in \bar{D} contains E for $p = 1, 2, \ldots$

By expanding F in a Taylor series about points of E it is easy to see that condition (c) implies the existence of constants γ_{pq} such that

$$|F^{(p)}(z)| \le \gamma_{pq} \operatorname{dist}(z, E)^q$$

for p, q = 0, 1, ...

We are now ready to complete the proof of Theorem 1. Define f by

$$(15) f = BF,$$

where B is the Blaschke product associated with $\{z_k\}$ and F satisfies (a), (b), and (c) of Theorem A relative to the cluster set E of $\{z_k\}$. Clearly (a constant times) f satisfies (A).

In order to show that $f' \in H_1$, it suffices to show that $B'F \in H_1$. By (14) there is a constant γ such that $|F(e^{i\theta})| \leq \gamma d(\theta, E)^{\alpha}$; hence, by the result of Lemma 1,

$$\int_{-\pi}^{\pi} |B'(e^{i\theta})| |F(e^{i\theta})| d\theta \leq \gamma \int_{-\pi}^{\pi} |B'(e^{i\theta})| d(\theta, E)^{\alpha} d\theta < \infty.$$

This proves that $B'(e^{i\theta})F(e^{i\theta})$ is summable and justifies use of integration by parts to obtain

$$\int_{-\pi}^{\pi} e^{in\theta} B'(e^{i\theta}) F(e^{i\theta}) d\theta = - \int_{-\pi}^{\pi} e^{in\theta} B(e^{i\theta}) F'(e^{i\theta}) d\theta - (n-1) \int_{-\pi}^{\pi} e^{i(n-1)\theta} B(e^{i\theta}) F(e^{i\theta}) d\theta = 0$$

for $n = 1, 2, \ldots$. Hence there exists a function in H_1 whose radial limits agree almost everywhere with the radial limits of $f'(re^{i\theta})$, and therefore f' itself belongs to H_1 [13, p. 203].

To complete the proof of Theorem 2, suppose that $\{z_k\}$ satisfies (1), (2), and (4) and define f in the same manner by (15). A computation by the

Leibnitz rule shows that the nth derivative of f is bounded in D since the derivatives of B and F satisfy (13) and (14), respectively.

Our insistence throughout that the cluster set of $\{z_k\}$ be a Carleson set is not superficial, for Caughran [4] has pointed out that an amalgam of results of Carleson and Hardy and Littlewood [2; 7, Theorem 40; 6, Theorem 2] yields the following result.

THEOREM B. If f is analytic in D and $f' \in H_p$ (p > 1) is non-zero, then the zero set in T of f is a Carleson set.

James Caveny (private communication) has recently established the same result when p = 1.

References

- 1. A. Beurling, Ensembles exceptionnels, Acta Math. 72 (1940), 1-13.
- L. Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325-345.
- On the zeros of functions with bounded Dirichlet integrals, Math. Z. 56 (1952), 289-295.
- James G. Caughran, Analytic functions with H_p derivative, Thesis, University of Michigan, Ann Arbor, 1967.
- Two results concerning the zeros of functions with finite Dirichlet integral, Can. J. Math. 21 (1969), 312-316.
- G. H. Hardy and J. E. Littlewood, A convergence theorem for Fourier series, Math. Z. 28 (1928), 565-634.
- 7. —— Some properties of fractional integrals. II, Math. Z. 34 (1931), 403–439.
- K. Hoffman, Banach spaces of analytic functions (Prentice-Hall, Englewood Cliffs, N.J., 1962).
- 9. Phillip Novinger, Holomorphic functions with infinitely differentiable boundary values (to appear in Illinois J. Math.).
- 10. Walter Rudin, Real and complex analysis (McGraw-Hill, New York, 1966).
- 11. H. S. Shapiro and A. L. Shields, On the zeros of functions with finite Dirichlet integral and some related function spaces, Math. Z. 80 (1962), 217-229.
- B. A. Taylor and D. L. Williams, On closed ideals in A[∞], Notices Amer. Math. Soc. 16
 (1969), 144.
- A. Zygmund, Trigonometric series, Vol. II, 2nd ed. (Cambridge Univ. Press, New York, 1959).

Texas Tech University, Lubbock, Texas; University of Kentucky, Lexington, Kentucky