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In Rayleigh–Bénard convection and Taylor–Couette flow cellular patterns emerge at the
onset of instability and persist as large-scale coherent structures in the turbulent regime.
Their long-term dynamics has been thoroughly characterised and modelled for the case
of turbulent convection, whereas turbulent Taylor rolls have received much less attention.
Here we present direct numerical simulations of axisymmetric Taylor–Couette flow in
the corotating regime and reveal a transition to spatio–temporal chaos as the system size
increases. Beyond this transition, Taylor rolls suddenly undergo erratic drifts evolving
on a very slow time scale. We estimate an effective diffusion coefficient for the drift
and compare the dynamics with analogous motions in Rayleigh–Bénard convection and
Poiseuille flow, suggesting that this spontaneous diffusive displacement of large coherent
structures is common among different types of wall-bounded turbulent flows.
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1. Introduction
The smallest eddies in turbulent flows are dictated by the fluid’s kinematic viscosity (ν)
and dissipation, whereas the largest ones are shaped by the flow geometry, boundary
conditions and source of driving. Very large coherent motions in the flow field
(superstructures) carry a substantial part of the kinetic energy, which increases as
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the Reynolds number (Re) increases (Smits et al. 2011). Understanding their role in
transport and mixing is an active field of research, with many open questions relevant
for predicting and modelling environmental fluid flows (Dauxois et al. 2021). In systems
with linear instabilities, such as Rayleigh–Bénard convection (RBC) and Taylor–Couette
flow (TCF), the origin of turbulent superstructures can be traced down to the onset of
hydrodynamic instability. For TCF, Taylor rolls emerge from the primary instability of
circular Couette flow (Taylor 1923), and then undergo a sequence of bifurcations (Coles
1965; Fenstermacher et al. 1979; Prigent et al. 2006), which increases the spatio–temporal
complexity of the flow as Re increases (Feldmann et al. 2023). Seemingly, they persist in
the form of turbulent Taylor rolls up to the highest Re investigated to date (Lathrop et al.
1992; Ravelet et al. 2010; Huisman et al. 2014; Ostilla-Mónico et al. 2016a; Sacco et al.
2019). We refer to Grossmann et al. (2016) for a recent review of turbulent Taylor–Couette
flow.

Turbulent Taylor rolls have been uncovered in experiments and direct numerical
simulations (DNS) by taking temporal averages of the velocity field (Dong 2007; Ravelet
et al. 2010; Ostilla-Mónico et al. 2013; Huisman et al. 2014; Ostilla-Mónico et al.
2016a,b), based upon the assumptions that the rolls remain stable and do not travel in
the axial direction (z). In most laboratory experiments, the cylinders are bounded by
solid end walls, whereas in DNS axially periodic boundary conditions (BC) are usually
employed. This renders z homogeneous and enables the usage of short computational
domains, which typically accommodate one or two pairs of Taylor rolls (Dong 2007;
Brauckmann & Eckhardt 2013; Ostilla-Mónico et al. 2016a,b; Sacco et al. 2019). In these
computations, typical observation times do not exceed a few hundred convective time
units. This raises the question of whether Taylor rolls remain stable and stationary up
to arbitrarily long times. In cylindrical RBC cells, for example, the characteristic large-
scale circulations (LSC) are known to undergo spontaneous diffusive meandering in the
naturally homogeneous (i.e. azimuthal) direction (Sun et al. 2005; Brown & Ahlers 2006;
Xi et al. 2006; Brown & Ahlers 2008). Slow dynamics of the LSC – clearly separated
from the time scale of the turbulent fluctuations – was also shown more recently in doubly
periodic DNS of rectangular RBC at Rayleigh numbers up to Ra = 107 (Pandey et al.
2018). Similarly, Kreilos et al. (2014) found slow spanwise displacements of velocity
streaks in turbulent boundary layer and Poiseuille flows.

