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NOTES ON THE INVERSE HAPPING THEOREM
IN LOCALLY CONVEX SPACES

SADAYUKI YAMAMURO

Several problems arising from a functional analytic study on

Omori's inverse mapping theorem are considered arriving at an

inverse mapping theorem in locally convex spaces.

In this note we shall consider some problems which arose in the

course of our attempt to generalize Omori's inverse mapping theorem [6,

Theorem 3.1.1, p. '•I] to locally convex spaces.

The domains and ranges of the maps considered in this note are

therefore in real locally convex spaces. The method we shall use for the

study on these maps is the one which we have introduced in [JO]. Although

we have to refer to it for the details of the method, the notion of

"calibration" should be explained here.

A calibration for a locally convex space E is a set r_ of semi-

norms which induces the topology of E . When F is another locally

convex space, it will have a calibration ?„ . A calibration for the

family {E, F} is a set of "correspondences", which we have called semi-

norm maps in [JO], between F_ and T_ . In other words, each p E T has

its E-oomponent p_ and its F-aomponent p_ , and, hence, each p (. T

determines semi-normed spaces (E, p) and (F, p) . Therefore, when a

calibration T for {E, F] is given, we have a family of pairs of semi-

normed spaces paired by all p € T :
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{(£•, p ) , (F, p) : p i D .

For a subset X of E , le t [X, p) be the set X regarded as a

subset of (£, p) . If (X, p) i s an open subset of (E, p) for each

p e r , then X i s called a T-open subset of E . Then, a map f : X •*• F

wil l be studied by i t s behaviour as a map of {X, p) into (F, p) for

each p e r . For instance, / i s said to be Y-oontinuous on X i f

/ : (.X, p) •*• (F, p) i s continuous for each p e r .

A similar method has been used by Fischer [2] and Gutknecht [4 ] . But,

the most i l l u s t r i ous example to which th i s method is applicable will be a

ser ies of works by Omori (see, for example, [6]) on the group V of a l l
00

C -diffeomorphisms on a closed manifold and i t s various subgroups. The

locally convex linear spaces which appear there as tangent spaces are

Frechet spaces defined by increasing sequences of norms. In order to state

his inverse mapping theorem, we need to be more precise.

Let {E, E-, : k 2 0} be a Sobolev chain, that i s ,

(1) a l l E. are Banach spaces with the norms ll'llj, >

(2) fi1. is l inearly and densely imbedded in E, ;

(3) E is the intersection of all £, and has the inverse limit

topology defined by {fffc, ||-||&} .

The following theorem has been proved on this space E .

THEOREM 3.1.1 ( [6] , p. Ul). Let U and V be open neighbourhoods

in E . Suppose a map f : U n E -*• W n E with /(0) = 0 satisfies the

following conditions:

(1) / can be extended to a C -map of V n E, into V n E,

for every k > 0 ;

(2) for every x € U n E and z € E ,
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(3) f'(0) : E, -*• E, is an isomorphism for every k 2 0 ;

| | » C'\\z\\ M\\\k -\M\k_x ,

where C, C, D, are positive constants and C, C are independent of

k , and P, is a polynomial with positive coefficients depending on k .

Then, there are neighbourhoods W, W of zero in E such that

f : W n E, •*• V n E, is a C -diffeomorphism for every k 5 0 . Moreover,

f~ satisfies the same inequalities as (3) and {h).

This theorem was an essential tool in his works to develop a Lie-group

theory on the group V and its various subgroups, and, therefore, it is

one of few inverse mapping theorems on (non-nonned) locally convex spaces

which have genuine applications. The idea which lies at the basis of this

theorem may be expressed as follows: for a locally convex space E with a

calibration T , take a family {E[p] : p € r} of Banach spaces, where

E[p] is a p-completion of E , and, when a map / on E is given,

extend it if possible to maps / on E[p] for all p f F ; then study

the map f via the family {f } . This idea is capable of being adopted

in the theory of linear and non-linear maps in general locally convex

spaces. In this note, following [9], we shall restrict our attention to

the above inverse mapping theorem.

We start with an elementary discussion on the T-completions in order

to fix terminologies and notations which will be used in the subsequent

sections. Section 1 contains only known facts. In Section 2, we shall

introduce a class of open subsets which are natural domains of

completionally F-continuous maps. This class of maps has been introduced

in [9]. It will be studied in more detail in Section 3, and we shall give

some conditions for such maps to be a local homeomorphism. There are two

basic notions in these conditions: 5-resonance and T-resonance. In

Section h, conditions for a map to be 5-resonant will be given. The

notion of gauge for (E, T) will play an important role. In Section 5,

conditions for a map to be T-resonant will be given. Here, the notion of

maps of Garding type is essential. In the last three sections, we shall

consider problems related to this class of maps and arrive at a form of
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inverse mapping theorem with weaker assumptions than Omori's.

1. r-completions

Let T be a ca l ibra t ion for E . For p i T , a sequence or a net

[x.) in E i s called a p-Cauchy sequence or net respectively if

p(x.-x.) •*• 0 , that i s , i f i t i s Cauchy in the semi-normed space {E, p) .

Two p-Cauchy sequences (a;.) and [y.) are said to be equivalent if

p[x.-y.) •*• 0 . Then we have an equivalence re la t ion on the set of a l l

p-Cauchy sequences in E . A class defined by th i s equivalence re la t ion

wil l be called a p-alass, and the set of a l l p-classes defined in th is

way wi l l be denoted by E[p] .

For a^ 13 £ E[p] and rea l numbers a, 3 , <m + gb is defined to be

the p-class which contains a p-Cauchy sequence (ax.+Bj/-) for some

(x.) € ;i and [y.) £ b_ . Then E[p] i s a real vector space.

We denote by 5 (x) the p-class which contains the p-Cauchy

sequence whose terms are a l l identical to x . Then the zero element of

the vector space E[p] i s S(0) .

Wow, for a € E[p] , we set

p(ji) = lim p[x.)
£-xx>

for some (a;.) € .a . I t i s obvious t h a t the value p(a.) does not depend

on t h e choice of p-Cauchy sequences in ^ . Then t h e fol lowing fac t i s

obv ious .

(1 .1) . p(ji) (ji € E[p]) defines a norm on E[p] and E[p] is a

Banaah space with respect to this norm.

The family of Banach spaces [E[p] : p € T] defined in t h i s way will

be called the Y-completion of E .

To obtain the completion of E with respect to a semi-norm p , i t i s

usual to consider f i r s t the normed space E/p~ (0) (the quotient space)

and then apply the completion process. This will give the same Banach

space E[p] . Since we need only the Banach space E[p] in th i s note, we
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do note take the extra step of constructing the quotient space.

Now let {#[p]} be the F-completion of E . First we have a linear

map

Sp : E - E[p] : x - Sp{x) ,

which satisfies the equality

-p[S (x)) = p(x) for all x € E .

Next, l e t p , qS F and p > q . Then p-Cauchy sequences are

<?-Cauchy sequences, and, for each a € £[p] , there corresponds a unique

a € E[q] such that ji c a as se t s . Thus, we have the following map:

>Tp,q : E[P] *B[(1] : % " % •

It is obvious that T is linear and

It is easy to see the following diagram commutes:

E[p] ^ - E [ q ]

s
P

EXAMPLE 1. Let K be a compact subset of R (the reals) and let
00 00

C {K) be the set of a l l real-valued C -functions on some open

neighbourhood of K . We define a cal ibrat ion T for E = C (K) as the

set of countable norms {p, : k = 0, 1 , 2, . . . } defined by

pk(x) = s u p { | x ( i ) ( i ) | : t U , 0 S i 5 ft} .

