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NOTES ON THE INVERSE MAPPING THEOREM
IN LOCALLY CONVEX SPACES

SaDAYUKI YAMAMURO

Several problems arising from a functional analytic study on
Omori's inverse mapping theorem are considered arriving at an

inverse mapping theorem in locally convex spaces.

In this note we shall consider some problems which arose in the
course of our attempt to generalize Omori's inverse mapping theorem [6,

Theorem 3.1.1, p. 4l] to locally convex spaces.

The domains and ranges of the maps considered in this note are
therefore in real locally convex spaces. The method we shall use for the
study on these maps is the one which we have introduced in [10]. Although
we have to refer to it for the details of the method, the notion of

"calibration” should be explained here.
A calibration for a locally convex space £ 1is a set FE of semi-

norms which induces the topology of EF . When F 1is another locally

convex space, it will have a calibration FF . A calibration for the

family {E, F} is a set of "correspondences", which we have called semi-

norm maps in [10], between Ip and T, . In other words, each p € T has
its FE-component Py and its F-component Pp » and, hence, each p €T

determines semi-normed spaces (E, p) and (F, p) . Therefore, when a
calibration T for {E, F} is given, we have a family of pairs of semi-

normed spaces paired by all p €T :
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(&, p), (F, p) : p €T} .

For a subset X of E , let (X, p) be the set X regarded as a
subset of (E, p) . If (X, p) is an open subset of (E, p) for each
p €I, then X is called a T-open subset of E . Then, amap f : X » F
will be studied by its behaviour as a map of (X, p) into (F, p) for
each p € T . For instance, f is said to be TI-continuous on X if

f : (x, p) » (F, p) is continucus for each p € T .

A similar method has been used by Fischer [2] and Gutknecht [4]. But,
the most illustrious example to which this method is applicable will be a
series of works by Omori (see, for example, [6]) on the group D of all
Cm-diffeomorphisms on a closed manifold and its various subgroups. The
locally convex linear spaces which appear there as tangent spaces are
Fréchet spaces defined by increasing sequences of norms. In order to state

his inverse mapping theorem, we need to be more precise.

Let {E, B, kz 0} be a Sobolev chain, that is,

(1) al11 E’k

are Banach spaces with the norms ”.”k H

(2) E is linearly and densely imbedded in Ek 3

k+1
(3) E is the intersection of all Ek and has the inverse limit

topology defined by {Ek’ ”.”k}

The following theorem has been proved on this space E .

THEOREM 3.1.1 ([é], p. 41). Let U and U' be open neighbourhoods
in E, . Suppose amap f : UnE->U'nE with f(0) = 0 satisfies the
following conditions:

(1) f ecan be extended to a Cw-map of Un Ek into U' n B,

for every k = 0 ;

(2) forevery x € UnE and z € F,

7 (@) )l = cfllzll lall Hizl b + 2 (=l )izl

A

1772 (25 2), = Clllly Nz gl g+, Iy gl iz lglhall, )

+ B (el )Wy Nl s
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(3) fFf'(o) : Ek - Ek is an isomorphism for every k = 0 ;
(h) ”f’(o)(z)”k = C'”Z”k - Dk”z”k—l >

where C, C', D, are positive constants and C, C’' are indeperdent of

k

k, and P, 1is a polynomial with positive coefficients depending on k .

k
Then, there are neighbourhoods W, W' of zero in Eo such that

f:WnE »W nE, 1isa Cm—difféomorphism for every k = 0 . Moreover,

k k
f’l satisfies the same inequalities as (3) and (4).

This theorem was an essential tool in his works to develop a Lie-group
theory on the group 0 and its various subgroups, and, therefore, it is
one of few inverse mapping theorems on (non-normed) locally convex spaces
which have genuine applications. The idea which lies at the basis of this
theorem may be expressed as follows: for a locally convex space £ with a
calibration T , take a family {E[p] : p € T} of Banach spaces, where
E[p]l is a p-completion of E , and, when amap f on E 1is given,

extend it if possible to maps fb on E[p] for all p € T ; then study
the map f via the family {fb} . This idea is capable of being adopted

in the theory of linear and non-linear maps in general locally convex
spaces. In this note, following [9], we shall restrict our attention to

the above inverse mapping theorem.

We start with an elementary discussion on the T-completions in order
" to fix terminologies and notations which will be used in the subsequent
sections. Section 1 contains only known facts. In Section 2, we shall
introduce a class of open subsets which are natural domains of
completionally TI'-continuous maps. This class of maps has been introduced
in [9]. It will be studied in more detail in Section 3, and we shall give
some conditions for such maps to be a local homeomorphism. There are two
basic notions in these conditions: S-resonance and 7T-resonance. In
Section U4, conditions for a map to be S-resonant will be given. The
notion of gauge for (E, T') will play an important rdle. In Section 5,
conditions for a map to be T-resonant will be given. Here, the notion of
maps of Garding type is essential. In the last three sections, we shall

consider problems related to this class of maps and arrive at a form of
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inverse mapping theorem with weaker assumptions than Omori's.

1. T-completions

Let T ©be a calibration for F . For p € I' , a sequence or a net

(xi) in E 1is called a p-Cauchy sequence or net respectively if
p(xi—xj) + 0 , that is, if it is Cauchy in the semi-normed space (E, p)
Two p-Cauchy sequences (xi) and (yi) are said to be equivalent if
p[xi-yi) + 0 . Then we have an equivalence relation on the set of ali

p-Cauchy sequences in E . A class defined by this equivalence relation
will be called a p-class, and the set of all p-classes defined in this

way will be denoted by Elp] .

For a, b € E[p] and real numbers o, B, oa + Bb is defined to be

the p-class which contains a p-Cauchy sequence (axi+8yi] for some

[xi] €a and (yi) €b . Then E[p] is a real vector space.

We denote by Sp(x) the p-class which contains the p-Cauchy

sequence whose terms are all identical to x . Then the zero element of

the vector space E[p] 1is Sp(O) .

Now, for a € E[p] , we set

p(a) = lim p(xi)

1,-»00
for some (mi) € a . It is obvious that the value p(a) does not depend
on the choice of p-Cauchy sequences in a . Then the following fact is

obvious.

(1.1). pla) (a € Elpl) defines a norm on Elp] and E[p] is a

Banach space with respect to this norm.

The family of Banach spaces {E[p] : p € T} defined in this way will
be called the T-completion of E .

To obtain the completion of E with respect to a semi-norm p , it is

usual to consider first the normed space E/p_l(o) (the quotient space)
and then apply the completion process. This will give the same Banach

space E[p] . Since we need only the Banach space FE[p] in this note, we
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do note take the extra step of constructing the quotient space.

Now let {E[p]} be the T-completion of E . First we have a linear

map

Sp:E-*E'[p]:-’L‘"Sp(x) s

which satisfies the equality

;P(Sp(x)) = p(x) for all x € E .

Next, let p, g€ T and p = g . Then p-Cauchy sequences are

g-Cauchy sequencés, énd, for each gp € E[p] , there corresponds a unique

a_ € E[q] éuch~that a Ca as sets. Thus, we have the following map:
g, € Ela) su 2, © 2, > g map

;T : E[p]l = Elq] : gp >

P.q & -

It is obvious that Tp q is linear and

alr, () = pla,) -

It is easy to see the following diagram commutes:

T
E[p] - DP9 Elq]
NP
E .

EXAMPLE 1. Let X be a compact subset of R (the reals) and let
Cw(K) be the set of all real-valued C -functions on some open
neighbourhood of X . We define a calibration T for E = Cw(K) as the
set of countable norms {pk : k=0,1, 2, ...} defined by

pk(x) = Sup{lx(i)(t)l : t €K, 0<% =<k} .