In this paper, we reveal a transition giving rise to slow, large-scale dynamics in
axisymmetric TCF. Beyond a critical domain size, spatio–temporal chaos emerges and
the Taylor rolls undergo erratic drifts in z. Compared with the cylinder rotation, the drift
speeds are small, but large roll displacements can occur on a slow time scale. We show
that the drift statistics are consistent with a Wiener process and characterise the motion
with an effective diffusion coefficient of the order of ν.

2. Computer experiments
We perform axisymmetric DNS of corotating Taylor–Couette flow (table 1) with periodic
BC in z for moderate Reynolds numbers, allowing for both large computational domains
and long integration times at affordable computing costs. We integrate the incompressible
Navier–Stokes equations (subject to no-slip BC in r ) forward in time (t) using our
pseudo-spectral DNS code nsCouette (López et al. 2020). The equations are formulated in
cylindrical coordinates (r, θ, z) and rendered dimensionless using d, ν/d and d2/ν (i.e. the
characteristic viscous time scale of the problem), as unit length, unit speed and unit time,
respectively. In axisymmetric DNS, the θ -dependence is dropped, but all three velocity
components are computed.
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Ra Rei Reo Res RΩ Nus Nu Reτ V (vR)1/2 V (uz)
1/2 DR

105 6726 5865 925 0.14 4.5 32 10−14 10−13 10−29

106 21374 18638 2940 0.14 7.4 74 0.4 1.1 0.008
107 104223 98156 7138 0.30 10.4 14.4 137 6.4 8.8 0.4
107 68892 60072 9475 0.14 12.8 14.7 175 6.3 8.8 0.7
107 68892 60072 9475 0.14 12.8 175 2.2 NoFX 0.07
107 47971 32547 15779 0.05 14.6 15.3 241 8.0 10.5 2
108 214780 187284 29539 0.14 22.4 408 12.0 13.8 3

Table 1. Taylor-roll drift dynamics for Γ = 24 and η = 0.99. Listed are control parameters
(Ra, Rei , Reo, Res , RΩ ), response parameters (Nus , Nu, Reτ ), standard deviations V (α)1/2 of the drift
speed, α = vR , the net axial flux, α = uz , and the effective diffusion coefficient, DR , estimated as in figure 2.
NoFX stands for no axial flux (uz = 0) enforced in the simulation.

Motivated by an exact analogy (Eckhardt et al. 2020) between two-dimensional RBC
and axisymmetric TCF in the narrow-gap limit (η = ri/ro → 1), we set η = 0.99 and vary
Res = Ud/ν, RΩ = 2dΩ/U and Γ = Lz/d. Here, d = ro − ri , is the gap width between
the inner (i) and the outer (o) cylinder with radius ri/o, Lz is their axial length, U = uθ,i −
η uθ,o and Ω = uθ,o/ro, where uθ,i/o denotes the azimuthal speed of the cylinders. An
important response parameter is the Nusselt number (Nus), which quantifies the transport
of angular momentum across the fluid layer (Eckhardt et al. 2007; Brauckmann et al. 2016;
Eckhardt et al. 2020). According to the exact Navier–Stokes mapping of Eckhardt et al.
(2020), flows are mathematically identical as long as Ra = Res

2 RΩ(1 − RΩ) = const.,
with Nu = 1 + (Nus − 1)/(1 − RΩ) and Nu being the usual Nusselt number in RBC.

In a first set of DNS (compiled later in figure 3a), we fix all parameters but Γ to
investigate the onset of spatio–temporal chaos with respect to the lateral domain size. In a
second set (compiled in table 1), we fix Γ and explore the effect of shear (Res) and rotation
(RΩ ). The initial conditions are chosen to trigger the desired number of Taylor rolls (NR)
necessary to maintain their aspect ratio constant throughout all DNS runs (NR/Γ = 1).
This is important because the dynamics is known to depend on NR/Γ (Ostilla-Mónico
et al. 2015, 2016a; Wang et al. 2020; Zwirner et al. 2020). The highest friction Reynolds
number (Reτ = uτ d/ν, where uτ is the friction velocity at the cylinder walls) measured in
all DNS is 408 (table 1). The spatial resolution in terms of wall units (i.e. based on Reτ

and denoted by +) is at least 0.07 �	r+ � 4.03 and 	z+ = 4.89, which is state of the
art in DNS of wall-bounded turbulence (Ostilla-Mónico et al. 2016a,b; Feldmann et al.
2021).