Then ^tpJ = C^(K) , the set of all U -functions on K , and, in this

case,

S : C°(K) -K*(K) and T : Ck(K) + C°(K)

are imbeddings:
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S (x) = x and T lx) = x .
pk Fk'F0

EXAMPLE 2. Let E = C°(R) be the set of a l l real-valued continuous

functions on i? . We define a calibrat ion T for th i s E as the set of

countable semi-norms T = {p, : k = 0, 1, 2, . . . } defined by

pk(x) = sup{|x(t)| : \t\ 5 k+l} .

For any p,-Cauchy sequence in E , there corresponds a continuous function

on [-k-1, k+l] , and, by the Weierstrass theorem, for any continuous

function on [-k-1, k+l] , there exists a sequence of polynomials which

converges to t h i s function uniformly on [-k-1, k+l] . Hence, as

we can take the Banach space C (-k-1, k+l) of a l l continuous functions on

[-k-1 , k+l] . Then,

pk K K

where Xj. is the characteristic function of [-k-1, k+l] , and

2. Completionally r-open subsets

Let T be a ca l ibra t ion for E and {E[p]} be the T-completion of

E . A subset X of E i s said to be eompletiomlly p-open for some

p € F i f there ex is t s an open subset X of E[p] such that

X = S~ [X ) . Since S : E •* E[p] i s continuous, X i s then an open

subset of E . I f AT i s completionally p-open for every p € T , then X

is said to be completionally T-open.

For a completionally p-open subset X , the open subset X of E[p]

i s cal led the p-cover of X . When ^ i s completionally T-open, the

family {x : p € r} i s called a T-cover of X . In fact , X covers X

in the following sense.

(2 .1) . S(x) = X , where the upper bar denotes the closure in E[p] .
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Proof. Since 5 U ) c X , we only need to show that I c S (X) .
P P P P

Let a € X and (x.) € a . Then, since
— p *• v' =

lim pfS fx.l-a] = 0
*• pK V' ='

and is open , S [x.) i X and, hence, x . € X for large i .

Therefore, & € S (X) , which shows X c S (AT) .

When F has the smallest element p , there is a simple way to

construct a F-cover. For a general calibration T , if we take an
arbitrary p . € T and consider the set {p € T : p 2 p } , then i t is

again a calibration and p . is i t s smallest element.

(2 .2 ) . Assume that T has the smallest element p_ and X- is an

open subset of Then X = S~ is non-empty and completionally

Y-open.

Proof. By (2 .1) , X i s non-empty. Now we denote the map

0

by T . This notation will be used throughout th i s note when p is the

smallest element of T . We then put

x = r^fy ) .

p . p K 0J

Then X is an open subset of E[p] . We shall show that

X = S"1[X ) for all p € T .

Assume that x d X ; then 5 (a;) € X , or (iT o S ) (x) € # ,
5

implies

which

S p (x) i Tp [XQ) - Xp ,

and, hence, x € S~ [X ) . Conversely, l e t x € S~ [X ) ; then
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S (x) € T~ [X^ , o r , S (x) € XQ . Hence, x € X .

Assume tha t a. € fffpA] , where pA i s the smallest element of T .

I f a. = 5 (x) for some x d E , then T~1(a:) = S (x) and, hence, the
PQ P P

sequence (x) belongs to T (a) for every p € F . As can be seen

easily, the converse is equivalent to the sequential completeness of E .

(2.3). Assume that V has the smallest element p . Then E is

sequentially complete if and only if the following condition is satisfied:

if fl T~ (ji) / 0 and si € E[PQ\ > then a = S (x) for some x d E .

The linear maps S and T are obviously not surjective. Each 5

is injective if p is a norm. In the case of T , the situation is a

l i t t l e less simple. A calibration with the smallest element p is said

to be paimoise coordinated, following [3], if i t consists of norm-maps and

the following condition is satisfied: a p0-convergent and p-Cauchy

sequence is p-convergent. Spaces determined by a Sobolev chain, as the

one in Example 1 in Section 1, are pairwise coordinated.

( 2 . 4 ) . T : E[p] •+ ff[pA] are injective for all p 6 T if and only

if T is pairwise coordinated.

Proof. Assume tha t a l l T a re i n j e c t i v e . To prove tha t pQ i s a

norm on £ , assume t h a t Pr.^x^ ~ 0 • Then, for every p £ T ,

which implies S (x) = 0 , or p(x) = 0 , for a l l p E T . Hence x = 0 .

Next assume that (x.J i s a p-Cauchy sequence such that

p (x.) -»• 0 . Let (x.) € a. Z E[p] . Then
U 1^ 1s —

p[S (x.)-aj -*• 0 .

Since T is continuous,
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pJs fx.l-T a] -> 0 ,

which implies pA?a) = 0 . Since pQ is a norm, T a = 0 , and, since

T is injective, a = 0 . Therefore, p(S (x.)) •* 0 , or eguivalently,

P ~~ P v

p[x.) •* 0 .

Conversely, assume that F is pairwise coordinated and T a = 0 for

some ^ € £[p] . Then, for (x.) € a. , p (S (a:.)) -»• 0 , that is,

p (x.) •+ 0 . Since (x.) is p-Cauchy, we have p[a:.) •*• 0 . Hence

a. = 0 .

The following fact will be used later.

(2.5). Assume that T has the smallest element p , it is pairwise

coordinated, p 2 q for p, q € T and T a = Tr&n for some a^ (. E[p]

and a_ £ E[q] . Then

(1) aZJ q-Cauahy sequences in &_ belong to a , and

(2) p(5 (s:)-a ) S q(5 (x)-a. ) for all x d E .

Proof, (l) Let (a;.) € a ; then, since p 5 q , fa:.) is a

p-Cauchy sequence. Let b be the p-class which contains (x.) . Then

r t is the p»-class which contains fa;.] . Therefore
p=p r 0 v zJ

= 21 a = f a
«7=q P ^

which implies b = a . Hence [x.) € a=p =p *• i ' =p

(2) Let (x.) £ a ; then (a;.) f a and, for a l l x d E
v —q i =p

5 lim

3. Completionally r-continuous maps

Let F be a T-family and E, F £ F . Let X be an open subset of
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E . Then a map f : X •*• F i s said to tie aompletionally Y-continuous on

AT or a CC^-map on X i f the following condition i s sa t is f ied: for each

p € F , i f (x.) and [y .) are p-Cauchy sequences contained in X such

that P^xi~yi) **" ° ' t h e n Ppif^xi)-fiyi)) "*• ° • T h i s n o t i o n was

introduced in [ 9 ] , where i t was shown that a CCp-map on X transforms a

p-Cauchy sequence in X into a p-Cauchy sequence in F (see (5.2) in

[ 9 ] ) . However, the essence of the completional F-continuity l i e s in the

following fact .

(3 .1 ) . Let X be a completionally T-open subset of E and {x }

be its T-cover. Then f : X •* F is a CC^-map if and only if, for each

p € T , there exists a continuous map

V V F[P]

such that the following diagram commutes:

•* F[p]

In other words, f i s a CC_-map if and only if i t has continuous

"extensions" over X for a l l p € T .