Then E[bk] = Ck(K) , the set of all Ck—functions on K , and, in this

case,

LA 5 . oK 5 0
Spk . k) » K (k) ana T, by &y )

are imbeddings:
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Spk(x) = x and Tpk’po(x) =z .

EXAMPLE 2. Let E = CO(R) be the set of all real-valued continuous
functions on R . We define a calibration TI' for this E as the set of

countable semi-norms T = {pk : k=0,1, 2, ...} defined by
pp(x) = sup{|z(£)| : |t| = k+1} .

For any pk—Cauchy sequence in F , there corresponds a continuous function

on [-k-1, k+1] , and, by the Weierstrass theorem, for any continuous
function on [-k-1, k+1] , there exists a sequence of polynomials which

converges to this function uniformly on [-k-1, k+1] . Hence, as E’[pk]

we can take the Banach space Co( k-1, k+1) of all continuous functions on
[-k-1, k+1] . Then,

Spk : E+E’[pk] I XX s

where X is the characteristic function of [-k-1, k+1] , and

Tpk’po : E[pk] g E[po] T X -
2. Completionally T-open subsets

Let ' be a calibration for £ and {E[p]} be the I'-completion of
E . A subset X of E 1is said to be completionally p-open for some
p € T if there exists an open subset Xp of E[p] such that

X = S;l(}(p] . Since Sp : E > E[p] is continuous, X is then an open

subset of E . If X 1is completionally p-open for every p € T , then X

is said to be completionally T-open.
For a completionally p-open subset X , the open subset Xp of E[p]

is called the p-cover of X . When X is completionally TI-open, the
family {Xp :p € I} is called a T-cover of X . In fact, Xp covers X

in the following sense.

(2.1). Spi X) = .}?p s where the upper bar demotes the closure in E[p].
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Proof. Since Sp(X) c Xp , we only need to show that i; c Sp(X) .

Let a € X and (x.) € a . Then, since
a p i a

1im (s, (s)-8) = 0

10
and Xp is open, Sp(xi) € Xp and, hence, xi € X for large 1

Therefore, & € SpiX) , which shows X? c Sp(X; .

When T has the smallest element Py > there is a simple way to -

construct a T'-cover. For a general calibration T , if we take an

arbitrary p, € I' and consider the set {p €Tr:p= po} , then it is

again a calibration and Py is its smallest element.
(2.2). Assume that T has the smallest element P and X, is an

open subset of E[po] . Then X = S;l(XO) is non-empty and completionally
0
I'-open.

Proof. By (2.1), X is non-empty. Now we denote the map

Ty Elpl > Elpy

by Tp . This notation will be used throughout this note when Py is the

smallest element of T . We then put

Then Xb is an open subset of E[p] . We shall show that

-1
X=5"1X for all €r .
5 () p
Assume that x € X ; then Spo(x) € X, ,or (Z% ° Sp)(x) € X, , which
implies
-1
S(x) e~ (x) =x_,
p 14 ( 0) p

and, hence, x € S;l(X?] . Conversely, let x € S;l(Xb) 3 then
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-1
S(x)y €T (x) ,or, S (x) €X, . Hence, x € X .
(@) p(O) , po) o

Assume that g € E[po] s where Py is the smallest element of T .

If a-= Sp (x) for some x € E , then I;l(g) = Sp(x) and, hence, the
0

sequence (x) belongs to T_l(g) for every p € ' . As can be seen

p

easily, the converse is equivalent to the sequential completeness of F .
(2.3). Assume that T has the smallest element Py - Then E 1is

sequentially complete if and only if the following condition is satisfied:

if N T_l(g) #9 and a € E[po] , then a =8_(x) for some x €E .

The linear maps Sp and Ib are obviously not surjective. Each Sp
is injective if p is a norm. In the case of Tp , the situation is a
little less simple. A calibration with the smallest element Pg is said

to be pairwise coordinated, following [3], if it consists of norm-maps and

the following condition is satisfied: a po-convergent and p-Cauchy

sequence is p-convergent. Spaces determined by a Sobolev chain, as the

one in Example 1 in Section 1, are pairwise coordinated.

(2.4). %: Mp]+Ebd are injective for all p € T if and only
if T is pairwise coordinated.

Proof. Assume that all Zb are injective. To prove that Pg is a

norm on E , assume that po(x) =0 . Then, for every p €T ,

S (z) =0,
Po

T o5 (z)
p p
which implies Sp(x) =0, or p(z) =0, for all p €T . Hence x = 0 .

Next assume that (xi) is a p-Cauchy sequence such that

pole;) > 0. Let (x;) €2 €Elp] . Then

p(Sp(xi)-g) +0.

Since Tb is continuous,
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vhich implies po(Tpg) =0.

T is injective, a =

s
Po

Since

427
(xi]—T a] -0,

is a norm, T a = 0 , and, since

Py

0 . Therefore, p(S [xi)) -+ 0 , or egquivalently,

p
p(x,b) > 0.
Conversely, assume that T is pairwise coordinated and 1%2 = 0 for
some a € E[p] . Then, for (z.) €a, p (5. (x.)) » 0, that is,
= 1 = 0 Pyt
po(xi) + 0 Since (xi) is p-Cauchy, we have p(mi) + 0 . Hence
2a=0

The following fact will be used later.

(2.5). Assume that T has the smallest element Py » it is pairwise

coordinated, p =q for p, q
and € Elql Then
gq q

(1)

(2) p(s_(x)-a) = q(s (x)—gq)

p =P q

all gq-Cauchy sequences in &,

€T and Tpgp=Tq% for some gpéE[p]

belong to g, and

for all x € E .

Proof. (1) ILet ﬂri) € &, s then, since p =gq , (xi) is a

~Cauchy sequence. Let D
P “p

Tb
pp

be the p-class vhich contains

is the po—class which contains

Then

(xi]
(mi)

Therefore

Tb =Ta =Ta ,
P T¢4q D

which implies b =a_ .
=» P

Hence

(xi) € g? .

(2) Let (xi) € gq ; then [xi) € gp and, for all x € E ,

p(S,(=)-a,) =

1A

lin p(z-z;)
79
lim Q(x‘mi)

1.0

= q[Sq(x)-gq]

3. Completionally T-continuous maps

Let F be a

I'-family and

E, Fe¢F . Let X bve an open subset of
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E . Thenamap f : X > F 1is said to be completionally T-continuous on
X or a CCIQ—map on X if the following condition is satisfied: for each
p €r , if [xL) and (yt) are p-Cauchy sequences contained in X such
that pE.(xi—yi) + 0 , then pF(f(xi) -f(yz)) + 0 . This notion was

introduced in [9], where it was shown that a ch—map on X transforms a

p-Cauchy sequence in X into a p-Cauchy sequence in F (see (5.2) in
[9]). However, the essence of the completional TI'-continuity lies in the

following fact.

(3.1). Let X be a completionally T-open subset of E and {Xp}

be its T-cover. Then f : X > F s a CC?-map if and only if, for each
p € T , there exists a continuous map

fp : Xp -> F[p]

such that the following diagram commutes:

f
XP—L—>F[p]
s] 5
p p
x —L— 5 .

In other words, f is a CC?—map if and only if it has continuous

"extensions" over Xp for all p €T .

Proof. Let f : X > F bea CC?-map and p € T . For each

%p € Xp , let pra_p) be the p-class which contains the sequence (f'(x,b))

for some (xt) € gp . This definition is meaningful because of the
following two reasons. First, since f is a ch—map, (f(xz)) is always

a p-Cauchy sequence. Secondly, the definition of the completional

I'-continuity gives the independence of fp(gp) on the choice of

(mi) Gg_p .
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Now we prove the continuity of fb . Assume that

pple,a) + 0, gn,__g_eip.