3. Drift dynamics
Small domains restrict the dynamics of the system, resulting in nearly stationary rolls.
This is apparent from the space–time diagram of the wall-normal velocity (ur ) for Γ = 8
(figure 1a). If we now enlarge the domain (Γ � 10, NR/Γ = 1), the Taylor rolls undergo
large, erratic, collective drifts in z that evolve on a slow time scale (figure 1b–d). In a
domain with NR = 24 rolls, for example, the most energetic axial mode is always kz = 12
(figure 1e), confirming that the space–time representation of ur is indeed a robust way
to identify Taylor rolls and to track their dynamics. Every few viscous time units (e.g. at
t ≈ 17.5), the competition with neighbouring modes (here kz ∈ {11, 13}) represents rare
attempts to switch to another state with 11 or 13 pairs of rolls. These attempts, however,
remain unsuccessful in all our simulations.
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Figure 1. Spatio–temporal dynamics of Taylor rolls for different domain sizes (Γ ). Shown are contours of
the wall-normal velocity component (ur ) at midgap position extracted from DNS (Res = 9475 and RΩ = 0.14
in all cases). Arrows represent 2000 convective time units. (a) Stationary Taylor rolls in a small (subcritical)
domain. (b–d) Axially drifting Taylor rolls in larger (supercritical) domains exhibiting large excursions on a
slow time scale. The black line (zR) plotted on top of the ur space–time data in (d) represents the temporal
evolution of the phase angle of the dominant Fourier mode (here kz = 12, corresponding to 12 pairs of rolls). It
serves as a proxy for the collective axial displacement of the entire stack of rolls. (e) Temporal evolution of the
modal kinetic energy, 〈Ekz 〉r , contained in mode number kz for the same case as in (d); angled brackets denote
averaging in the radial direction.

To analyse the drift dynamics quantitatively, we compute axial Fourier spectra of ur (in
particular the ur midgap space–time data as exemplarily shown in figure 1d) and use the
phase angle information of the dominant axial mode (here kz = 12) to approximate the
collective displacement of the Taylor rolls (zR), as done earlier by Sacco et al. (2019).
The temporal evolution of zR (figure 1d) aligns well with ur , thereby confirming the
suitability of zR to quantify the collective axial drift of the Taylor rolls. For Γ � 8,
the rolls first undergo slow transient drifts in the beginning of the simulation and then
ultimately oscillate with tiny amplitudes and high frequencies about a statistically steady
state (figure 2a). This fast dynamics of the rolls was reported earlier for three-dimensional
turbulent TCF in a domain accommodating one pair of rolls (Sacco et al. 2019). By
contrast, for Γ = 10, the rolls wander more than 100d before turning back for the first
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Figure 2. Time series of the axial displacement of Taylor rolls (zR) for different Γ at Res = 9475, RΩ = 0.14.
(a) Chaotic small-scale oscillations about a fixed axial location in short (subcritical) domains (Γ ∈ [4, 8]). The
simulations span more than 200 viscous time units (d2/ν), without reflecting any change of this behaviour;
except for the initial transients in the first two viscous time units of the simulations, which we discard for
all further analyses in all cases. (b) Huge erratic axial drifts in a larger (supercritical) domain close to the
critical point (Γ = 10). (c) Large erratic axial drifts with qualitatively similar dynamics in larger (supercritical)
domains (Γ ∈ [16, 24, 48]). (d) Temporal evolution of the displacement variance, V (zR), for the data sets
shown in (c). The slope of the corresponding linear fit (broken lines) serves as an estimate for the effective
diffusion coefficient for the drift dynamics.

time, and continue moving erratically thereafter (figure 2b). With further increasing Γ ,
these excursions persist but become less extreme (figure 2c).