Proof. Let / : X -*• F b e a CC_-map and p € T . For each

a € X , l e t / (a J be the p-class which contains the sequence ( / ( ^ 0 )

for some [x.) € a. . This definition is meaningful because of the^ —p

following two reasons. First, since / is a CCr-map, (/(^O) is always

a p-Cauchy sequence. Secondly, the definition of the completional

T-coT-continuity gives the independence of / (a ) on the choice of

a
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Now we prove the continuity of f . Assume that

P—fa -a) -* 0 , a , a € ^
£v=n => = M - p

By (2.1), there exist [x .) € a and (x.) € a such that
71 }1r Yl If

x . , x. € A" . Let us assume that there exists a positive number a such
71 yls If

that

lim PpL/" [a J - / (a.)J > a ,

which means that

lim lim Pp[f\j)s •)-f[x-)~\ > a .

Then there exist sequences (n, J and (£, J such that

n fffr 1 f f r 11 > n
PpUlXy, i )-J\XJ JJ * a

and

which is a contradiction.

The commutativity ofithe diagram is otivious.

Conversely, suppose we have continuous maps

for a l l p £ F such that the diagram commutes. Let (x.) and [y.) be

p-Cauchy sequences contained in X such that pp[x .-y.) -*• 0 . Let a. be
Ct If if —

the p-class which contains [x.) and, therefore, [y.) . Then a f J

and

Hence

which implies
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lim pp [f [S {xj) - / (5 (j, J ) ] = 0

Then, since f' ° S = S o f , we have

and, hence,

I** pp\SJfixJ-fiyJ)] = 0 ,

i)J = 0 .

In par t i cu la r , when F has the smallest element p and J i s a

completionally F-open subset of E , the following diagram commutes:

X

Throughout the remainder of this section, we assume that F is a

F-family, E, F € F , X and Y are completionally F-open subsets of E

and F respectively and {x }, {Y } are the i r F-covers.

(3.2) . If a map f : X -*• Y is a CC'-homeomovphism [that is, a

bijective CC^-map whose inverse is also a CCy-map ) , then all the

"extensions"

are homeomorphisms.

Proof. First,

and f{X) = Y , i t is easy to see that

Proof. First, we prove that / (x ) c Y . Since / o S = S of
V PJ P JP P P J

Now l e t a € X ; then there i s fx.] € a such that x. £ X and— p >• x - 1 = t.
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Since / is continuous,

Hence, by (2.1),

Next we prove that /" i s inject ive. Assume that there are

a, b d such that f (a) = f (b.) . Take [x.) £ a and (y.) ? b such
P P P "t* ^

that ari, ̂  € * . Then p^Cf fcj-/6^)) * 0 . Since Z"1 is a CC°-map,

we have p fx.-j/.) -»• 0 , which means that a = b_ .
iL % i*

Finally, to show that / is surjective, let b E 1" and take

[y •) E b such that y. € Y . Then there exist x. t X such that

/(x.J = j/. . Since / is a CCr-map, (x.J is also a p-Cauchy

sequence. Let a. be the p-class which contains (x.) . Then a. € X
— ^ — p

and / (a.) is the p-class which contains (f[x.)) , that is, ./ (â ) = b_ .
P % • p —

From the commuting diagram, it is obvious that (/ J = (/ ) , and,

hence, [/ J is continuous.

The converse of this statement does not seem to hold in general. A

map / : X •*• Y is said to be S-resonant if the following condition is

satisfied: if, for some y € Y , there exist a € X such that

*^1? P

= 5 ( y ) for all p E F ,

then there exists x £ X such that a = 5 (x) for every p € T .

It is obvious that / is S-resonant if it is a bisection.

(3.3). Assume that f : X •*• Y are homeomorphisms for all p (. T .

If f is S-resonant, then f : X •*• Y is a CC^-homeomorphism.
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Proof. We only need to show that f i s a b i jec t ion . To show that i t

i s an inject ion, assume that f(x) = f(y) for x, y £ X . Then, for each

p € r ,

fp(SpM) =5pCfU)) =Sp{f(y)) =fp{Sp(y)) .

Since 5 A x ) , S (y) € X and f i s inject ive, we have S (x) = S (y) ,

which i s equivalent to p(x-y) = 0 . Since th i s holds for a l l p € F , we

have x = y .

To show tha t / i s surject ive, l e t y € Y . Then there exis ts

a £ X such that f (a.) = 5 (y) for every p € T . Since / i s

5-resonant, a = S (x) for some x £ # . Thus f (s (x)) = S (y) for=p p pv p p a

every p € F , which implies fix) = y .

Therefore we have the following conclusion.

(3 .4 ) . Let V be a calibration for {E, F] . Let X and Y be

aompletionally V-open subsets of E and F respectively, and {x } and

{Y } be their T-covers. Let f : X •*• Y be a CCy-map. Then it is a

CCy-homeomorphism if and only if it is S-resonant and each f : X -*• Y

is a homeomorphism.

I t wil l be seen in the next section tha t , when the spaces E and F

are complete metric l inear spaces which are pairwise coordinated, the

S-resonance can be removed from the assumptions of (3 .3) . Here we shall

show tha t the "completional" F-openess, instead of mere F-openess, i s an

essent ia l requirement.

Let us consider the map

f : x •* exp o x .

Eel Is [7] has shown that t h i s map can never be a local bi ject ion at zero i f

i t i s regarded as a map of the space C (/?) of Example 2 in Section 1 into

i t s e l f (see also [ 7 ] , p . 68). However, / : C°(/?) -»• C°(ft) i s S-resonant

and, for each k 2 0 , there are open neighbourhoods Uv of zero and Vh

of 1 in C (-k-1, k+l) such that f : U, •*• V, i s a homeomorphism. In
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this case, these families, {l}^\ and {V^} , of open subsets, determined

by the map / , cannot be T-covers of any open subset of C (Ft) .

We shall now introduce another kind of resonance. Assume that r has

the smallest element pQ . Then, a map f : X •*• Y is said to be

T-resonant if the following condition is satisfied: if there exist

a € X and b € Y such that / (a ) = T b , then a ' = T a for
TO ?0 =P P PoT'o PT T o PT

some a € X
=p p

(3.5). Assume that Y has the smallest element p and it is

pairwtse coordinated. Assume also that f : X -*• Y is a CC--map and

f : X •* Y is a bisection. Then f is T-resonant if and only if
p0 P0 p0

f : X •+• Y is a bijeation for every p € T .

Proof. Assume that / i s T-resonant. To prove t h a t ' / is

inject ive, suppose that / (a^) = f (a^) for some a , a^ € X . Then

Hence T a± = T* and, by (2.1+), &± =

To prove that / is surjective, take an arbitrary \$ Y . Then

there exists a € X such that / (a ) = T b . Hence, by the
T o Po Po T Q P=

T-resonance, there exists a € X such that a = T a . Then
T P T Q P=P

pVp^p" Jp(- p̂ p-1 p=

which implies / [a

Conversely, assume that f (a ) = 2" b . Then, by the assumption,

there exists a € X such that / [a ) = b_ , and

/ (l1 a 1 = T (/ (a )) = T b .
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Hence a = T a because f is inject ive.

Thus we have the following conclusion.

(3 .6) . Suppose that T is a calibration for {E, F] with the

smallest element p and it is paivwise coordinated. Let X and Y be

completionally T-open subsets of E and F respectively and {X } and

{Y } be their T-covers. Let f : X •*• Y be a CC^-map. Then it is a

CCy-homeomorphism if and only if it is S-resonant, T-resonant and

f : X •*• Y is a homeomorphism.
^0 ^0 ^0

Obviously, the ca l ibra t ion r for C (K) in Section 1 has the

smallest element p_ and i t i s pairwise coordinated. Assume that we have

a CCp-map f : C (K) •* C {K) and assume that we have open subsets XQ

and Y_ of C (K) such that f : XQ •* YQ i s a homeomorphism. Then, if

/ i s 5-resonant and T-resonant, / : X •*• Y i s a CC_-homeomorphism,

where X = X n C°(,K) and Y = Y n C°°(K) . For instance, the map

0 GO

f : x •*• exp ° x i s a local CC_-homeomorphism at zero in C (K) .