By (2.1), there exist an,i] €a and (xi) € a  such that

xn i xi € X . Let us assume that there exists a positive number o such
>

that

EPFB‘P@)-J"P(Q‘)] >a s

which means that

in lin pp[fle, ,)-flz;)] > o .

900 100

Then there exist sequences (nk) and (ik] such that

pplflz,
F nk,zk

]"f(:":t )] >a
k

and

p (x . ) <1/k ,
E nk,zk tk
which is a contradiction.

The commutativity of.the diagram is obvious.

Conversely, suppose we have continuous maps

fb : Xb + Flp)

for all p € I' such that the diagram commutes. Let (xi) and (yi] be
p-Cauchy sequences contained in X such that pE(xi—yi] + 0. Let a be
the p-class which contains (xi] and, therefore, (yi) . Then g € X

and

ij:‘ PE(Sp(xi)-Q = 1-_1)2 pE’(Sp(yi) 'Q =0 .

Hence

i_’lg PF[fp(Sp(xi])-fp(g)] = 7;: pF[fp(Sp(yi))'fp(%)] -0,

which implies
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1n £, 7, 5, =,)) 4, (5, (5,0)] = o

Then, since oS =85 o f , we have
i fppp’

i}:ﬁ) pF[Sp(f(xi)‘f(yi))] =0,

and, hence,

lim pp[flz;)-f(y,)] = 0 .

100
In particular, when T has the smallest element Pg and X is a

completionally T-open subset of E , the following diagram commutes:

fp
X 0 Flp,]
~% ; e

5 Sk ——P s plp) s

p p
e 0
/Sp '}l\
X -

I F

—>

Throughout the remainder of this section, we assume that F 1is a
T'-family, E, F € F, X and Y are completionally TI-open subsets of FE
and F respectively and {X?}, {Yp} are their T@-covers.

(3.2). Ifamap f:X~+Y isa ch-homeomorphism (that 18, a

bijective CC?-map whose inverse is also a ch-map ), then all the
"extensions'
ot % Y
are homeomorphisms.
Proof. First, we prove that f?(};) c yé .
and f(X) =Y , it is easy to see that

fp(Sp(X)] = sp(y) .

Now let a € }; ; then there is (xi) € 2 such that xi € X and
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ppls,(e)2) + 0
Since fp is continuous,

pplf,

p

(s (-’C-))-fp(__ag)] +0 .

pt

Hence, by (2.1),

fpla) €T E ] <50 = T

Next we prove that fp is injective. Assume that there are

I
ilo*

€ Yp such that fp(g_) = fp(g) . Take (.’cz) €a and (yt] € b such

- 0
that a, y, € X . Then p,(fle;)-fly;)) >0 . simce f isa CClmap,

we have pE( =Y. ) + 0 , which means that a =)

Finally, to show that fp is surjective, let D € yp and take

(yi) € b such that Y; € Y . Then there exist x; € X such that

f(xl) =y; Since f_l is a ch—map, (xz] is also a p-Cauchy
sequence. Let a be the p-class which contains (xt) . Then a ¢ Yp
and fp(g) is the p-class which contains (f(xt)) , that is, fp(g) =1 .

From the commuting diagram, it is obvious that (fp] -1 (f‘.l)p , and,
-1 . .
hence, (fp) is continuous.

The converse of this statement does not seem to hold in general. A
map f : X+ Y is said to be S-resonant if the following condition is

satisfied: if, for some y € Y , there exist _gp € Xp such that
a ) =8 (y) for all €T,
f,le,) =5,y p
then there exists £ € X such that gp = Sp(.r) for every p €T

It is obvious that f 1is S-resonant if it is a bijection.

(3.3). Assume that f‘p : Xp -+ Yp are homeomorphisms for all p € T .

If f is S-resonant, then f : X+ Y 1is a ch-homeomorphism.
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Proof. We only need to show that f 1is a bijection. To show that it
is an injection, assume that f(z) = fly) for x, y € X . Then, for each
p €Tl ,

fp(Sp(x)) = Sp(f(x)] = Sp(f(y)) = fp(sp(y))
Since Sp(m), Sp(y) € Xp and fb is injective, we have Sp(x) = Sp(y) ,

which is equivalent to p(a-y) = 0 . Since this holds for all p €T , we

have x =y

To show that f 1is surjective, let y € Y . Then there exists

g? € X? such that fb(g) = Sp(y) for every p € T . Since f is

S t, =S (z) for some x € X . Thus f |S (x)) =5 (y) for
resonan &, b Jp( ) ) . Yy
every p €T , which implies f(x) =y .

Therefore we have the following conclusion.

(3.4). Let T be a calibration for {E, F} . Let X and .Y be
completionally T-open subsets of E and F respectively, and {Xp} and

{Yp} be their T-covers. Let f: X~+Y bea CC?-map. Then it is a

ch-homeomorphism if and only if it is S-resonant and each fb : X? > Yp

18 a homeomorphism.

It will be seen in the next section that, when the spaces F and F
are complete metric linear spaces which are pairwise coordinated, the
S-resonance can be removed from the assumptions of (3.3). Here we shall
show that the "completional" T-openess, instead of mere TI'-openess, is an

essential requirement.
Let us consider the map
f:ax>expox.
Eells [1] has shown that this map can never be a local bijection at zero if
it is regarded as a map of the space CO(R) of Example 2 in Section 1 into

itself (see also (7], p. 68). However, f : CO(R) > CO

and, for each k = 0 , there are open neighbourhoods Uk of zero and Vk

(R) is S-resonant

of 1 in Co(-k—l, k+1) such that f : Uk > Vk is a homeomorphism. In
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this case, these families, {Uk} and {Vk} , of open subsets, determined

by the map f , cannot be TI-covers of any open subset of CO(R)

We shall now introduce another kind of resonance. Assume that T has

the smallest element Py - Then, amap f : X - Y is said to be

T-resonant if the following condition is satisfied: if there exist

a €X and b € Y such that f Lgp ) =Tb ,then a =Ta for
“Pp Po =P p Po Py prp Py rp
some a_ € X .

=P p

(3.5). Assume that T has the smallest element Po and it is

patrwise coordinated. Assume also that f : X > Y 1is a ch-map and

f. X =Y is a bijection. Then f <is [TI-resonant if and only if
Py Pq Pg

: X =+ Y 1is a bijection for ever €T .
fp s~ Y J i Yy P

Proof. Assume that f is T-resonant. To prove that’ fb is

injective, suppose that a ) =f la for some a,, a, € X . Then
p=l =D 1> =2 P

p

by () = 1,5, e)) = 1,5, (e)) < 7, (7,8)
Hence Zbgi = Tpie and, by (2.4), a =&, -

To prove that fb is surjective, take an arbitrary D € Yp . Then
there exists _g_po € Xpo such that f (-% ] = b . Hence, by the
T-resonance, there exists gp € Xp such that gpo = Tpgp . Then

1, (5, 5,)) = 7, (1) = 72

which implies prgp) =p .

Conversely, assume that f (=p ) Then, by the assumption,

‘ﬁd

there exists a € X such that f (gp =b , and
=P p p =

£y @8) = 7,7, (a)

Po

Tbob .
r=
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Hence a_ =T a  because f is injective.
Py PP Po
Thus we have the following conclusion.