We quantify the Taylor-roll motion statistically by computing the variance of the axial
displacement, V (zR, t) = 〈z2

R〉t − 〈zR〉2
t , where angled brackets denote temporal averaging

up to time t . For Γ � 8, the fast dynamics of the rolls is centred around a fixed location and
V (zR) quickly saturates to a constant, in agreement with Sacco et al. (2019), who reported
Gaussian fluctuations of zR with constant variance. By contrast, for Γ � 10, V (zR) grows
approximately linearly with time, as in a Wiener process (figure 2d). The drift of the rolls
can thus be characterised with an effective diffusion coefficient, DR , as the slope of a
linear fit to the variance. For all our analyses, we use time series of at least 200 viscous
time units and we generally discard the first 2d2/ν to exclude initial transients.

4. Transition to large erratic drift dynamics
The dependence of the diffusion coefficient DR on the domain size Γ is shown in figure 3
for a fixed Rayleigh number (Ra = 107). Our data suggest a divergence of DR near a
critical point (Γc = 9.99) followed by a monotonic decrease as Γ increases. To examine
the nature of this transition, we compare spatial and temporal Fourier spectra from sub-
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Figure 3. Transition to large, erratic drift dynamics of Taylor rolls. (a) Beyond a critical domain size (grey
line, Γc = 9.99 from a power-law fit to the data), the Taylor-roll drift can be characterised by an effective
diffusion coefficient, DR , as shown in figure 2(d); here for Ra = 107, Res = 9475 and RΩ = 0.14. Note, that
Γ must take even integer values in order to maintain a unit aspect ratio of the Taylor rolls. (b) For a fixed
domain size (Γ = 24), the Taylor-roll drift starts at a critical Rayleigh number, Rac ≈ 6 × 105, and becomes
more pronounced as Ra increases. The grey region denotes the uncertainty in determining Rac; it spans the
interval between the last run with DR = 0 and the first run with DR > 0.
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Figure 4. Transition from temporal to spatio–temporal chaos for increasing Γ . Shown are premultiplied energy
spectra, ε(λ), at Res = 9475 and RΩ = 0.14 from a subcritical (Γ = 8) and a supercritical (Γ = 24) domain.
Spectra for other Γ look very similar and are thus not shown here. (a) Premultiplied spectra of the modal
kinetic energy (as, for example, in figure 1e) versus axial wavelengths, λz = 2π/κz , where κz is the axial
wavenumber and angled brackets denote temporal averaging. (b) Premultiplied temporal Fourier spectra of the
modal kinetic energy (as, for example, in figure 1e) for the dominant mode (here, for example, for kz = 4 in
the case of Γ = 8) versus temporal wavelengths, λt = 2π/ω, where ω is the angular frequency. FFT means fast
Fourier transform.

and supercritical domains (figure 4). For Γ = 8, the axial spectrum of ur presents discrete
peaks at wavelength λz = 2d and its harmonics only (figure 4a). This implies that the flow
state consists of four perfectly synchronised copies of one pair of Taylor rolls. In fact,
when comparing this state to those obtained for Γ ∈ {2, 4}, the same Nusselt numbers,
〈Nus〉 = 12.82474 ± 0.00002, and spectra (not shown here) are recovered. By contrast, the
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states obtained for Γ � 10 exhibit continuous spatial spectra (e.g. for Γ = 24 in figure 4a),
indicating spatial defects in the roll structure, i.e. there are no identical rolls in the
entire stack. A similar transition to spatio–temporal chaos was reported before for axially
oscillated (Avila et al. 2007) and hydromagnetic (Guseva et al. 2015) Taylor–Couette flow.
For both, however, no slow large-scale drift of the roll patterns was reported, possibly due
to much shorter simulation times.

