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1. Introduction. Let {2^},0 < \zk\ < 1, be a given sequence of points in the 
open unit disc D = {z: \z\ < 1} and let E be its set of limit points on the 
unit circle T. In this note we consider the problem of finding conditions on the 
sequence \zk] which will ensure the existence of a function / analytic in D 
satisfying 

(A) /(0) = 1, /(*») = 0, zk = r4c"* 

and whose derivative / ' belongs to the Hardy class H± or, alternatively, 
whose derivatives of all orders are bounded in D. We shall prove the following 
two theorems. 

THEOREM 1. / / 
CO 

(i) La- l**l)<°o. 

(2) E is a Car les on set, 

and 
CO 

(3) X) distfe, Ef < oo for some a > 1, 

then there is a function f analytic in D which satisfies (A) and its derivative f 
belongs to Hi. 

THEOREM 2. If conditions (1) and (2) hold and for some a ^ 1 and constant M 
we have 

(4) dist(**, E)« < Mil - |s*|) for k = 1, 2, . . . , 

then there is a function f analytic in D which satisfies (A) and whose derivatives 
of all orders are bounded in D. 

The special case in which only a finite number of derivatives is required to 
be bounded is due to Caughran [4]. 

Condition (3) allows zk to approach E in a 'Very tangential" manner while 
condition (4) may be described by saying {zk} has finite degree of contact a at E. 
For example, the sequence zk = (1 — 1/kl) exp(i/k) satisfies (3) for a = 2, 
E = {1}, and (1) holds but not (4) for any a ^ 1. Clearly (1) and (4) with 
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a ^ 1 imply (3). However, the necessity of some restriction such as (3) in 
Theorem 1 is pointed out by taking 

**= [ 1 - (^(log^)2)-1]exp(i/log^). 

This sequence satisfies (1) and E = {1}, and hence (2) holds, but {zk\ is not 
the zero set of any non-zero analytic function with derivative in H1. This 
example, due to Carleson, is discussed in detail in [5]. Also in this connection 
and for a related study of the zero sets of functions with finite Dirichlet 
integral see the papers of Carleson [2] and Shapiro and Shields [11]. 

A Carleson set is a closed subset of the unit circle T of measure zero whose 
complement is the union of open arcs whose lengths ek satisfy 

£ ek\og(l/ek) < oo. 

Hv (0 < p < oo ) is the space of functions / analytic in D for which 

sup f \f(reie)\pdd < o o ; 
0<r<l *J-ir 

Hœ is the space of functions analytic and bounded in D. We shall write d(z, E) 
for dist(z, E) and d(6, E) for dist(0, E) = dist(V*, E). 

Our proofs rest on certain estimates which are concerned with the order of 
growth of a Blaschke product near its singularities on T. 

2. Derivatives of Blaschke products. The following lemmas have as their 
motivation the fact that if B is a Blaschke product whose zeros lie on the 
segment (0, 1), then \Bf (z)\ = 0(\z - 1|~2) (see [10, p. 311, problem 23]). 

The Blaschke product associated with a sequence zk = rke
idk, 0 < rk < 1, 

satisfying the convergence condition (1) is 

L i \zk\ 1 - zkz 

Convergence in this product is uniform on any closed subset of the plane 
which is disjoint from E and the points \/zk [8, p. 68]. Its derivative 

oo I | 2 _ i 

k=i (zk — z) (1 — zkz) 

becomes 

(7) B'(eie) = e-teB(eie)±±rlZk{2 

*=i \e - zk\ 

dit points eie (£ E. Since \B(eid)\ = 1 at such points, 

(8) \B\eie)\=t}j^~ 

when eie g E. 

— i \e" - zk\
2 
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We make repeated use of the inequalities 

(9a) |1 - z\2 è (1 - r)' + |0|2, 

(9b) |1 - z\2 ^ (1 - r)2 + 4"V|(9|2, 

where z = reie, 0 ^ r ^ 1, and —7r ^ 0 g TT. 

LEMMA 1. If the sequence {zk} satisfies (1) and (2) awd 5 is the associated 
Blaschke product (5), then the series (3) converges for a > 1 if and only if 

(10) J d(0 ,£) a |£V")l^<^. 

Proof. Since E has measure zero, Bf (eie) exists for almost all 6 and at every 
point of T — E the function \B'(eie)\ is given by the series (8). An application 
of the monotone convergence theorem shows that the existence of the integral 
(10) is equivalent to 

(ID £a-r*2) r#^d»<oo . 
*;=i «^-TT \e — zk\ 

First we show that convergence of this series implies convergence of the 
series in (3). Assume that — 1 6 E so that F = {0 G [ — 7r, TT]: e'0 G £} is the 
union of disjoint open intervals (an, bn). If 6k £ F, the corresponding term in 
(3) vanishes; hence suppose that 6k £ (aw, bn) and, to make a choice, assume 
that 6k — an ^ bn — 6k (inequalities similar to the following hold in case 
Qk — cin > bn — 6k). Put A = 2-1d{Bk,E) and let Ik denote the interval 
(6k — A, 6k + A). There exists a constant c > 0, depending only on E, such 
that d(0, E) ^ c\0 — an\ for 6 6 7fc. If Sk denotes the integral in the kih term 
of (11), this last inequality and (9a) imply that 

- On 
s*>cajIk(i-rkr + n(e-ek)

2dd 

"S. 'A ' g + (9k-an)\a 

(1 - nf + 2 | 7T2 - ^ $ 

^ ca2^ad{6k, Ef J*- ^ 
(1 - f*)J + 

= c - 2 1 - ^ ^ , £)«(1 - r , ) - 1 t a n " 1 1 _ ^ ^ } j 

From this we infer that convergence in (11) implies that 

and if J denotes the integers k for which d(0k, E) > 2(1 — rk), then, by (1), 

Ë d&, £)" < 4X-1!; <2(0*, £)a tan"1 \ *,?*'E\ 
k=i kçj LZ{ï — rk). 

as required. 