(3.6). Suppose that T 4is a calibration for {E, F} with the
smallest element Pg and it is pairwise coordinated. Let X and Y be

completionally T-open subsets of E and F respectively and {Xp} and
{Yp} be their T-covers. Let f: XY bea CC?-map. Then it is a

ch-homeomorphism if and only if it is S-resonant, T-resonant and

X +Y i8 a homeomorphism.
fpo Po Po i

Obviously, the calibration I for ¢ (X) in Section 1 has the

smallest element Py and it is pairwise coordinated. Assume that we have

(0] (-] o
a CCp-map f : C(K) »C (K) and assume that we have open subsets Xy
and Y, of CO(K) such that fp : Xg > ¥, 1is & homeomorphism. Then, if
' 0
f is S-resonant and IT-resonant, f : X +Y is a ch—homeomorphism,
QO (o]
where X = XO NnC (K) and Y = .YO n C (K) . For instance, the map
f:ax>exp®x 1is a local CCg-homeomorphism at zero in C°°(K)

4. Gauged calibrations and S-resonance
Let F bea TI-family and F € F . Assume that the E-component I"E,
of T 1is a directed set. In other words, we assume that, for each pair
P, q € T , there exists » € T such that ro > Pp Y qp > or equivalently,
rE.(x)' > ma.x(pE(x), qE(:z:)] for all x € E .

Then we can consider & net on this directed set I‘E. . If there is a net

Yp : Tp >R (the reals)

such that YE,(p) + 0 , then the calibration [, is said to be gauged and

E
the net Yg is called a gauge on I‘E .
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When FE consists of countable elements py (k =0,1, 2, ...) such
that Prs1 z P for all k , then it is obviously gauged with
vglp) = 1/(k1)

In the case of the space £ of all Cm-maps with compact supports in
finite-dimensional spaces, we have a calibration FE = {pa m} , where
a = (ak) and m = ﬁwk) are increasing sequences of positive numbers and
integers respectively (see [10], p. 13 or [11], §6). Then

= 1/|a,+m
Ve (Py ) (a, *m )

defines a gauge on this TE .

The existence of a gauge makes it possible to choose a "diagonal" net

from a system of sequences.

(4.1). Let E be a complete locally convex linear space and T be a
gauged calibration for E . Assume that there is a family of sequences

{(xp,i) :p€r,i=1, 2, ...}

such that, for some x € E and for all p €T,

1i x .=-x}] =0.
Lin Pz, ;~=)

Then there is a positive-integer-valued net {ip : p €T} such that

xp i +>x in E .
*"p

The proof is similar to that of the following fact.

(4.2). Let E be a complete locally comvexr linear space, T be a
gauged calibration for E with the smallest element Py and be pairwise

coordinated. If there are a, ¢ Elp) and g € E[p;] such that Ta,=a
for all p €T , then there exists x € E such that gp = Sp(x) for all
p€r.

Proof. Let @r

P i) € g? ; then

p(Sp(mb’i)-gp] +0 as 1 >,
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Therefore, for a gauge Y on [T , we have {tp} such that

p(Sp(xp,iP)—g__p) < y(p) for all p €T .

Let r €T ; then, if p, g = r , (2.5) (2) implies

Pl a0 ) < T g )ad ¢ rBley s )2
=p(s, (mp,ip) 2) +als, (:z:q’iq) =)
= v(p) +v(q) ,
which shows that (xp,i ) is a Cauchy net in E . Since E 1is complete,

it converges to an element x € E . Then,

)

= po(x—xp,ip) + p(Sp(xp,ip) -2,) >0 .

Hence S_(x) = a , that is, TS5 (x) = T a_ for all € T . Therefore
Po 2 > pp p°p P

Sp(x) = & for all p €T .

Now we can give a sufficient condition for the S-resonance.

(4.3). Let F bea T-family, E, F ¢ F and X, Y be
completionally T-open subsets of E, F respectively. Let f : X > Y be

a CCIC,)—map. Assume that
1. E 1is complete and e 18 gauged;

2. T has the smallest element Po and it 18 pairwise

coordinated;
3. X +Y is bijective.
fpo Py Py J

Then f is S-resonant.

Proof. Assume that y € Y, a € X and
= p

fp[ip) = Sp(y) for all p €T .

Then we have
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Ta) =8 (y) for all €T .
fpo( 2) b, P

Since f is injective,
0

Ta =2 for all €l .
Pr ~ &, P

Then, by (4.2), there exists z € E such that gp = Sp(x) for all

p € T . PFurthermore, since

S (x)) = Ta) =5 (y)
Fy 6, @) = 1, (B8) =5, G
and f is a bijection, we have S_(x) € X and, hence, x € X .
Po 0 Po

Hence the following fact is a consequence of (3.h).

(4.4). Let E, F be locally conwvex linear spaces, E be complete
and T be a calibration fb% {E, F} . Assume that T, is gauged, T has

the smallest element Py and it is pairwise coordinated. Let X and Y
be completionally T-open subsets of E and F respectively and

f:X>Y bea CCO-map. Then f 1is a CCo-homeomorphism if and only if
r r Y

each fb : Xb - Yp 18 a homeomorphism.

5. T-resonance and maps of G3rding type

Throughout this section, let F be a TI'-family and we assume that T

has the smallest element Py and it is pairwise coordinated. We also

assume that E, F € F and X, Y are completionally TI-open subsets of
E, F respectively with TI'-covers {Xp}’ {Yp} .

We start with the following simple fact.

(5.1). If F:X+Y isa CC?.—mapand

s
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18 an injection.

Proof. This follows from Tp of =f o Tp and the injectivity of

Amap f : X > F is said to be of Girding type if, for each p €T ,

the following condition is satisfied: if, for a sequence L?p n) € Xp
»
(n=1),

1) (7.2 n) is convergent in E[}?OJ , and

(2) (fp(gp,n)) is convergent in F[p] ,

then (% n) is convergent in E[p]
9

Amap f : X > F 1is obviously of Gg.rding type if, for each p € T ,

s X, €X

there are (v,p > 0 and Bp > 0 such that, for all =x 5

1
p(£ley)-1(e)) = o pley ;) - B9, (e,)
If f=u , a linear map, and
p(u(z)) 2 app(x) - Bppo(x) R

then u is of Garding type. When E = ¢”(K) and T consists of an
increasing sequence of Sobolev-norms, this is an inequality of Ggrding type

for some elliptic differential operators.

In general, if X is convexand f : X+ F is a C%r—map such that

there exists o € (0, 1) for which
£ (@)-1l < o
is satisfied for all & € X , then

p(flz))-r(=,)) = (l—a)p(xl—xe] for x, x, €X

(see [8]). Hence such a C’ér—map is of Garding type. A more general form

of this fact will be presented in the subsequent three sections.

(5.2). Assume that f : X+Y isa ch-map of Garding type and
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fo X - Yp i8 a homeomorphism. Then, for each p €T , fb(Xp) is

Pog Po 0
closed in Yb .

Proof. Assume that there are g € X (n=z1) and D € Yp

p
that fp(_a:n) +b in Flp] . Then

pr(Ta' —Tf‘(_n *Th .

Since is a homeomorphism T a converges to some a. € X .
T prism,  (T2,) Py

0 =0

such

Since f is of Ggrding type, (_a__n) is convergent to some a in E'[p]

Then g=fp(g) . Furthermore

fpo(io) =Tp=rCFf(a)=Ff (Ta),

= ppT Py P
which implies g, =T a , or a € T_l(X ) =X . Hence f (x )
=0 P = P Py P P p
in ¥ .
in ¥,

Hence the following statement is obvious. Note that Yp are

connected if Y is connected.
0

is closed

(5.3). Assume that Yp is connected and f : X —>4Y is a CCg-map

0
of Garding type. If

(1) £, :x ~Y 18 a homeomorphism, and
Po  Po Py
X ) is open for every p €T,

then f is T-resonant.