4. Gauged calibrations and S-resonance

Let F be a T-family and E € F . Assume that the ^-component ?„

of T i s a directed se t . In other words, we assume tha t , for each pair

p , q € T , there exis ts r € T such that *•„ > p u q_, , or equivalently,

rE(x) 2 max(p£,(x), qE(x)) for a l l x € E .

Then we can consider a net on this directed set ?„ . If there is a net

yE : TE f R (the reals)

such that yE(p) ~* 0 , then the calibration I\_ i s said to be gauged and

the net Y,-, i s called a gauge on ?„ .
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When rg consists of countable elements p, (k = 0, 1, 2, . . . ) such

p, > p, for a l l k , then i t is obviously gauged withthat

oo

In the case of the space E of all C -maps with compact supports in

finite-dimensional spaces, we have a calibration T^ = {p } , where

a = (a,) and m = (m,) are increasing sequences of positive numbers and

integers respectively (see [10], p. 13 or [71], §6). Then

defines a gauge on this IV, .

The existence of a gauge makes i t possible to choose a "diagonal" net
from a system of sequences.

(4.1). Let E be a complete locally convex linear space and V be a
gauged calibration for E . Assume that there is a family of sequences

^xp,i) : P € T, i = 1, 2, . . .}

such that, for some x € E and for all p E r ,

lim p[x .-x) = 0 .

Then there is a positive-integer-valued net \i : p 6 r} such that

x . •* x in E .

The proof is similar to that of the following fact.

(4.2). Let E be a complete locally convex linear space, V be a

gauged calibration for E with the smallest element p and be pairwise

coordinated. If there are &_ i E[p] and ji € ̂ [p0] such that T a = a_

for all p £ T , then there exists x € E such that a = 5 (x) for all

P € r .

Proof. Let (x .1 ? a ; then
*• p,i' =p

p(Sp(xpJ-^ ^ ° as * -" •
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Therefore, for a gauge y on V , we have {i } such that

P[S
p{

x
p,i )~&p) * Y(P) for a l l p € T .

Let r € T ; then, if p , <? > r , (2.5) (2) implies

rfa: . -x . 1 5 r(S (x . 1-a ) + r[S [x . ]-a 1

5 pfs (x . )-a 1 + q[s [x . ) -a ]
F( pv p^p -=v} HK qv 1,-i-q =q}

5 y{p) + y(q) ,

which shows that (x . ) is a Cauchy net in E . Since E is complete,
P ' P

i t converges to an element x € E . Then,

fS U)-a] 5 p^f5 (x)-S [x . 11 + p.fs [x . )-T a 1
V pQ

v =J ^O1- po
v po^p,tp

}) ^0^ pQ
( p,ip

} p^p>

S p^fx-x . 1 + p[S [x , )-a 1 + 0 .
^O1- p,tp

J ^l p1- p,lp-" =pJ

Hence 5 (x) = ji , that i s , T S (x) = T a. for a l l p € T . Therefore
P P P FT

f o r a 1 1 P € r •

5 (x) ji , that i s , T S (x) T a.
Po P P FT

Now we can give a sufficient condition for the S-resonance.

(4 .3) . Let F be a T-family, E, F (. F and X, Y be

completionally T-open subsets of E, F respectively. Let f : X -*• Y be

a CC--map. Assume that

1. E is complete and ?„ is gauged;

2. T has the smallest element p and it is pairwise

coordinated;

3. f •• X -*• Y is bijective.

p0 p0 p0

Then f is S-resonant.

Proof. Assume tha t y € Y , a € X and

fpkp) = Sp(y) for a l l p € T .

Then we have
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f o r a 1 1 p e r •

Since f is injective,

T a = a for all p € F .
FT =P0

Then, by (it.2), there exists x (. E such that a = 5 (x) for all

p € F . Furthermore, since

and / is a bisection, we have S (x) € ̂  and, hence, x (. X .

Hence the following fact is a consequence of (3.*0.

(4.4). Let E, F be locally convex linear spaces, E be complete

and T be a calibration for {E, F] . Assume that T is gauged, T has

the smallest element p. and it is pairwise coordinated. Let X and Y

be completionally F-open subsets of E and F respectively and

f : X •+• Y be a CC~-map. Then f is a CC'-homeomorphism if and only if

each f : X •* Y is a homeomorphism.
P P P

5. r-resonance and maps of GaVding type

Throughout this section, let F be a T-family and we assume that V

has the smallest element p and it is pairwise coordinated. We also

assume that E, F € F and X, Y are completionally F-open subsets of

E, F respectively with F-covers {X }, {Y } .

We start with the following simple fact.

(5.1). If f : X •* Y is a CC°-map and

1 / : X * Y

Po Po ?o
is an injection, then, for each p € F ,

f : X •* Y
P P P
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is an injection.

Proof. This follows from T ° f = f ° T and the injectivity of
P P PQ P

T .
P

A map f : X ->• F is said to be of Garding type if, for each p € r ,

the following condition is satisfied: if, for a sequence (f. ) € X

(n > 1) ,

(1) [T a. ) is convergent in #[p0] , and

(2) (/ fa )) is convergent in F[p] ,
P P->n

then (a ) is convergent in E[p] .

A map f : X -*• F is obviously of Garding type if, for each p € V ,

there are a > 0 and 8 > 0 such that, for all x. , £„ € X ,

If / = u , a linear map, and

p[u{x)) > a^>(x) - y o (i) ,

then u is of Garding type. When E = C (K) and T consists of an

increasing sequence of Sobolev-norms, this is an inequality of Garding type

for some elliptic differential operators.

In general, if X is convex and f : X •*• E is a CT_-map such that

there exists a € (0, l) for which

||/'(r)-l||r < a

is satisfied for a l l x € X , then

(see [8]). Hence such a Ctp-map is of Garding type. A more general form

of this fact will be presented in the subsequent three sections.

(5 .2) . Assiene that f : X •* Y is a CCj,-map of Garding type and
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f : X •*• Y is a homeomorphism. Then, for each p € T , fr>(Xr>) ^s

closed in Y .

Proof. Assume t h a t there are a € X {n > l ) and b̂  € Y such

tha t f (a ) •*• ̂  in F[p] . Then

/ [T a ) = T f fa 1 + 7 1 ) .
p n p=nJ pi p V=^J^ p=

Since / is a homeomorphism, ( T a j converges to some a_ € AT

Since / is of Garding type, (a ) is convergent to some a in E[p] .

Then ID = / (a) . Furthermore

= ̂  = yp(a) = fp (Tpg) ,

which implies a^ = T a , or | f f (j; ) = X . Hence f [x ) is closed

Hence the following statement is obvious. Note that Y are

connected if Y is connected.

(5.3). Assume that Y is connected and f : X -*• Y is a CC -map

of Garding type. If

(1) / : X -*• Y is a homeomorphism, and
0 0 0

(2) f (x ) is open for every p € T ,

then f is T-resonant.

