ON THE ZEROS OF FUNCTIONS WITH DERIVATIVES
IN H, AND H.,

JAMES WELLS

1. Introduction. Let {z;},0 < |z:] < 1, be a given sequence of points in the
open unit disc D = {z: [3] < 1} and let E be its set of limit points on the
unit circle 7. In this note we consider the problem of finding conditions on the
sequence {z;} which will ensure the existence of a function f analytic in D
satisfying

A) f0) =1, f(&) =0, 2 = 7,60

and whose derivative f’ belongs to the Hardy class H; or, alternatively,
whose derivatives of all orders are bounded in D. We shall prove the following
two theorems.

TrEOREM 1. If

M > (1= la) <,

(2) E is a Carleson set,

and

3) g dist (6, E)* < 0 for some o > 1,

then there is a function f analytic in D which satisfies (A) and its derivative f’
belongs to H;.

THEOREM 2. If conditions (1) and (2) hold and for some o = 1 and constant M
we have

) dist(s, E)* < M(1 — |z|) fork=1,2,...,

then there is a function f analytic in D which satisfies (A) and whose derivatives
of all orders are bounded in D.

The special case in which only a finite number of derivatives is required to
be bounded is due to Caughran [4].

Condition (3) allows g to approach E in a ‘“‘very tangential’”’” manner while
condition (4) may be described by saying {2} has finite degree of contact o at E.
For example, the sequence 2z, = (1 — 1/k!) exp(i/k) satisfies (3) for a = 2,
E = {1}, and (1) holds but not (4) for any @ = 1. Clearly (1) and (4) with
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a = 1 imply (3). However, the necessity of some restriction such as (3) in
Theorem 1 is pointed out by taking

z = [1 — (k(log k)*)~] exp(i/log k).

This sequence satisfies (1) and E = {1}, and hence (2) holds, but {2z} is not
the zero set of any non-zero analytic function with derivative in H!. This
example, due to Carleson, is discussed in detail in [5]. Also in this connection
and for a related study of the zero sets of functions with finite Dirichlet
integral see the papers of Carleson [2] and Shapiro and Shields [11].

A Carleson set is a closed subset of the unit circle T of measure zero whose
complement is the union of open arcs whose lengths ¢, satisfy

2 e log(l/e) < oo.
H, (0 < p < ) is the space of functions f analytic in D for which

sup f lf(re)? db < o0 ;
0<r<1 Jox

H_, is the space of functions analytic and bounded in D. We shall write d(z, E)
for dist(z, E) and d(8, E) for dist(9, E) = dist(e*, E).

Our proofs rest on certain estimates which are concerned with the order of
growth of a Blaschke product near its singularities on 7.

2. Derivatives of Blaschke products. The following lemmas have as their
motivation the fact that if B is a Blaschke product whose zeros lie on the
segment (0, 1), then |B’(z)] = O(|]z — 1|72) (see [10, p. 311, problem 23]).

The Blaschke product associated with a sequence 2; = e, 0 < 7, < 1,
satisfying the convergence condition (1) is

(5) B = [1 252

Convergence in this product is uniform on any closed subset of the plane
which is disjoint from E and the points 1/3; [8, p. 68]. Its derivative

’ _ = ,Zk,2 —_ 1
(6) B'(z) = B(z) kZ::l PR YT a——
becomes
=) 2
@) B = "BE Y Tzl
k=1 Ie - zkl
at points e ¢ E. Since |B(e**)| = 1 at such points,
Vi) - 5 L= lal”
®) [B'€) = 2 oo o

when ¢*® ¢ E.
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We make repeated use of the inequalities
(92) -2 < (L —n2+ o
(9b) 1 —z2z (1—r)+ 47702
wherez =7, 0 <7 =< 1l,and —7 <60 = =

LemMA 1. If the sequence {2} satisfies (1) and (2) and B is the associaled
Blaschke product (5), then the series (3) converges for a > 1 if and only if

(10) f_ d6, E)*|B' (") df < 0.

Proof. Since E has measure zero, B’ (¢*?) exists for almost all 6 and at every
point of 7' — E the function |B’(¢*?)| is given by the series (8). An application
of the monotone convergence theorem shows that the existence of the integral
(10) is equivalent to

(11) }:(1— )

First we show that convergence of this series implies convergence of the
series in (3). Assume that —1 € E so that F = {6 € [—x, 7]: ¢! € E} is the
union of disjoint open intervals (a,, b,). If 6, € F, the corresponding term in
(3) vanishes; hence suppose that 6; € (a,, b,) and, to make a choice, assume
that 6; — @, < b, — 6 (inequalities similar to the following hold in case
0y — a, > b, — 6;). Put A =2"14(6;, E) and let I, denote the interval
(0x — A, 0, + A). There exists a constant ¢ > 0, depending only on E, such
that (8, E) = ¢|0 — a,] for 6 € I,. If Sy denotes the integral in the kth term
of (11), this last inequality and (9a) imply that

16 — a,|”
n (1= ”k)2 + (0 — 6

A
_ e |0 + (Ok - an) Ia
=¢ Q[A (]. - 7'k)2 + 02 da

" d(0 ]1)

Py

lgd@ < 0.