We shall consider condition (2) in (5.3). It holds if fp , which is

a map between Banach spaces, is of class Cl and

p

(r.) ’(Xp) < GL(E(p], Flpl) , where GL(E[pl, Flp]) 1is the set of all

invertible elements of the space L(E[p], Flpl]) of all continuous linear

maps of E[p] into F[p] . On the other hand, if f : X » ¥ is

Il-differentiable on X , then, for each = € X , f'(x) is a T-continuous
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O—

linear map of £ into ¥ . Therefore it is a CCI‘ map and has extensions

f"(x)p : Elp]l > Flp)
for every p € I' . For any subset 4 of E , we set
frea), = {f’(x)p : oz €A},
which is a subset of L(E[pl, Flpl) . Let
BP(B) = {x € E; p(x) < B}
for p €T and B >0 .

(5.4). Assume that f : X >Y isa Cc%-map, p €T and

F'lx n BpZB)lp c GL(E[p], Flpl) for any B >0 .

Then | Ty (Xp) is open.

Proof. First we prove that fp : Xp + Flp]l 1is of class ¢t . By the

O—

definition of the CC]I',—maps (see [91), f is a CCF map, I-differentiable

and f' : X - LI‘(E’ F) is also a C'C?—map. (For the definition of the
space LI.(E', F) , see [10], p. 5 or the remark after (6.2).) Hence, for
each p €T, f' has the continuous extensions

(F1), & X, > Lp(E, P)lp)

where LI‘(E’ F)[p] is the p-completion of LF(E’ F) . Hence, if

A € Lp(E, F)[p] , there exists (ui) C Lp(E, F) such that

p(Sp(ui)—AJ +- 0.

Then, for a, € E[p] and [.’I:L) Eép , the sequence (ul(xz)) is a
p-Cauchy sequence in F . Denote by K(_g._p) the p-class containing

(ui (xt)) . Then we have the map

L, : L. (E, F)lp] > L(Elp], Flp)) : A4
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It is easy to see that Lp is continuous; in fact,
p[Lp(A)] s p4a) .
Furthermore fb is differentiable and (fb)'(gp) = Lp[(f')p)(gp) . Since
Lp is continoous, fb is a Cl—map. It remains to show that
(7)) (x,) = orizlpl, FlpD)

Let gp € Xp and in) € gp . Then Lri) is p-bounded,

(7)706, (&) = 1, [, (5, )] = £(z,)

p p p

and
(r,) (5, (e)) » (£,)'(e,) 1in (Elp], FlPD) .

Hence

(fp) '(e,) € ), © cL(Elp), Flp])

6. &-extensions and their Omori semi-norms
In the remainder of this note, we shall be concerned about the maps of
Garding type. In Section 8, it will be shown that there is a locally
convex algebra consisting of some continuous linear maps of a locally
convex space into itself which has a neighbourhood of the identity
consisting of linear maps of Ggrding type. This fact will be used to

derive an inverse mapping theorem of the same type as Omori's.

As the preparation, we shall construct such a locally convex algebra
in a general manner. The fundamental notion of this construction is that
of Omori semi-norms, which has been introduced by Omori in [6], p. 140, in

the case of Gelfand spaces (see [9]1, p. 337).

Let T be a calibration for a family F . A 6-extension of T is a

pair (Fé, 6) , where FG is a calibration for F such that T c FG and

§ is a family of maps of FG into P6

§={6, : xenl, & :T

i Te?T

A §

such that the following conditions are satisfied:

(6.1) for each p €T and X € A there exists A(1l, p) 2 0
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such that p = 6A(p) = M1, plp

(6.2) for Al, AZ € A there exists A € A such that

§, °6, (p) =8 (p) and § ©° 3§
Al X2 A AZ Al

(p) = Gx(p)
for all p €T ;
(§.3) if there exist E, F€F and x € E , y € F such that

pp(x) = dx(p)F(y) for all p €T ,
then, for every Al €A,

6>\l(p)E(“’) = [6>\ o ékl)(p)F(y) for all p €T

An immediate consequence of the definition is the following.

(6.1). For Al, A, € A there exists X\ € A such that

6Al(p) < 6X(p) and ze(p) = dx(p) for all p €T .

Proof. From (&8.1), we have

p = le(p) and p = GAZ(p) for all p €T .

Hence, from (§.3) with x =y , we have

8§ (p) = (8, o8& J(p) and &, (p) = (8, ° & J(p)
AQ ( Al A2) >‘l ( A2 Al] P

for all p € I' . Therefore the )\ determined by (8.2) gives the required

inequalities.
When T = I“5 and ¢ consists of the identity map, the J-extension

is said to be trivial. A non-trivial example of the d&-extension is found
in the setting which Omori has adopted in [6] for his study on groups of
Cw—diffeomorphisms on closed manifolds. In this case, T consists of an

increasing sequence of norms

I‘={pk:k=0,l,2,...}

Let FS be the set of all finite linear combinations of elements of T

with non-negative coefficients
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Ts = {api+8pj :a20,820,%, §=0,1, 2, ...}

Let A be the set of all sequences of non-negative numbers
A={x= () :2r, =0},
and, for each A € A , we define a map GA by
Gx(po) =Py Gx(pk) =p, t NP, for kz1
and
Gx(api+8pj) = aéx(pi) + BGA(pj) .

Then (Fé, 8) , thus defined, is a &-extension of [' , which we shall call
the Omori G&-extension.

Now let I' be a calibration for F and (FG’ 6) be a &§-extension

of ' . For E,F €F and A € A, we define a calibration T, for

A
{E, F} by
F)\ = {(éx(p)Ea pF) : p € r}

Namely, FX is & family of semi-norm maps pA such that
@QE=6ﬂp& and @QF=pF for p €T .

The condition (§.1) ensures that FA is also a calibration for {E, F}

Then, as in [10], p. 5, we can consider the space LBP (E, F) of all
A
BFA—continuous linear maps of E into F . By definition, a linear map
u : E > F bvelongs to LBF (E, F) if and only if
A

”“”1‘)\ = ;161113 sup{pp(u(z)] @ 8, (p)g(x) = 1} < 4o,

A
Banach space if F 1is sequentially complete. For the sake of simplicity,
we denote LBFA(E’ F) by LA(E, F) and ".”rk by eIl -

and ”u”r thus defined makes Ly, (E, F) 1into a normed space, and a
A

Now we set
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Lg(E, F) = U{L,{E, F) : X € A} .

A
Hence Lé(E’ F) 1is a union of normed spaces and it is a linear space. In

fact, let u, v € Ld(E, F) ; then there exist xl, xz € A such that

u € LA (E, F) and v € LA (E, F) . Let X be the index determined by
1 2

(§. 1) . Then, for all p € ' and x € E ,

1A

and

A

pelv(@)] = ol 8, (P)pla) = ol 6, (p)g(e)

which imply u, v € LA(E’ F)

When (FS’ 6) is trivial, we have Ld(E’ F) = LB (E, F) , that is,

r

LG(E’ F) in this case is a normed linear space.
(6.2). (i) For every X € A, LBF(E, F) c LA(E’, F) and
hally < Nl for u € L(E, F) .

(i2) L. (E, F) < L.(E, F) and

5" ¢

plu) = A1, p)HuHA if w €L, (E, F) and p €T .

A(
Proof. (%) is an immediate consequence of (6.1). Note that
u € LBF(E’ F) if and only if

”uHF = sup{pF[u(x)] : pE(x) <1, p €T} < 4o,
To prove (171}, let u € LA(E’ F) . By (8.1) we always have
Gx(p)E(x) = A1, p)pE(x) for p €T and x € E .