We shall consider condition (2) in (5 .3) . I t holds if / , which i s

a map between Banach spaces, is of class C and

Cfp)'(*p) c GL(£[p], F[p]) , where GL(F[p], F[p]) i s the set of a l l

invert ible elements of the space L(E[p], Ftp]) of a l l continuous l inear

maps of E[p] into F[p] . On the other hand, if / : X •* Y i s

T-differentiable on X , then, for each x € X , f'(x) i s a T-continuous
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l i nea r map of E into F • Therefore i t i s a CC_-map and has extensions

/ ' ( * ) : E[p] •* F[p]

for every p € T . For any subset A of £ , we set

/ ' U ) p = {f'(x)p : x t A} ,

which i s a subset of L{E[p], F[p]) . Let

B (g) = {x € £•; p(x) < 6)

for p € T and g > 0 .

(5 .4 ) . 4ssime tfea* f : X + Y is a CCt-map, p € T

/ ' (X n Bp(6)J cz GL(S[p], F[p]) for any 3 > 0 .

/ (x ) i s open.

Proof. F i r s t we prove that f : X •*• F[p] is of class U . By the

def in i t ion of the Cci-maps (see [9]) , f i s a CCp-map, T-differentiable

and f : X ->• LJE, F) i s also a CCp-map. (For the defini t ion of the

space L~,{E, F) , see [70], p. 5 or the remark after (6.2) . ) Hence, for

each p e r , / ' has the continuous extensions

(f')p : Xp + Lr(E, P)[p] ,

where L~(E, F)[p] i s the p-completion of LAE, F) . Hence, if

A € LV{E, F)[p] , there ex i s t s (u.) cLr(E, F) such that

p[s (u.)-A) •* 0 .^ p1- 1J -1

Then, for a £ E[p] and (x.) € a , the sequence [u.{x.]) i s a

p-Cauchy sequence in F . Denote by A [a J the p-class containing

[u.[x .)) . Then we have the map

Lp : LT {E, F)[p] + L(E[p], F[p]) : A i-> A .
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It is easy to see that L is continuous; in fact,

Furthermore / i s d i f f e r en t i ab l e and (/_) ' (a ) = i ( ( / ' ) ) fa ) . Since

L i s continoous, / i s a C -map. I t remains to show tha t

ifp)'i
xp) C GLC^tp], Ftp]) •

Let a € X and (a;.) € a . Then [x.) i s p-bounded,

f / l ' f s far.)) = L [ ( / ' ) (5 ( x . ) ) ] = f ' ( x . )
P P 1 P P P 2- * P

and

( / )'[S [xj] -> ( / ) ' ( a ) i n L(E[p], F t p ] ) .

Hence

I, Ftp]) .(fp)'(Mp)

6. 6-extensions and their Omori semi-norms
In the remainder of this note, we shall "be concerned about the maps of

Garding type. In Section 8, i t will be shown that there is a locally

convex algebra consisting of some continuous linear maps of a locally

convex space into i tself which has a neighbourhood of the identity

consisting of linear maps of Garding type. This fact will be used to

derive an inverse mapping theorem of the same type as Omori's.

As the preparation, we shall construct such a locally convex algebra

in a general manner. The fundamental notion of this construction is that

of Omori semi-norms, which has been introduced by Omori in [6], p. ll+O, in

the case of Gelfand spaces (see [9], p. 337)-

Let F be a calibration for a family F . A Si-extension of V is a

pair (Fr, 6) , where I\. i s a calibration for F such that T c r , and

6 is a family of maps of Fr into T<. :

6 = {6A : A 6 A} , 6A : F 6 - r 6 ,

such that the following conditions are satisfied:

(6.1) for each p € T and X £ A there exists X(l, p) > 0
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such that p 5 &Ap) - Mlj p)p i

(6.2) for X , A € A there exists X € A such that

6X o 6X (p) 5 6x(p) and 6X ° 6A (p) < 6x(p)

for all p (. T ;

(6.3) if there exist E, F Z F and x € £ , j E f such that

pff(x) 2 6x(p)f(j/) for all p ( T ,

t h e n , for every X. € A ,

6X (p)E(x) 5 (6X o 6X )(p)F(y) for a l l p f f .

An immediate consequence of t h e d e f i n i t i o n i s t h e fo l lowing .

( 6 . 1 ) . For X , X (. A there exists X € A sucTz tTzat

6, (p) 5 8,(p) and 6, (p) £ M p ) fo2* a i i p € T .

Proof. From ( 6 . 1 ) , we have

p 5 6, (p) and p 5 {. (p) for a l l p € T .
A l A2

Hence, from (6.3) with x = y , we have

6, (p) £ (6, o 6 )(p) and 6, (p) < (6, o & )(p)
A2 Ax A 2 Ax A2 Ax

for a l l p e r . Therefore the X determined by (6.2) gives the required

inequalities.

When F = I\ and 6 consists of the identity map, the 6-extension

is said to be trivial. A non-trivial example of the 6-extension is found

in the setting which Omori has adopted in [6] for his study on groups of
oo

C -diffeomorphisms on closed manifolds. In this case, F consists of an

increasing sequence of norms

r = {pk : k = 0, 1, 2, ...} .

Let r~ be the set of all finite linear combinations of elements of To

with non-negative coefficients
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r6 = {aPi+BPj. : a > 0 J >. 0, t , j = 0, 1 , 2, . . . } .

Let A be the set of a l l sequences of non-negative numbers

A = U = (Xfe) : XQ = 0} ,

and, for each X € A , we define a map 6. by

6 x U = PQ ' 6 x M = Pk + \Pk-i f o r k - x

and

6x(«Pi+6Pj.) =«<Sx(Pi) +&x(Pd) •

Then ( r . , &) , thus defined, i s a 6-extension of V , which we shall ca l l

the Omori ^-extension.

Now l e t T be a cal ibrat ion for F and (Fr, 6) be a 6-extension

of T . For E, F € F and \ (. A , we define a cal ibrat ion T. for
A

{E, F} by

r x = { ( « x ( p ) f i , PF) : P z r } .

Namely, I\ i s a family of semi-norm maps p , such that
A A

(P^E = 8\{P)E a n d ^X^F =PF f o r ? € F •

The condition (6.1) ensures that T, is also a calibration for {E, F} .

Then, as in [JO], p. 5, we can consider the space LDT, {E, F) of all
srx

BT-, -continuous linear maps of E into F . By definition, a linear map

w : E •*• F belongs to L^ {E, F) if and only if
A

||M|L = sup sup{p5,[w(a;)] : &Ap)p(x) < l} < +» ,
*X pZT A b

and IIMIL thus defined makes Lp {E, F) into a normed space, and a

'x tflx
Banach space i f F i s sequentially complete. For the sake of simplicity,
we denote i f l r (E,F) by 2^0?,*") and | | - | l r by | | . | l x .

A A

Now we set
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L&(E, F) = U{LA.E, F) : X € A} .

Hence ^ ( ^ J F) i s a union of normed spaces and i t is a l inear space. In

fac t , l e t u, V € LJE, F) ; then there exist X , X € A such that

u € £, (£•, F) and y € L, (£, F) . Let X be the index determined by
A l A2

(6. 1) . Then, for a l l p f T and a: i E ,

pF[u(x)] S ||M||X 6X (p)ff(x) 5 ||u||x \(p)E(x)

and

which imply w, y € L\(E> F^ •

When frx , 6) i s t r i v i a l , we have £ . (£ , F) = LUAE, F) , that i s ,
v o 0 JJL

LAE, F) in this case is a normed linear space.

(6 .2) . (i) For every H A , LDV(E, F) <= L^E, F) and

| |M||. 5 | |M| | for u € L (E, F) .