The transition to spatio–temporal chaos also alters the temporal spectra (figure 4b). For
Γ < Γc, the temporal spectrum is continuous, indicating temporal chaos, and exhibits a
peak at 2 × 10−3d2/ν (i.e. approximately 20 convective time units) before falling sharply.
This peak is associated with the fast, small-displacement dynamics with DR = 0 and
Gaussian statistics reported by Sacco et al. (2019). For Γ > Γc, the temporal spectrum
features an additional broad peak at approximately 0.1d2/ν, corresponding to the slow
drift dynamics characterised by a Wiener process (i.e. DR > 0 and linearly increasing
variance). The transition to spatio–temporal chaos is also reflected in the mean Nusselt
number, but only in the third digit; 〈Nus〉 = 12.76 ± 0.04 for all Γ � 10. We note that
while much effort has been dedicated to remove drifts in the analysis of turbulent
dynamics of wall-bounded flows (Willis et al. 2013; Budanur et al. 2015), here the onset
of spatio–temporal chaos appears intrinsically linked to the slow, erratic drift dynamics.

5. Dependence of the drift dynamics on the flow configuration
We exploit the analogy between TCF and RBC (Bradshaw 1969; Veronis 1970; Prigent
et al. 2006; Eckhardt et al. 2007, 2020) to demonstrate that the drift dynamics is found
throughout the centrifugally unstable corotating regime. According to the exact Navier–
Stokes mapping of Eckhardt et al. (2020), axisymmetric TCF systems in the narrow-gap
limit (η → 1) are exactly identical if Ra = Res

2 RΩ(1 − RΩ) = const., i.e. the large-
scale drift dynamics is identical as well. Indeed, for moderate outer cylinder rotation
(RΩ ∈ {0.14, 0.30}), the drift statistics are similar (table 1, compare rows 3 and 4) and
the same is true for the corrected Nusselt number, Nu = 1 + (Nus − 1)/(1 − RΩ). We
attribute the small deviations to small, yet finite, curvature effects (η = 0.99 < 1), which
are not included in the analogy. For very slow outer cylinder rotation (RΩ = 0.05), the drift
statistics deviate noticeably (table 1, compare rows 3, 4 and 6). This is as expected because
the exact analogy breaks down in the limit of a stationary outer cylinder (RΩ = 0).

Next, we fix RΩ = 0.14 and Γ = 24, and vary Res , thereby varying the Rayleigh number
(figure 3b). At low Ra, the rolls are stationary, as observed for low Γ in § 3. Similarly,
at a critical point (Rac ≈ 6 × 105), the rolls begin to drift in the axial direction. As Ra is
increased beyond this critical point, the diffusion coefficient of the drift increases. This
is contrary to the effect of increasing Γ , but consistent with RBC experiments (Xi et al.
2006), where the rate of erratic rotations of the LSC increases tenfold as Ra increases
from 109 to 1010. A two-dimensional parametric study of the combined effect of Γ and Ra
would be interesting, but expensive and thus out of the scope of this work.

The axial drift of the Taylor rolls is associated with a net mass flux in z with mean
speed uz . This flux is strongly correlated to the drift speed (vR = ż R = ∂zR/∂t) of the
rolls (figure 5a), and raises the question of whether the roll displacement causes the net
axial flux or vice versa. The fact that vR is approximately 500d/U ahead of uz suggests
the former (figure 5b). We probe this hypothesis by enforcing uz = 0, as in laboratory
experiments of TCF with end walls. In our DNS with axially periodic BC, we enforce
uz = 0 by imposing an appropriate adverse pressure gradient at each time step. This
technique was previously applied to successfully compare axially periodic simulations to
lab experiments for Taylor–Couette flow in the counter-rotating regime (Edwards et al.
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Figure 5. Taylor-roll dynamics with and without axial flux constraint for otherwise identical parameters (Res =
9475, RΩ = 0.14, Γ = 24). (a) Time series of the drift speed of the Taylor rolls (vR = ż R = ∂zR/∂t) and the net
axial flux (uz) for the case in figure 1(d). (b) Close-up to the data in (a). As a visual reference, the black dash
represents 500 convective time units. (c) Time series from a simulation with no axial flux (NoFX, i. e. uz = 0)
enforced.