Hence, for all p € T and x €F

pplulz)] = llully 8, (p)p(=) = llull)A(1, plpg(x) ,

which implies u € Lp(E, F) and p(u) < lullyA(1, p)

https://doi.org/10.1017/50004972700006262 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006262

Inverse mapping theorem 445

REMARK. By definition ([10],p. 5), the space L,(E, F) consists of

r
all T-continuous linear maps of £ into F , namely, linear maps

u : E~>F such that
P(E,F)(u) = sup{pF[u(x)] . pE(x) <1} < 4+

for each p € T . It is regarded as a locally convex space belonging to

F with the following set as its component of T :

Mg,p) = e P €T
In this note we denote p(E F) simply by p .

ir GX (p) = 6X (p) for all p €T , then LA (E, F) D LA (E, F)

1 2 1 2
and Jull, = for all u € L, (E, F) . Hence, by {(6.1), the space
A A A ;
1 2 2
Lﬁ(E, F) 1is the union of an increasing sequence of normed linear spaces.

In this setting we can define the Omori semi-norm on LG(E’ F) by
|u| = inf {”u”k ru € LA(E’ 7}
€A
In order to see that it is a semi-norm on LG(E’ F) , let o be an

arbitrary positvive number such that

a > |u|l + |v] , u, v € Lg(E, F)

and choose oy and 0y such that a = a ta,, oy > |u| and

a, > |v| . Then there exist Al’ A2 € A' such that, for all p € I and

pplulz)] < al5xl(p)E(x) and pplv(z)] < aeéxg(p)E(x)

Take A determined by (6.1) from Xl and A2 ; then, for all p € T and

x €F |

pplulz)+v(z)] < “15Al(p)5(x) + a26A2(p)E(x)
= aéx(p)E(x) ,

which means u + v € LA(E’ F) and |uwv]| = Hu+vHA <a.
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We recall that, whenever we write LA(F’ G) for F, G € F, the first

space F has the calibration GA(F) and the second space G has the

F
calibration FG .
(6.3). If uc¢ Lg(E, F) and v € L(F, G) for E, F, G € F, then
v ou €L E, G) and v o ul = jullv] .
Proof. Let a be an arbitrary number such that a > |u||v| and

= >. .
choose o, and @, such that @ =aa,, o Jul and a, > |v| Then

there exist Al, A2 € A such that

pF[u(x)] <aé (p)E,(x) and pG[v(y)] < azéxz(p)F(y)

Al
By (8.3) we have

6}‘2(p)F[u(x)] = al(d}\ o 6}\2)(p)E(m) .

1

Hence, for all x € F ,

ppl(v o u)(x)] < azéke(p)F[u(x)] < ula2(6>\l ° ze)(p)E(x)

Then, for the A € A determined by (8.2), we have v o u € L,(E, G) and

X(
flv o ull, =a , that is, v o ul = |u]lv] .
As we have seen in (6.2) (iZ), LG(E’ F) is a linear subspace of

LF(E’ F) . Hence, if u € L6(E’ F) , then
plu) = sup{pF[u(x)] : ppla) = 1} < 4= |
We use this fact to define the L6(E’ F)-component of each p € T by
lp| = max{p, [-[}
Therefore the locally convex topology on LG(E’ F) is stronger than the
relative topology induced from LF(E’ F) , and LG(E’ F) is closed in

LF(E’ F) 1in the sense described in (6.4) which holds when the G&-extension

is diagonalizable. A &-extension of T is said to be diagonalizable if

the following condition is satisfied: for any map ¢ : T = A there exists
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Ay € A such that 6A¢(P) = Gq)(p)(p) for all p €T .

Let (FG’ 6) be the Omori &-extension. Then, for ¢ : T + A, set

¢[pk) =A%) or k20 . Ifwe take Ay = [A,‘(k)) , the diagonal

sequence, then
k k k pk -1 A(k) k ¢(pk) k

Hence the Omori G6-extension is diagonalizable.

(6.4). Assume that (FG’ 8) 1is diagonalizable. Let u € LG(E’ F) ,
u, *u in LI‘(E’ F) and there exists a number o such that o > Iunl
for all n=1. Then uELG(E’, F) and |ul =sa.

Proof. Let & be .an arbitrary positive number. The assumption that
u, *u in L (E, F) means

r

lim p(un-u) =0 for each p €T .

-

Hence we have {n : p €T} such that p(un -u] < € . On the other hand,
p
since Iunl < a , there exist An € A such that, for all p €T and

x €F ,
pF[un(x)] < ad, (p)glx) .
n
Let ¢ : T = A be defined by ¢(p) = )‘n . Then we have A¢ € A such
p

that, for all p €T ,

8, (p) = 6¢(p)(p) = 6A¢(p) .

Therefore, for all p € T and x € E ,

pplu(x)] = pF[unp(:c)] + pF[(unp-u)(z:)]

A

“6x¢(p)E(x) + epplz)

1A

(a+€)6>\¢(p)E(x) s
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which means that u € I (E, F) and Hu”x =a+¢e . Hence u € L (F, F)

" 8

and |u| sa .

Now we can prove the completeness of LG(E’ F)

(6.5). If (Fs, 8) s diagonalizable and F is sequentially

complete, LG(E’ F) 1is sequentially complete.

Proof . Let (un) be a Cauchy sequence in LG(E’ F) and e be an

arbitrary positive number. Then there exists n such that

0

|un—um| <e if m onzmng .

Since (un) is also a Cauchy sequence in LF(E’ F) , which is sequentially
complete ([70], p. 6), there exists u € LF<E’ F) such that u, > u in
LF(E', F) . By (6.h), u ¢ Ld(E, F) . We need to show that |un—u[ < g if

nzn, .
0

Now, from the fact that p(un-u) + 0 for each p € T, we have

n_ € I't such that n_2#n, and
{n, s p €Tk suc 5 2 7
p(un -u) < ¢g/2 for all p €T .
p

Then, if n = no , Since n, n_ 2 no , we have |un—u [ < € . Hence there

p n

p
exist A € A such that
n,p

3

pF[(un-unp)(x)J < (e/2)6x (p)E(x) for all p €' and x € F .

For the map

choose A¢ € A . Then, for every p €T ,
n
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IA

peLlt,) @] = pp [l t, )(@1] + [l )]

Ay

(/26 ()gla) + (e/Dpg(a)

n

1A

8, (p) (x) ,
A E*7
¢n

which means
- - =
u, -u €L (E, F) and Hun u”x¢ <eg .

n - n

A

Hence, in particular, Iun-u| = € . Thus u, *u in LG(E’ F) .

From now on, we shall assume that E .and F are the same member of
F , that is, E = F as locally convex spaces equipped with the same
component of I . We shall denote LF(E’ E) by LF(E) , which therefore

consists of all linear maps u : E > EF such that

plu) = sup{pE[u(x)] : pE(x) <1} < 4= for each p €T .

We shall omit the letter E in Py - The space' LA(E’ E) consists of all
linear maps u : E + E such that

flull, = sup suﬁ{p[u(x)] : 8, (p)x) = 1} < 4o .
p€T

We set
L (E) =L (E, E) =U{L,(E, E) : X € A} .
8 § ) Al .
Then, as we have seen above, LG(E) is a locally convex space equipped

with the calibration {|p|.: p €T} .
(6.6). Lg(E) is a locally convex algebra and, for each p€rT,
B (v e w) Svlp](u)lpl(v) for all wu, v € LG(E)
Proof. When u, v € LS(E) , (6.3) implies v o u ¢ LG(E) ana
[v o u| = |u||v| . Furthermore, for each -p € T and z € E |
pl(v o u)(x)] = p(v)plulx) ] =-p(v)p(u)p(x)

Since |p| = max{p, |'|} » we have the required inequality.
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Thus LG(E) is a locally convex algebra with jointly continuous

products. In fact, it is a lécally m-convex algebra in the sense of [5].
We shall show in (6.7) that this is also a continuous inverse algebra if &

is sequentially complete and (F5’ 6) is diagonalizable and summable. A
S-extension (FG’ 8) is said to be swmmable if the following condition is

satisfied: for all p €T, X €A and F € F,
= NG . <
Mn, p) = sup{ox(p)E(m) : pE(x) < 1} < 4o

and

1/n <

lim Aln, p) o,

>0
The value of this limit will be called the summability constant of § .