A 1 Dl

(ii) L&(E, F) c LT(E, F) and

p(u) 5 X(l, P)| |M||X if u 6 LA.E, F) and p € T .

Proof. (i) i s an immediate consequence of (6.1) . Note that

u € LnAE, F) if and only if
Dl

||w||r = sup{pF[w(x)] : pE(x) < 1, p € r} < +" .

To prove (ii) , l e t u € -'x^' F~) • B v (^»l) we always have

6x(p)£,(x) 5 X(l, p)p (x) for p € T and x £ E .

Hence, for a l l p € Y and x (. E ,

PF[u{x)] 2 ||w||x6 (p)£,(x) 5 ||w|LX(l

which implies u € L^E, F) and p(u) S ||w|| X(l, p)
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REMARK. By d e f i n i t i o n ( [ I O ] , p . 5 ) , t h e space CAE, F) c o n s i s t s of

a l l F-continuous l i n e a r maps of E i n t o F , namely, l i n e a r maps

u • E •* F such t h a t

for each p € F . I t i s regarded as a local ly convex space belonging to

F with the following set as i t s component of F :

In th i s note we denote p,F pv simply by p .•

If 6, (p) 2 6 (p) for a l l p ? F , then £. (S, F) r> L, (£, F)
Al A 2 A l X2

and ||M|L S | |U| | , for a l l u € L, ( £ , F) . Hence, by ( 6 . 1 ) , t h e space
A l A2 A2

LSE, F) i s t h e union of an i n c r e a s i n g sequence of normed l i n e a r s p a c e s .

In t h i s s e t t i n g we can d e f i n e t h e Omovi, semi-norm on LAE, F) by

| M | = i n f { | | M | | . : u € LAE, F)} .

x a A A

In order to see that i t is a semi-norm on LAE, F) , let a be an

arbitrary positive number such that

a > \u\ + \v\ , u, v € LAE, F) ,

and choose a and a such that a = a + a , a > |u| and

a-2 > \v\ . Then there exist X X £ A' such that, for all p $ T and

x € E ,

Pp[u{x)] < a±6x (p)g(x) and pp[v(x)} < aji^ (p)^(x) .

Take X determined by (6.1) from X a-nd X ; then, for all p € T and

[w(x)+u(x)] < a16 x (p)E(x) + a2&x (

which means u + v t LAE, F) and |u+y| S ||u+y!|. 5 a
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We recall that , whenever we write £T,(^\ G) for F, G € F , the f i rs t

space F has the calibration 6 AT)- and the second space G has the

calibration F .
G-

(6 .3 ) . J f w 6 £ , (£ , F) and v 6 £*(?, G) for E, F, G € F , i/zen

f ( B » G) a n d \v ° u\ - I M I I U I •

Proof. Let a be an a r b i t r a r y number such t h a t o > \u\ \v\ and

choose a and Op such t h a t a = a-,a2 » a i > \u\ a n d ao > l u l "

t h e r e e x i s t X , X_ € A such t h a t

Pp[u(x)] < a±6x {p)E(x) and pQ[v{y)] < a26^ (p)p(y) •

By (6.3) we have

A (p)F[u(x)] s a x ( 6 x o 6X )(p)E(x) .

Hence, for a l l x € E ,

pG[(v o u)(x)] < a26x (p)F[u(x)] S o.xa2{6x o 6X ff

Then, for t h e X € A determined by ( 6 . 2 ) , we have V o u € LAE, G) and

||v o M|| 5 a , t h a t i s , \v o u\ S \u\ \v\ .

As we have seen i n (6 .2 ) (ii), £x(£> F) i s a l i n e a r subspace of

LAE, F) . Hence, if u € L&(E, F) , then

p(u) = p E

We use this fact to define the £r(£» ^-component of each p € V by

|p | = max{p, |» |} .

Therefore the locally convex topology on LAE, F) is stronger than the

relat ive topology induced from L^{E, F) , and £*(£> F) is closed in

£„(£•, F) in the sense described in (6.U) which holds when the 6-extension

is diagonalizable. A 6-extension of T is said to be diagonalizable if

the following condition is satisfied: for any map <f> : V -*• A there exists
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1 U such that 6A (p) = 6 ^ )(p) /or a l l p € r .

Let (T-, 6) be the Omori 6-extension. Then, for <$> : T •* A , set

for fc 2 0 . If we take X = Ujj. I , the diagonal

sequence, then

Hence the Omori 6-extension i s diagonalizable.

(6 .4) . Assume that ( l \ , 6) i s diagonalizable. Let u € LAE, F) ,

u -*• u in LAE, F) and there exists a number a such that a > \u |

for all n 2 1 . Then u € L&(E, F) and \u\ S a .

Proof. Let e be an arbi t rary posit ive number. The assumption that

un •*• u i n L (E, F) means

lim p[u -u) = 0 for each p € T .
n

Hence we have {n : p € r} such that p(u -u) < z . On the other hand,
np

since \u \ < a , there exist X € A such tha t , for a l l p ( F and

x € E ,

n

L e t <f> : r •*• A b e d e f i n e d b y <j>(p) = X . T h e n we h a v e A, € A s u c h
n <j>

P
tha t , for a l l p € T ,

6, (p) =

Therefore, for a l l p ( F and x € E ,

np F np
< a.6^ (p)^(x) + epg(x)

£ (ct+e)6. (p),,(x) ,
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which means that u 6 L. (E, F) and ||M|| £ a + e . Hence u € LAE, F)
A , A , 0

d) (b

and \u\ S a .

Now we can prove the completeness of LAE, F) .

(6.5). If (r^, 6) is diagonalizable and F is sequentially

complete, LAE, F) is sequentially complete.

Proof . Let (u ) be a Cauchy sequence in LAE, F) and e be an

arbitrary positive number. Then there exists n. such that

\un-uj <z i f m , n>nQ .

Since [u ) is also a Cauchy sequence in LAE, F) , which is sequentially

complete ([70], p. 6), there exists u £ LAE, F) such that u -»- u in

LT(E, F) . By (6.1*), u € L$(E, F) . We need to show that \u -u\ < z if

n - n o •

Now, from the fact that p[u -u) -* 0 for each p € F, we have

{n : p € r} such that n 2 n. and

p{u -u) < e/2 for all p € T .

Then, if n > n_ , since n, n > n. , we have |w -w | < e . Hence there
np

exis t X € A such that

Pp[("„-"„ )(;E)] < (e/2)6x (p)ff(a:) for a l l p € T and a; € £ .
p w ,p

For the map

d) : p i—>• X^n n,p

choose X, 6 A . Then, for every p € T ,
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p p

(e/2)6A (pyx) + (z/2)pE(x)

5 e6.
A<f

which means

u - u i L, (£, F) and \\u -u\\. £ e .n X, " n "X.
n : w

Hence, in par t icular , \u -u\ £ £ . Thus u •+ u in LAE, F) •

From now on, we shall assume that E • and F are the same member of

F , that i s , E = F as local ly convex spaces equipped with the same

component of F . We shall denote LAE, E) by LAE) , which therefore

consists of a l l l inear maps u : E •* E such that

p(u) = sup{pp[u(x)] : Pp(x) £ l} < +°° for each p t T .

We shall omit the l e t t e r E in p_ . The space LAE, E) consists of a l l

l inear maps u : E -*• E such that

||w||^ = sup sup{p[i<(x)] : 61(p)(x) £ l} < +°» .

We set

L&(E) = Lg(E, E) = U{LX(E, E) : X € A} .

Then, as we have seen above, ^(ff) i s a local ly convex space equipped

with the cal ibrat ion { |p | . : p € T} .