Sk>€a )2d0

= ¢"27°d(0, B)° f(l—-r) +6°

= 20, B)*(1 — 7)) tan™ [~——2d(§"’1 E;Z)] .

From this we infer that convergence in (11) implies that

5 00, By tant | 20D | < o,

and if J denotes the integers & for which d(6;, E) > 2(1 — 7y), then, by (1),

2. dl, E)* < 471'_12 d(9,, E)* tan™* [M
k=1 ke 2(1 — 7))

as required.

]+2“k4‘;(l-—rk)<oo,
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Now suppose that the series (3) converges. Write
up(0) = |e" — z|7%d (6, E)*

and, as above, denote the integral of u; by S;. By (1) there is a § > 0 such
that |z;| = 8. When 6, € F we have

d(@, E)a § ]0 - 0;;}"‘ and uk(ﬁ) é 45—110 - Bkia_z;

thus, since @ > 1, S; is bounded by a constant independent of k. Otherwise,
suppose that 8, € (a,, b,) and let 41 and A4, denote the integral of u; over I,
and [0, — =, 0y + 7] — I, respectively. It follows from (9b) and the in-
equality
a6, E)* = 2=71[0 — 6;* + d(6x, E)°]
that
u(9) < 67122F[0 — 672 + |0 — 6,72 (6;, E)?],

and since § ¢ I implies that 2#|/0 — 6;] > d (6, E)=, one has
up(6) < 6712471[|0 — O,*2 + 2|9 — f,]=2]

when 6 ¢ I. Therefore 4, is bounded by a constant independent of &.
To obtain a bound on 4, write

A, = f 1u;(0) d0 =< const d(8,, E)” I d0_~_2
Ik 7 €7 — 2
WA
N de
< e
=< const d(0,, E) jo A=) F 4%

IIA

const d (6, E)*(1 — )"~

From these various estimates we conclude that

@ T d(0_,E)“

Z 1 - 7’k2)

r=1 —r lew - Zk’

> df = constZ 1 - rkZ) + constz d(6, E)* < o0
k=1 k=1

by (1) and (3); hence the integral in (10) exists and the proof is complete.

The requirement « > 1 in Lemma 1 is essential since convergence of the
series (3) for &« = 1 does not imply convergence in (10). For example, take
1 — 7, =0, = ¢ = [k(log k)2]7!; then (1) and (2) hold and (3) converges
with @ = 1 but the integral in (10) exceeds

constz & + constZ e log(l/e) = +0.
We omit the routine proofs for the remaining lemmas.
LeMMA 2. If the sequence {2} satisfies (4) and |z] = 6 > 0, then there exists

a constant L, depending only on a, 8, and M such that

d(z, E)*
12 e
(12) |S7111<Dl |1 - zkzl

=L fork=1,2,... .
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LeEmMmA 3. If the sequence {2z} satisfies (1) and (4) and B is the associated
Blaschke product, then there is a sequence of constants M, such that

(13) |C? (2)|d (2, E)*® < M, in D
for p =0,1,2,...and any subproduct C of B.

3. Proof of main theorems. In addition to the lemmas of the preceding
section we need a result obtained by Novinger [9, Theorem 4.3] and in-
dependently by Taylor and Williams [12].

THEOREM A. Let E be a Carleson set. Then there exists an outer unction F
such that

(a) the gero set of Fin D is E,

(b) F® € H, for p =1,2,...,

(c) the zero set of F® in D contains E for p = 1,2, ... .

By expanding F in a Taylor series about points of E it is easy to see that
condition (c) implies the existence of constants v,, such that

(14) F®(2)] = v,,dist(z, E)*
forp,g=10,1,... .

We are now ready to complete the proof of Theorem 1. Define f by
(15) J = BF,

where B is the Blaschke product associated with {2} and F satisfies (a), (b),
and (c) of Theorem A relative to the cluster set E of {z;}. Clearly (a constant
times) f satisfies (A).

In order to show that f’ € H,, it suffices to show that B'F € H;. By (14)
there is a constant v such that |F(e**)| < vd (6, E)=; hence, by the result of
Lemma 1,

f [B' ()| |F(e™)]| do < v f_ |B’ ()| d(0, E)*db < 0.

This proves that B’ (e??) F(e'?) is summable and justifies use of integration by
parts to obtain

f ein9 ,(eiB)F(eiO) d0 — __f ein0B(ei9)F;(ei0) d0
— (n— 1)f "V B(™YF(e)do = 0

for n = 1,2,... . Hence there exists a function in H; whose radial limits
agree almost everywhere with the radial limits of f’(re’?), and therefore f’
itself belongs to H; [13, p. 203].

To complete the proof of Theorem 2, suppose that {z;} satisfies (1), (2),
and (4) and define f in the same manner by (15). A computation by the
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Leibnitz rule shows that the nth derivative of f is bounded in D since the
derivatives of B and F satisfy (13) and (14), respectively.

Our insistence throughout that the cluster set of {z;} be a Carleson set is

not superficial, for Caughran [4] has pointed out that an amalgam of results
of Carleson and Hardy and Littlewood [2; 7, Theorem 40; 6, Theorem 2]
yields the following result.

TueoreM B. If fis analytic in D and f' € H, (p > 1) is non-gero, then the

zero set in 1" of f is a Carleson set.

James Caveny (private communication) has recently established the same

result when p = 1.
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