When (FG’ 6) is the Omori d&-extension, we have

n K K
6A(pk)E(x) =n (l+Ak) (pk)E(x) s
which implies that the Omori §-extension is summable.

Now let us denote by GLa(E) the set of all u ¢ Ls(E) such that the

inverse u T exists and belongs to Lé(E) . More precisely, a linear map
u : E~+E Dbelongs to GLa(E) if it is a bijection and satisfies the
following conditions: there exist a >0, B >0 and Xl, A2 € A such

that, for all p € I and x € F ,

plulx)] = a8, (p)(x) and plu™(2)] = 88, (p)(z)
1 2

It immediately follows from (&8.1) that LS(E) contains the identity map.

-1

If u, v € GLG(E) , then, since u-l, v o € GL6(E) , (6.1) implies

(v o u)—l = u—l o vl ¢ GLG(E) . Therefore GL6(E) is a group.

(6.7). Assume that E is sequentially complete and (FS’ 8) is

diagonalizable and swmnable. Then GLa(E) is a T-open subset of LG(E)
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and the inverse operation ts T-continuous on GLa(E)

Proof., Let us take an arbitrary g € I' and consider the ]ql—open

subset U of Lé(E) defined by
U= {uce Lg(E) - lg{u) < 1/a} ,

where o 1is a number which is greater than the summability constant of §
and 1 . Then, for u € U , since [u[ < 1/o0 , there exists A € A such

that

plu(x)] < (l/a)éx(p)(x) for all p €T and z €E .
The condition {&§.3) then implies that, for < = 1 , we have

§5(p) lul=)] = (1/a)c§+l(p>(x) ,

and
pf(x)] = (l/a)ék(p)[un_l(oc)] = (l/cxz]df\(p)[un_e(x)] < ...
< [l/an)éz(p)(x)

Hence, since (FG’ 6) is summable, for every p € I and x € E ,

(1/a™)63(p) (=) = (/6™ A (n, plplz) < += .

Y plM2)] <
n=0 0

Tt
K

0
This implies
ee]
L p") <.
n=0
Furthermore, since |u| < 1/a , we have
o

L It =

n=0

ul® <
0

T e

which implies

-]

T el () <+ .

n=0

Hence, by (6.5), the series
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Z ( -1 ) nun
n=0 .

converges in LS(E) .

Thus we have shown that for every u € U ,” 1 + u has the inverse in
L6(E) ,or 1L +Uc GLG(E) .

Now assume that u, € GLG(E’) and

-1
Iql(uo-—u) < (1/a) Iql[ual) and u € Lé(E)

Then, since
ol {1izt) = Jal [ ] (g < 270

we have u.t E) is

0 °u¢€ GLG(E) and, hence, u € GLG(E) . Thus GL

6(
|gl-open in LS(E) for every q €T ; that is, GLG(E) is-a T-open .

subset of LG(E) .

Next we prove that, the inverse operation is - I'-continuous on GJ’_,JG(E)
Let us assume that u, € GLG(E') , p €T and lpl(un-l) + 0 . Then there

exists #n. ‘such that'

0
Ipl(un-l) <l/a if nz g,
and, as we have shown above,
p[u-l] = ¥ (2/d"A(m, p)
n .
m=0

Hence

p[u;;—l) < p[u;ll]p(l-un) 0.

Similarly, for =n > ng s since
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we have
1 - m
u; < g Iun-ll < a/{a-1) .
Hence
|u—l—l| = u'l(l-u )| = W 1u | » 0.
n n n n n

Therefore the inverse operation is TI'-continuous at the identity map.

-1

Since u;l -u = u;l(u-un)u-l , we have the T-continuity at every point

of GLG(E)

1
7. Cd-maps

Let T be a calibration for F and (Fd’ §) be a 6-extension of
' Let E, F¢F and X be an open subset of E . Then a map
f: X+ F 1is said to be of class Cé at a € X if the following

conditions are satisfied:
1. f isof class CCL on X and £ e nge, F)
2. themap f' : X~ LG(E’ F) is T-continuous at a .
. 1 : sy s Cl
If f 1ig of class CG at every point of X , it is called a 6-map
on X .

When (Fé, 6) is trivial and X 1is convex, any Cg -map f : X+ PF

r
such that sup{”f"(x)ur 2 €X}) < 4o isa Cé-map on X . For the

definition of Cgr-maps, see [10], p. 23.

It is obvious that every element of LG(E’ F) is a Cé-map on E .

(7.1). Let x and Y be open subsets of E and F respectively

and G€F . If f:X+Y 4is of class Cé at a €X and g : Y+G 1is

https://doi.org/10.1017/50004972700006262 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006262

454 Sadayuki Yamamuro

of class Cé at fla) , then g o f is of class Cé at a .

Proof. Obviously, g © f is of class CCIC,) on X . By [10],

(11.3.2), g o f 1is of class CIJ: on X and

(g o F)' (x) = g’[f(x)) o f'(x) . Hence g ©o f is of class CCIl, on X
and (g o f)'(X) c Lé(E', F) . Therefore, we only need to show that the map

(gof) X~ L«S(E’ G) is T-continuous at a .

Now assume that p € T and p(xn-—a) >0 and x € X . Then, by
(6.2) and [10], (1.2.2),
p1 L o £ )~(g o @] = Ipl 5" (7)) g (7)o | [ (=)
+ lpllg' (F@) el [ (=,)-F(a)] ~ 0 .
(7.2). Let X and Y be open subsets of E and F respectively
and let E be sequentially complete. Assume that (F5’ 8) is

diagonalizable and swmmable. Then, if f : X > Y s a CC?—homeomorphism

of class Cé and, for every x € X, f'(xz) has the inverse belonging to

LG(F’ E) , the inverse f-l is of class Cé on Y.
Proof. Under these assumptions, it follows from [70], (III.3.1), that
f'_l is T-differentiable at every point of Y and

) () = Fr ™

for every x € X .

Hence f_l is of class C'CIl, on Y and (f—l]’(Y)cLa(F, E) . Therefore

we only need to show that the map (f_l)’ HED A S Lé(F, E) is T-continuous.
Now let a € X , b =f(a), p €T and
pF(yn—b) +0 and y €7 .

Then there exist x, € X such that y, = f'(xn) and, since f_l is

T-continuous, p(:z:n-a) + 0 . Then, by (6.7),

https://doi.org/10.1017/50004972700006262 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006262

Inverse mapping theorem 455

lpl[(f'l)'(yn)-(f'l) '(b)] = |p||}'(xn]'1-f'(a)‘1] >0 .

8. s-extensions of order p, and maps of Garding type

Let T be a calibration for a locally convex space E . A
§-extension (T, 6] of T is said to be of order p, if it is

diagonalizable, has the smallest element Py and satisfies the following

conditions:

1. Fd contains all finite linear combinations of elements of
I' with non-negative coefficients, and each 6A is linear

and monotone;

2. for each (XA, p) € A x T there exists a non-negative number

Xp such that 6A(p) =p+ Appo and Apo =0 .