(6 .6) . LAE) is a locally convex algebra and, for each p (. T ,

\p\(v o u) < |p|(M)|p|(u) for all u, v € L&(E) .

Proof. When u, v i LAE) , (6.3) implies u o u i LAE) ando o

\v o u\ £ | « | | y | • Furthermore, for each -p (. T and x € E ,

p[(v ° u)(x)] < p(v)p[u(x)] <p(v)p(u)p(x) .

Since |p | = max{p, |« |} , we have the required inequality. . •
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Thus LAE) i s a locally convex algebra with jointly continuous

products. In fact, i t is a locally m-convex algebra in the sense of [5] .

We shall show in (6.7) that this is also a continuous inverse algebra if E

is sequentially complete and (r,., 6J is diagonalizable and summable. A

6-extension [P,., 6] is said to be summable if the following condition is

sat isf ied: for all p € T , ASA and E d F ,

\{n, p) = sup\61?(p)Ax) : pAx) 5 if < -K»
^ A Li CJ J

and

l im \\n, p) < +°° .

The value of th is l imit will be called the summability constant of 6 .

When (r<-, <S) is the Omori 6-extension, we have

which implies that the Omori 6-extension is summable.

Now l e t us denote by GL<.(E) the set of a l l u (. L,~{E) such that the

o o

inverse u exists and belongs to LAE) . More precisely, a linear map

u : E •*• E belongs to GLAE) if i t is a bijection and satisfies the

following conditions: there exist a > 0 , g > 0 and A., Ap £ A such

that , for a l l p € T and x (. E ,

p[u(x)] S a 6 , ip){x) and p [ iT 1 ( : c ) ] S 36,
A l A2

I t immedia te ly fo l l ows from (6 .1 ) t h a t LAE) c o n t a i n s t h e i d e n t i t y map.

I f u, v d GLAE) , t h e n , s i n c e u~ , V~ d GLAE) , ( 6 . 1 ) imp l i e s

(u o u)~ = u~ o v~ £ GLAE) . There fo re GLAE) i s a g roup .

(6.7). Assume that E is sequentially complete and [T«, 6) is

diagonaZizable and summable. Then GhAE) is a Y-open subset of LAE)
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and the inverse operation is T-aontinuous on GLAE) .

Proof. Let us take an arbitrary q € T and consider the |q|-open

subset U of ig(£') defined by

U = {u € L6(E) : \q\(u) < I / a } ,

where a is a number which is greater than the summability constant of 6

and 1 . Then, for u € U , since \u\ < l/a , there exists \ 6 A such

that

p[u(x)] < (l/a)6.(p)(x) for all p € T and x € E .
A

The condition (6.3) then implies that, for £ > 1 , we have

J)tut*)] 5

and

p [«"(*)] s (l/a)Sx(p)lu
n-1(x)] < (l/a2)6j(p)[u""2(x)] < ...

Hence, since (r^, 6] is summable, for every p € F and x £ E

n=0 n=0

This implies

Furthermore, since \u\ < I/a , we have

n=0 n=0

which implies

n=0

Hence, by (6.5), the series
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E (-i)V
n=0

converges in LAE)

Thus we have shown that for every u € U , 1 + u has the inverse in

L&(E) , or 1 + U c GL6(£
r) .

Now assume that uQ € GLAE) and ' '

\ J

Then, since - '

we have u~ o u t G^AE) and, hence, u € GLAE) . Thus GLAE) i s

|<?|-open in L-AE) for every' q. i:T ; t ha t i s , GLAE) i s - a Tr-open .

subset of ^r(£') .

Next we prove that., t he inverse operation i s F-continuous. on GL.AE) .

Let us assume t h a t u € GLAE) , p € V and |p | (u -l) •* 0 . Then there

e x i s t s K- such that1 . ^ • • / < • ' , . . ' • "j .f

| p | («„- ! ) < I / a i f n » nQ , • •

and, a s we have shown above,

s E (l/am)A(m, p) .

m = 0 •

Hence

p\u'X-l\ £ p L " 1 pfl-u ) •+ 0 .

Similarly, for n 2 nQ , since

n
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we have

Hence

-1

u'1-!

m=0
\u - i f < a/(a-l) .

u [l-u ) 2 u \\l-u- 1

Therefore the inverse operation is F-continuous at the identity map.

. .-1 - 1 _ - l l -1Since u~ - u~ = u [u-u )w , we have the F-continuity at every point

of GL^S) .

7. C

Let F be a calibration for F and (F,., 6) be a 6-extension of

F . Let E, F 6 F and X be an open subset of E . Then a map

f : X •*• F i s said to be of class C. at a i X if the following

conditions are satisfied:

1. f i s of class CC^, on X and f'{X) a L&(E, F) ;

2. the map f'-.X-* LAE, F) i s F-continuous at a .

If / is, of class C. at every point of X , i t is called a CZ-map
o o

on X .

( \ 2

When 1^^, <5J is trivial and X is convex, any C__-map f : X -*• F

such that sup{||f"(x)||p : x € X) < -K» is a C.-map on X . For the

definition of c" -maps, see [70], p. 23.

It is obvious that every element of I.(E, F) is a C--map on E .

(7.1). Let X and Y be open subsets of E and F respectively

and G I F . If f : X •*• Y is of class c\ at a € X and g : Y •* G is
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of class C. at f{a) , then g ° f is of class C\. at a .

Proof. Obviously, g ° f is of class <%"„ on X . By [JO],

(II.3.2), g o f is of class cl, on X and

(g o f)'(x) = g'{f{x)) o f'(x) . Hence g ° f is of class Ccl, on X

and (g o f)'(X) c L-{E, F) . Therefore, we only need to show that the map

(g o f) ' : x -*• LAE, G) is r-continuous at a .

How assume that p i T and p[x -a] •* 0 and x € X . Then, by

(6.2) and [JO], (1.2.2),

\p\i(g ° f ) ' [ * n ) - ( 9 ° f)'(a)] s IPI fe'(/(^))-ff'(/(«))] IP I [ f ' [xn)]

| l t ( ( ) ) ] l | [ ( ) J 0 .

(7 .2) . Let X and Y be open subsets of E and F respectively

and let E be sequentially complete. Assume that (r,., &) is

diagonalizable and summable. Then, if f : X •* Y is a CC'-homeomorphism

of class CZ and, for every x € X , f'{x) has the inverse belonging to

LAF, E) , the inverse f is of class CZ on Y .

Proof. Under these assumptions, i t follows from [70], ( i l l . 3 . 1 ) , that

/ i s F-differentiable at every point of Y and

if'1) 'if(x)) = / ' ( x ) " 1 for every x € X .

Hence f'1 i s of c lass Ccl, on Y and (f1) '(Y) c LAF, E) . Therefore

we only need to show that the map (/" ) ' : X •*• LAF, E) i s T-continuous.

Now le t a 6 X , b = f(a) , p € T and

Pp[y —b) -*• 0 and y € X .

Then there exist x € X such that y = fix 1 and, since f~ i sn sn ^ nJ

T - c o n t i n u o u s , p(x -a) •* 0 . Then, b y ( 6 . 7 ) ,
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8. 6-extensions of order p0 and maps of Garding type

Let F be a calibration for a locally convex space E . A

6-extension (i^, 6) of T is said to be of order p Q if it is

diagonalizable, has the smallest element p» and satisfies the following

conditions:

1. T* contains all finite linear combinations of elements of

6
F with non-negative coefficients, and each 6, is linear

A

and monotone;

2. for each (X, p) € A x T t h e r e e x i s t s a non-negative number

X such t h a t 6 , (p) 2 p + X p_ and X = 0 .p X r r p^O p Q

The Omori 6-extension i s of order p_ i f t he following condi t ion (#)

i s s a t i s f i e d : for each e > 0 t h e r e e x i s t s C(e) > 0 such t h a t

Pk-1 ~ £pk + C ( £ ) P ( s e e [ ? 2 ] ' P - 1 T 6 ) -

(8 .1) . A ^-extension of order p is swnmable and the summability

constant is 1 .