+ 2"Z( l - r» ) <o>, 
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Now suppose that the series (3) converges. Write 

uk(0) = \ei(> -zk\-H(6,EY 

and, as above, denote the integral of uk by Sk. By (1) there is a 5 > 0 such 
that \zk\ ^ 8. When 6k € i7 we have 

d(0, E)« g |0 - 6k\* and «*(*) ^ U-^d - 6k\«-*; 

thus, since a > 1, 5* is bounded by a constant independent of k. Otherwise, 
suppose that 6k £ (an, bn) and let A\ and A2 denote the integral of uk over Ik 

and [dk — IT, dk + 7r] — /&, respectively. It follows from (9b) and the in­
equality 

d(6, EY S 2 M | 0 - 0*1" + <*(**, E)a] 
that 

w*(0) g ô-^+Hl^ - 0*h~2 + I» - 0*|-2d(^, E)"L 

and since d & Ik implies that 2a\d - 6k\
a > d(6k, E)a, one has 

uk(e) s ô-^+nie - ek\«-* + 2«\e - ek\«-2] 

when 6 d Ik. Therefore A2 is bounded by a constant independent of k. 
To obtain a bound on A i write 

Ai= j uk(e)dd ^ const d(OkyE)a J de 
hk Ji.\e - zk\ 

S const d((9*, Ef J -TJ-——72-7-7=1^ o (1 - rk)
2~+ 4Tlb6z 

^ const d(6k,E)a(l - rk)~\ 

From these various estimates we conclude that 

Z (1 - ^*2) TrF^-pdO g const S (1 - r*2) + const £ d(0t, E ) a < oo 
* = 1 ^ - 7 T | 6 — Zk\ k = l fc=l 

by (1) and (3); hence the integral in (10) exists and the proof is complete. 

The requirement a > 1 in Lemma 1 is essential since convergence of the 
series (3) for a = 1 does not imply convergence in (10). For example, take 
1 — rk = 6k = ek = [k(log k)2]'1; then (1) and (2) hold and (3) converges 
with a = 1 but the integral in (10) exceeds 

constX) €fc + const ]T} ek log(l/c t) = +oo. 

We omit the routine proofs for the remaining lemmas. 

LEMMA 2. / / the sequence {zk} satisfies (4) and \zk\ ^ b > 0, then there exists 
a constant L, depending only on a, ô, and M such that 

d(z,E)" ^ L (12) sup T~^-r^r SL fork = 1,2, 
M<1 1 — Z*2 
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LEMMA 3. If the sequence {zk} satisfies (1) and (4) and B is the associated 
Blaschke product, then there is a sequence of constants Mv such that 

(13) \C(p)(z)\d(z, E)2aP ^ Mv in D 

for p = 0, 1, 2, . . . and any subproduct C of B. 

3. Proof of main theorems. In addition to the lemmas of the preceding 
section we need a result obtained by Novinger [9, Theorem 4.3] and in­
dependently by Taylor and Williams [12]. 

THEOREM A. Let E be a Carleson set. Then there exists an outer unction F 
such that 

(a) the zero set of F in D is E, 
(b) F^ e Hœfor p = 1,2, . . . , 
(c) the zero set of F(p) in D contains E for p = 1, 2, . . . . 

By expanding F i n a Taylor series about points of E it is easy to see that 
condition (c) implies the existence of constants ypq such that 

(14) I/**>(*) I ^ yPQdist(z, E)« 

for p, q = 0, 1, . . . . 
We are now ready to complete the proof of Theorem 1. Define/ by 

(15) / = BF, 

where B is the Blaschke product associated with {zk} and F satisfies (a), (b), 
and (c) of Theorem A relative to the cluster set £ of {zk}. Clearly (a constant 
times) / satisfies (A). 

In order to show t h a t / 7 £ Hi, it suffices to show that B'F Ç Hi. By (14) 
there is a constant 7 such that \F{eie)\ ^ yd(6, E)a; hence, by the result of 
Lemma 1, 

f \B'(ei9)\ \F{eie)\dd ^ 7 f \Bf {eid)\ d{6, E)a dd < 00. 

This proves that B'(eie)F(eie) is summable and justifies use of integration by 
parts to obtain 

f eindB'(eid)F(eid) dd = - P ein°B{ei9)F'(ei0) dd 

- {n - 1) j ei(n~1)6B(ei6)F(eie) dd = 0 

for n = 1 , 2 , . . . . Hence there exists a function in Hi whose radial limits 
agree almost everywhere with the radial limits of f (reid), and therefore f 
itself belongs to Hi [13, p. 203]. 

To complete the proof of Theorem 2, suppose that {zk} satisfies (1), (2), 
and (4) and define / in the same manner by (15). A computation by the 
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Leibnitz rule shows that the nth derivative of / is bounded in D since the 
derivatives of B and F satisfy (13) and (14), respectively. 

Our insistence throughout that the cluster set of {zk\ be a Carleson set is 
not superficial, for Caughran [4] has pointed out that an amalgam of results 
of Carleson and Hardy and Littlewood [2; 7, Theorem 40; 6, Theorem 2] 
yields the following result. 

THEOREM B. If f is analytic in D and f £ Hv (p > 1) is non-zero, then the 
zero set in T of f is a Carleson set. 

James Caveny (private communication) has recently established the same 
result when p = 1. 
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