The Omori O&-~extension is of order p0 if the following condition (#)

is satisfied: for each € > 0 there exists C(g) > 0 such that

Pyq S €P * C(t—:)pO (see [12], p. 176).
(8.1). 4 &8-extension of order P, %8 summable and the swmmability

constant is 1 .
Proof. Since GZ(p) =p + nkppo , we have X(n, p) =1 + nAp

Now let (Fg’ 6] be a Od-extension of T of order Py - Assume that

u € LG(E) and |u| < @ . Then there exists A € A such that, for every
peT,

plul(x)] < a(p(x)+xppo(x)) for all =z € E .
We set

up(a, u) = sup{(apo(x))_l[p(u(x)]—ap(x)] : po(x) # 0} .

Then up(a, u) < +° and we always have

p(u(x)) = a(p(x)ﬂlp(a, u)po(x)) for all p €T and x € E ,
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whenever |u] < a . Note that up(a, u) is defined only when |u| < a .

(8.2). If |u| <a and |v| <B for u, v € Lg(E) , then for every
A€AN ad p €T,
up(aB, vou)s up(a, u) + up(B, v) .
Proof.

p(v o u(x)) = B(p(u(x))mp(ﬁ, v)py (u(z)))

1A

B(apte) i (os ulpy(a)+ (8, vlopy(a))

1A

aB (p(x)+(up(a, u) 4, (B, v))py())

The following theorem implies that there is a TI'-open neighbourhood of

the identity in Ld(E) which consists of linear maps of Girding type.

(8.3). Let E be sequentially complete and (FG’ 8) be of order
Py - If [1-u] <a <1 for uce¢ Lg(E) , then this u is of Gdrding type,

invertible and
up[a(l—a)“l, u_l-l) = (l-a)-lup(a, 1-u) .

Proof. Since, for each p €T ,

p(z-u(x)) < a(p(x)+up(a, L-ulpy())

we have

plu(x)) > (1-a)p(zx) - aup(a, 1-u)py(z) ,
which shows that u is of Ggrding type. Furthermore,

p((1-0)"(x)) < o"'plx) + na”up<a, 1-u)py(x) .

Hence
Y p((1-u)™z)) = a(l—a)_lp(:c) + [ ¥ mn]u (a, 1-ulpy(x) .
n=1 n=1 p

Therefore

p((w 1) (x)) = a(l-a)‘l[p(x)+(1.a)‘1up(a, l—u)po(x)) ,
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which implies

-1

-1 - A1 )
up(a(l—a) s U A1) = (1-a) up(a, 1-u)

Let U bea py-open subset of E . Thenamap f : U+ F 1is said
to be po—bounding on U if, for any sequence (xi) U and p €T such
that (f(xi)] is p-bounded (that is, sup{p(f(xi]] D1z 1} < = ]}, in)
is also p-bounded. It is straightforward to see that a linear map is of

Ggrding type if it is po—bounding on E .

Let again U bYe a pg-open subset of E.. Then a Cé-map f:U~E
is said to be of order Py at aq €U if, for any € > O , there exists

a > 0 such that the following condition is satisfied: for any B8 > 0 and
pe€r,

sup{up(e, f'latx)-f'(a)) : pylz) < a, plx) < B} < + .
Now we are ready to state an inverse mapping theorem as a consequence
of (4.4), (5.3) and (5.4). Under our assumptions on T , the inverse ’
mapping theorem for Cgr—maps proved in [10], (III.5.2), corresponds to the

case when (FG’ 6) is trivial in the following theorem. It can be easily
seen that our assumptions are weaker than those of Omori's inverse mapping
theorem stated in the beginning of this note when the condition (#) holds.
Therefore the following theorem can be applied to various problems to which

Omori's theorem has been applicable.

(8.4). Let T be a pairwise coordinated calibration for a complete

locally convex space E and let (FG’ 8) be a $-extension of order Py -

Let U bea po-open neighbourhood of zero in E and f : U+ E be a

C%—map such that f(0) =0 and f'(0) =1 . If f 4is po-bounding om U
and of order p, at zero, then there are completionally T-open
neighbourhoods X and Y of zero such that f : X+ Y is a Cé-

-1

diffeomorphism. Purthermore f ~ : Y + X 4is also po-bounding on Y and

of order py at zero.
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Proof. By {(k.4), (5.3) and (5.4) we need to find completionally

F-open neighbourhoods X and Y of zero such that

1. f X Y is a Cl-diffeomorphism;
Po  Po Po

2. f: X~>7Y is of Gérding type; and
3. FXn Bp(e)ip < GL(E[p]) for all p €T and B >0 .

Then f will be a ch—homeomorphism and hence, by (7.2), a Cé—

diffeomorphism of X onto Y .

Since f 1is a Cé—map and U is po—open, for any € > 0 such that
€ >1 , there exists a > 0 such that, for V = {x ¢ E : po(x) < 20} , we
have V c U and

lpol -F!(2)) <& if zev.

Let

Vo = {a € Elpy] ¢ py(a) < a} ;

then, since f 1is of class CC% , there is a Cl—map
Tpy Vo0 ” Ep,]

such that S o f = o S . Hence S (0} =85 (0) and
Po d fpo Po fpo(po ) Po i

(fbo)'(Spo(O)] = f'(O)pO = the identity map on E[po] .

Therefore, for

Xg = Vg0 (£, )7H(r) ena ¥, ={a €E[p] : pyla) < as2} ,

the map fb : XO > Y, isa Cl-diffeomorphism, and, by (2.2),
0
X =87(x a v =s5r) letionally T i ghbourhoods of
= Py O) an = p. o are completionally T-open neighbourhoods o

zero. We may assume that X 1is convex.
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Next, to show that f : X » E is of Girding type, we note that X c U

and, moreover,

po(:x:)<a if x € X

and

po(y) <af2 if y €Y.

For each p €T | let

H() = up(s, 1-f'(x))

and

up(a, B) = sup{up(x) : po(x) < a, plx) < B} .
Now let (xz) © X be py-Cauchy and [f(acq/)) be p-Cauchy. Since f
is po-bounding, (xz) is p-bounded. Let p[xi) = B . Then, by the
mean-value theorem,
N
p(xi_xj- (f(x.b) -f[xj)] = p((l—f) '(.rj+6 (xi—xj]) (xi-:cj))

<elp (xz, —xJ.) +

p(a’ 8)po(xi”xj)) >

which implies that (xl) is p-Cauchy, and, hence, f 1is of Ggrding type.

To prove that

Flxn Bp(B)ip < GL(E[p]) for all B >0,

let u € f' (X n Bp(B)jp and choose x. € X n Bp(B) such that f"(xi)p > u

in L(E[(p]) . From

p((1-7'(=;))(2)) < 6(p(2)+up(oc, Blpy(2))
we have
p[[l—f’(xi))n(z)) < ep(z) + nenup(ot, Blpy(z)
for all z € E and n>1 . Hence
p((1-w)%(a)) = €"pla) + ne"up(a, B)po(7,2)

for every a € E[p] , which shows that u € GL(E[p]) .
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Thus we have shown that f : X - Y is a Cé-diffeomorphism. To show
that fFl : Y > X is p,-bounding, let (yi) c Y be such that [f’l(yi))
is p-bounded and choose & € X such that y; = f(xi) . Then po(xi) < o
and pﬂxi) < B for some B . Hence

p(fﬁri]-xi) = p((l-f)’[exi]ﬂzi))
< elplz;) (o, BIpo(2,))
which implies
p(yi) < (l+€)pﬁﬂi) + Eup(a’ B)Poﬁxi]
< (1+€)B + eup(a, Bla .

Hence (y,) is also p-bounded.

Finally, the fact that fFl is of order po at zero follows from

(8.3), that is, for y = flz) ,

up(E(l-e)'l, l-f’(x)'l)

(1-e1'1up(e, 1-f'(z))

up(e(l-e)'l, l—(f’l)'(y))

1A
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