Proof. Since 6,(p) 5 p + n\vQ , we have X(n, p) 5 1 + nX

Now l e t (r^, 6j be a 6-extension of V of order p . Assume that

u d i J f f ) and \u\ < a . Then there exists X £ A such tha t , for every

p e r ,

p[u(x)] < a(p(x)+X pQ(x)) for a l l x € E .

We set •

u (a, u) = sup|(apo(a;))"
1[p(w(a;))-ap(a:)) : pQ{x) + ol .

Then MD(a, u) < +<» and we always have

p[u(x)) 5 a(p(x)+y (a, u)pQ(x)) for all p € r and a: € E ,
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whenever |w| < a . Note that \i (a, u) i s defined only when |u| < a .

(8 .2) . If \u\ < a and \v\ < & for u, v € LJE) , then for every

A € A and p € T ,

u (aB, v o u) < y (a, u) + P (6, v) .

Proof.

p[v o u(x)) s &(p(u(x))+\i (B, y)po(w(x)))

£ e(ap(x)+ay (a, u)pQ(x)+\i (6, y)apQ(x))

The following theorem implies that there is a T-open neighbourhood of

the identity in LAE) which consists of linear maps of Garding type.

(8.3). Let E be sequentially complete and [T«, 6) be of order

p . If |l-w| < a < 1 for u € LAE) , then this u is of Garding type,

invertible and

V(a(l-a)"1, w"1-!) £ (l-a)"1^ (a, X-u) .

Proof. Since, for each p 6 V ,

p(x-w(x)) < a(p(x)+u (a, l-u)po(a:)) ,

we have

p(w(x)) > (l-a)p(x) - au (a, l-w)pQ(x) ,

which shows that u is of Garding type. Furthermore,

p((l-M)n(x)) < anp(x) + mnvp(a, l-u)pQ(x) .

Hence

n=l

Therefore

p{U-u)n(x)) < a ( l - a ) p(x) + no. V (a, l-w)pn(x) .

^ l a , l-u)pQ(x)} ,
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which implies

u (a(l-a)"1, u'1-!) S (l-a)~\i (a, 1-M) .

Let U be a p.-open subset of E . Then a map f : U •*• E is said

to be p .-bounding on U if, for any sequence [x.) c V and p £ Y such

that (f[x.)) is p-bounded (that i s , sup{p(f (x.l) : i » l} < +« ) , [x.)

is also p-bounded. I t is straightforward to see that a linear map is of
Garding type if i t is p_-bounding on E .

Let again U be a pQ-open subset of E . Then a CT-map f : U •*• E

is said to be of order p at a £ U if, for any e > 0 , there exists

a > 0 such that the following condition is satisfied: for any 3 > 0 and
p e r ,

sup{u (E , f'{a+x)-f'(a)) : pQ(x) < a, p(x) < B} < -K° .

Now we are ready to s ta te an inverse mapping theorem as a consequence

of (U.U), (5-3) and (5.h). Under our assumptions on F , the inverse
2

mapping theorem for Cflp-maps proved in [JO], ( i l l . 5 - 2 ) , corresponds to the

case when [Fr, 6) i s t r i v i a l in the following theorem. I t can be easily

seen that our assumptions are weaker than those of Omori's inverse mapping

theorem stated in the beginning of th i s note when the condition (#) holds.

Therefore the following theorem can be applied to various problems to which

Omori's theorem has been applicable.

(8.4). Let r be a pairwise coordinated calibration for a complete
locally convex space E and let ( l \ , 6) be a ^-extension of order pn .

Let V be a p -open neighbourhood of zero in E and f : U •* E be a

C^-map such that /(0) = 0 and / ' (0) = 1 . If f is p -bounding on U

and of order p at zero, -then there are completionally T-open

neighbourhoods X and Y of zero such that f : X •*• Y is a C -̂

diffeomorphism. Furthermore f : Y •* X is also p -bounding on Y and

of order p . at zero.
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Proof . By (I t . 1 *) , ( 5 . 3 ) and ( 5 . M we need t o f i n d c o m p l e t i o n a l l y

F-open n e i g h b o u r h o o d s X and Y of ze ro such t h a t

1 . f : X -> Y i s a (T-
P P P

diffeomorphism;

a r2. f : X -*• X i s of Garding type; and

3 . f'[XnB(&)) c GL{E[p]) f o r a l l p € T and g > 0 .

Then / wi l l be a CCp-homeomorphism and hence, by (7-2) , a C.-

diffeomorphism of X onto Y .

Since f i s a ct-map and U i s p -open, for any e > 0 such that

e > 1 , there exis ts a > 0 such tha t , for V = {x € E : pAx) < 2a} , we

have V c U and

|p Q | [l-f'(x)) < £ i f x f F .

Let

0̂ = U € ffM : Po -̂' < a } ;

then, since / is of class CCZ , there is a C -map

such that S ° f = f ° S . Hence / (5 (0)1 = 5 (0) and
Po po Po Po Po Po

Therefore, for

n = t h e i d e n t i t y maP o n

0

xo = v o n ^P ^ " X ^ and Yo =

t h e map / : X -*• Yn i s a C - d i f f eomorph i sm, and , by ( 2 . 2 ) ,

X = S [Xd and X = S [Y J are completionally F-open neighbourhoods of

zero. We may assume that X i s convex.
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Next, to show that f : X -*• E i s of Garding type, we note that X c U

and, moreover,

pAx) < a if x € X

and

pQ(y) < a/2 if

For each p € T , l e t

and

y (a, g) = sup{y (x) : pQ(x) < a, p(x) < 3} .

Now l e t [x.) c X be p-Cauchy and (f(x.)) he p-Cauchy. Since /

i s pA-bounding, (x.) i s p-bounded. Let p(x.) S 3 • Then, hy the
0 Is If

mean-value theorem,

which implies that (x.) is p-Cauchy, and, hence, / is of Garding type.

To prove that

f'\X n B (g)J c GL(ff[p]) for a l l B > 0 ,

let u € /'(A" n B (3)J and choose x^ € A" n B (6) such that f'(x.) •* M

. From

p((l-/'(xi))(3)) < £(p(S)+yp(a, 0)po(*)) ,

we have

p((l-f'(^))n(3)) < e"p(s) + nenyp(a, B)P()(a)

for all 2 € £ and n 2 1 . Hence

for every ^ € 2?[p] , which shows that u € GL(B[p]) .
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Thus we have shown that f : X -*• Y i s a C.-diffeomorphism. To show

that fX : y ->• X i s p.-bounding, l e t ft/.) c Y be such that f^Q/ . )
U T- \ Z J

is p-bounded and choose x. 6 X such that y. = f(x.) . Then PQ[^A < a

and p(x.) < 3 for some 3 . Hence
1

which implies

< (l+e)3 + ey (a, 8)a .

Hence [y.) is also p-bounded.

Finally, the fact that f is of order pQ at zero follows from

(8.3), that i s , for y = f(x) ,

Ppfed-e)'1, 1-ir1)
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