1991), with radial heating (Ali & Weidman 1990) and with axially oscillating inner
cylinder (Marques & Lopez 1997; Avila et al. 2007).

As a result of suppressing the axial mass flux, vR , V (vR) and DR are substantially
reduced (figure 5c, table 1, compare rows 4 and 5), but when rescaled, the drift dynamics
remains qualitatively unaltered (figure 6a). Specifically, V (zR) still increases linearly with
time (figure 6e), although at a slower pace.

6. Discussion
We have shown that axisymmetric Taylor–Couette flows exhibit a transition to spatio–
temporally chaotic Taylor rolls that drift erratically in the axial direction. At long time
scales, the drift motion is diffusive and can lead to very large displacements. Future works
should clarify whether this dynamics persists in three-dimensional TCF simulations and
in experiments with end walls. We note that even with walls, flow patterns can drift in z
with phase being created/annihilated near the walls (Heise et al. 2008).

In figure 6 the roll displacements extracted from our DNS are compared to the azimuthal
meandering of the large-scale circulation in circular Rayleigh–Bénard convection (Brown
& Ahlers 2006; Xi et al. 2006) and spanwise streak displacements in Poiseuille flow
(Kreilos et al. 2014). For the sake of comparison, we converted the rotation angle of
the LSC to a length scale as zR(t) = R θ(t) using the radius (R) of the RBC cell.
Additionally, we rescaled all drift signals to the viscous time unit, which is also the
relevant one of the exact analogy (Eckhardt et al. 2020). The qualitative agreement is
remarkable and suggests that this slow dynamics might be inherent to large-scale motions
in many fluid systems. However, longer RBC and Poiseuille flow runs would be needed
to confirm the Wiener statistics found here for Taylor–Couette flow, and to estimate
the corresponding diffusion coefficients (figure 6b–e). Additional statistical analyses and
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Figure 6. Comparison of large-scale drifts (zR) among different set-ups and fluid systems. (a) Taylor-roll drift
in Taylor–Couette flow with no axial flux (NoFX, ūz = 0); same run as in figure 5(c). Azimuthal meandering of
a single convection roll in cylindrical Rayleigh–Bénard convection for laboratory experiments lasting 11 days
(Ra = 1010, Brown & Ahlers (2006)) and 33 days (Ra = 109, Xi et al. (2006)), respectively. Spanwise streak
displacement in Poiseuille flow DNS (Kreilos et al. 2014). (b–e): Corresponding displacement variance, V (zR),
including linear fits (broken lines) to demonstrate an approximate linear growth with time and to estimate an
effective diffusion coefficient (DR).

modelling strategies previously applied to three-dimensional RBC (Brown & Ahlers 2007,
2008) could help elucidate further aspects of the drift dynamics reported here and deepen
this comparison. A particularly intriguing question is whether the rare cessation events
reported for Rayleigh–Bénard convection have a counterpart in Taylor–Couette flow. This
would correspond to a sudden decay and resurgence of Taylor rolls at a different location
(possibly with a change of the number of rolls). While such events were not observed here,
our data suggests that they may occur; see, for example, the event at t ≈ 17.5 in figure 1(e).

We stress that the shortest time series considered here (figure 2) correspond to 200Res =
O(106) convective time units and to 200

√
Ra =O(105) free-fall time units in RBC

(Ra = 107). These observation times are comparable to those used to characterise large-
scale states in RBC (Pandey et al. 2018; Wang et al. 2020), but they are several orders
of magnitudes longer compared with typical observation times in high-Re TCF studies
(Brauckmann & Eckhardt 2013; Huisman et al. 2014; Ostilla-Mónico et al. 2016a,b; Sacco
et al. 2019). In the Taylor–Couette apparatus of Huisman et al. (2014), for example, this
would correspond to a measurement time of two weeks.
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